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Chemical toxicity testing is moving steadily toward a human cell and organoid-based

in vitro approach for reasons including scientific relevancy, efficiency, cost, and ethical

rightfulness. Inferring human health risk from chemical exposure based on in vitro testing

data is a challenging task, facing various data gaps along the way. This review identifies

these gaps and makes a case for the in silico approach of computational dose-response

and extrapolation modeling to address many of the challenges. Mathematical models

that can mechanistically describe chemical toxicokinetics (TK) and toxicodynamics (TD),

for both in vitro and in vivo conditions, are the founding pieces in this regard. Identifying

toxicity pathways and in vitro point of departure (PoD) associated with adverse health

outcomes requires an understanding of the molecular key events in the interacting

transcriptome, proteome, and metabolome. Such an understanding will in turn help

determine the sets of sensitive biomarkers to be measured in vitro and the scope

of toxicity pathways to be modeled in silico. In vitro data reporting both pathway

perturbation and chemical biokinetics in the culture medium serve to calibrate the toxicity

pathway and virtual tissue models, which can then help predict PoDs in response

to chemical dosimetry experienced by cells in vivo. Two types of in vitro to in vivo

extrapolation (IVIVE) are needed. (1) For toxic effects involving systemic regulations,

such as endocrine disruption, organism-level adverse outcome pathway (AOP) models

are needed to extrapolate in vitro toxicity pathway perturbation to in vivo PoD. (2)

Physiologically-based toxicokinetic (PBTK) modeling is needed to extrapolate in vitro PoD

dose metrics into external doses for expected exposure scenarios. Linked PBTK and TD

models can explore the parameter space to recapitulate human population variability in

response to chemical insults. While challenges remain for applying these modeling tools

to support in vitro toxicity testing, they open the door toward population-stratified and

personalized risk assessment.
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INTRODUCTION

Next-Generation Risk Assessment
Human health risk assessment of chemical exposures is a
complex monitoring, experimental testing, and modeling task,
facing uncertainties and challenges at nearly every step of the
way along the exposure-to-outcome continuum (1). Its primary
purpose of protecting the general public can lead to conservative
regulatory recommendations for “safe” exposure dose that may
be overprotective in many circumstances. Its practice is based on
all related sciences and constantly shaped by emerging disciplines
and technological advancements. Advancements in exposure
science, biology, toxicology, chemistry, and epidemiology in
the new millennium are providing unprecedented opportunities
for a multi-disciplinary approach to address a number of the
challenges in chemical safety assessment (2). With the increasing
use of personal and mobile sensors and deployment of ground
and satellite monitors, and along with the rapid technological
refinement of analytical chemical equipment, the spatial and
temporal resolution of both external and internal exposure
monitoring for numerous chemicals have dramatically improved
(3, 4). On the epidemiology front, omics-wide measurements of
human samples have brought this traditional, health outcome-
oriented discipline steps closer to helping reveal the molecular
mechanisms of environmentally related diseases (5). In biology,
since the completion of the first human genome sequencing,
technological revolutions in molecular systems biology have
allowed us to peek into the microscopic world of life at genomic,
epigenomic, transcriptomic, proteomic, and metabolomic levels
simultaneously and make documenting, molecularly, every cell
of our body within reach (6). Data streams coming from all these
disciplines, at a growing personalized resolution, are converging
to revolutionize the way chemical safety assessment is conducted
for the betterment of public health.

In vitro Assay-Based Toxicity Testing
Among all these ongoing changes, a paradigm shift has been
under way since the publication of the influential NRC report,
“Toxicity Testing in the 21st Century (TT21C): A Vision and
a Strategy” in 2007 (7). This vision advocates the usage of
cells or organoids, ideally of human origin, as the primary
testing substrates for assessing chemical toxicity and health
risk. A number of considerations and forces are behind this
dramatic departure from the traditional “gold standard” of using
whole animals for toxicity testing. The animal-based approach
examining gross apical endpoints has been in place for nearly
half a century and its ability to predict human health risk
under environmental exposure conditions is very limited with
a wide range of uncertainties (8). This adherence to a failing
tradition without much progression in decades is in stark
contrast to the exponential growth of our knowledge in the
basic biological science where the revolutionary advancement of
molecular interrogation and manipulation tools is enabling us to
examine biological perturbations at unprecedented resolutions
and scales. The traditional animal approach does not utilize
much our improved understanding of how life works at the
level of molecular pathways and networks, which provides the

opportunity to gain deeper mechanistic insight into chemical-
inflicted health outcomes.

The transformation of toxicity testing is also driven by non-
scientific factors. The traditional animal-based testing method
is slow and costly, as exemplified by 2-year rodent cancer
studies. The low efficiency and high cost generate a huge
backlog of untested, existing chemicals, and newly invented
chemicals waiting for approval to enter the commercial market
(9–11). Last, but not least, there is increasing societal pressure
around the ethical use of laboratory animals for human benefit.
Multi-decade advocacy for humane treatment of experimental
animals through the 3R principles: reduction, refinement, and
replacement, has led to the legislative ban of cosmetic ingredient
testing on animals in several geographies including EU and
India (12, 13). While animal-based apical endpoint studies
remain the predominant toxicity testing approach mandated
by government regulations, the cell or organoid-based in vitro
toxicity approach is gaining steady acceptance. The international
scientific community has launched a number of initiatives to
push for animal alternatives by developing in vitro assays
(14–16). Inter-agency collaborations such as the Tox21 project
develop, standardize and use high-throughput, high-content cell
assays to generate highly reproducible screening data (14).

Limitations of in vitro Testing Approach
While chemical safety assessment based on in vitro toxicity
testing holds a great promise, with the added benefit of
accelerating testing and eliminating animal usage, this approach
alone has obvious limitations and faces multiple challenges that
have to be overcome to be practically useful (17). Ideally an in
vitro approach requires the right types of cells or organoids for
assays that can closely mimic the physiological environments
in vivo, including the native extracellular milieu and cell-to-cell
interactions normally encountered in a tissue. This is hardly
the case as the tissue culturing technology stands today. For
chemicals that are bioactivated after passing through the liver
or other tissues and thus their metabolites are the actual culprit
of toxicity, emulating the bioactivation process experimentally
in a quantitatively accurate way can be difficult. With respect
to dosimetry, there are challenges in describing the in vitro
kinetics in the culture medium, where the stability of the test
chemicals would affect the cellular responses, and challenges
in mimicking the actual chemical kinetics cells in the target
tissues experience under real-world exposure scenarios. Defining
the proper in vitro point-of-departure (PoD) at the cellular
level and extrapolating it to in vivo apical endpoint alterations,
often occurring on a different time scale, is a challenging task.
Also nontrivial is the extrapolation of determined in vitro
PoD chemical dose metrics to in vivo exposures. For human
population risk assessment, challenges also include compiling
an ensemble of cells or organoids to adequately address human
individual variability and extrapolating to low-dose effects for
environmental exposures. At the 10th anniversary of the 2007
NRC report, a survey conducted among near 1,400 toxicologists
and risk assessors revealed that the leading technical barriers to
the adoption of the in vitro assays-based alternative approaches
are, among others, “concerns with regard to the interpretation
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and extrapolation of the data, failure to capture the integrated
whole-animal system, the difficulty in developing dose–response
relationships” (18).

Clearly some of the data gaps resulting from these challenges
can be partially addressed or overcome through experimental
and technological improvement, such as developing organ-
on-a-chip and system-on-a-chip technology to better simulate
chemical metabolism and physiological interactions, and using
cells from a large number of donors to better represent human
populations (19–21). However, there are fundamental limitations
of the in vitro testing framework that cannot be easily improved
through experimental means, and would require a computational
approach to help bridge the data gaps in a feasible and cost-
effective way (22). Indeed, dose-response and extrapolation
modeling is a central pillar that was proposed to support the
interpretation of in vitro assays in the new toxicity testing and
risk science paradigm (2, 7, 23). This article aims to provide a
glimpse at the computational modeling tools that would help
enable in vitro assay-based risk assessment, with a primary focus
on toxicodynamic modeling of toxicity pathway perturbations.

COMPUTATIONAL APPROACHES FOR
DOSE-RESPONSE AND EXTRAPOLATION
MODELING

Toxicity Pathway and in vitro PoD
One of the radical changes after switching to cell or organoid-
based testing is that some combinations of in vitromeasurements
will be used as biomarkers to define the PoD instead of
the apical, organism-level endpoints normally screened for in
animal testing, such as cancer, liver pathology, and reproductive
functional disruption. While many traditional biomarker assays,
such as those evaluating DNA damage, cellular and organelle
states and functions, will continue to be part of the testing
repertoire, it is recommended that the selection of in vitro
endpoints should bear more mechanistic considerations and be
organized around the primary toxicity pathways perturbed by the
test chemical (7). Toxicity pathways are defined as physiologically
functioning biochemical pathways or molecular circuits in the
cells that, when sufficiently perturbed by external factors, would
lead to adverse health outcomes (7). While the definition is
conceptually clear, in practice it is challenging to (a) define the
scope of relevant pathways for a particular chemical among the
complex intracellular network comprising myriad biochemical
nodes and to (b) relate perturbations of the pathways, a subset of
the network, to apical endpoint alterations both qualitatively and
quantitatively. So far, the culprit pathway(s) known to mediate a
chemical’s primary toxic effect has been mostly the synthesized
knowledge from mechanistic studies. The new toxicity testing
approach would require the development of high-coverage assays
that screen the entire toxicity pathway space. With the increasing
availability and affordability of omics technologies, screening for
changes at genomic, epigenomic, transcriptomic, proteomic, and
metabolomic levels becomes feasible, which will help identify
the most sensitive toxicity pathways for further fit-for-purpose
testing (24, 25).

Given a chemical and its initially identified toxicity
pathway(s), the next question is what fit-for-purpose in
vitro assays we need to utilize or develop to cover a sufficient
number of biochemical and cellular biomarkers that can
truly gauge the degree of pathway perturbation causing
an adverse health outcome (25). Cellular perturbation and
adversity can be evaluated in a number of traditional as well
as novel ways. General cellular health can be monitored by
measuring cell viability, LDH release, ROS level, ATP depletion,
and mitochondrial membrane potential, etc. Damages of
biomacromolecules and cellular components can be assessed
by measuring DNA double-strand breaks, DNA adducts,
micronuclei, lipid peroxides, and protein adducts etc. Functional
assays, such as the beating of cardiomyocytes, metabolic
capacity of hepatocytes, and insulin secretion of β-cells, are
also available. While these traditional biomarkers provide
general, key information about cellular perturbation, toxicity
pathway-specific information is also needed. Within the adverse
outcome pathway (AOP) framework, toxicity pathways can be
measured by examining key events (KE) that occur between
the molecular initiating events (MIE) and adverse outcomes
(26, 27). KEs emerging immediately downstream of MIEs
are sensitive nodes that can be utilized as biomarkers at
early time points of perturbations. But as cells adapt through
activating downstream KEs, transcriptional, and translational
activities can be significantly altered, thus becoming possible
candidates for pathway perturbation evaluation. Among all
the cellular endpoints—generic cellular status and health,
pathway-specific information, specialized cellular functions and
activities conducive to the fitness of the organism—choosing
the right combinations to sufficiently represent toxicity pathway
perturbations that can lead to adverse outcome is a challenge.
Further complicating the matter is the determination of the
magnitudes and durations of these deviations, which collectively
define a cellular PoD that can lead to adverse health outcomes. As
discussed in later sections, overcoming these challenges would
require mechanistic knowledge of how cells respond and handle
chemical stresses at various omic levels of toxicity pathways in
the absence and presence of adverse outcome manifestation.

Computational Modeling of Toxicity
Pathways to Predict in vitro PoD
The Biasing Effect of in vitro Kinetics on PoD Dose

Metric Determination
The majority of cell-based assays are currently done with the
test chemical added at a fixed, initial concentration at the
beginning of the experiment and then the cells are continuously
cultured for a number of hours or days, as exemplified by
the ToxCast and Tox21 assays (14, 15). The minimal initial
concentration that can drive the tested cellular system to deviate
from the basal state for a predefined magnitude and duration
deemed to lead to adverse outcomes in vivo is often regarded
as a PoD concentration for the chemical and toxicity pathway
investigated. In the new toxicity testing paradigm, it is assumed
that the nominal in vitro PoD concentration so obtained is
equivalent to the plasma or tissue concentration cells in vivo
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are exposed to that would lead to an adverse outcome (28, 29).
This assumption has some caveats. First of all, it ignores the
fact that many chemicals are not stable in the culture medium
as they can either be metabolized somehow in the medium or
move into the cells and are metabolized intracellularly. As a
result, the concentration of the chemical in the medium may
decay and that in the cells may first rise and then fall over time
(30). The biochemical and cellular alterations observed under
such experimental protocol are the result of cells responding
to a changing concentration of the chemical or its metabolites,
which can be very different from the response of cells in vivo
which can experience fluctuating or relatively constant chemical
concentrations depending on the exposure and clearance rate. A
second consideration is that many chemicals can bind to either
the plastic wall or ingredients in themedium,making the effective
free concertation lower than the nominal concertation even when
there is no significant clearance otherwise (31). In certain cases
evaporation of volatile chemicals may be significant (32, 33).
All these considerations above challenge a straightforward usage
of initial chemical concentrations in the culture medium as
the in vivo tissue PoD concentrations. In a situation where a
chemical decays rapidly in an in vitro assay, the effective or
average concentration of the chemical capable of pushing the
cells to the observed PoD can be far lower than the nominal
concentration. Using the nominal concentration as a PoD dose
metric will lead to an underestimate of the health risk of the
chemical, a bias that is undesirable and should be avoided by all
means. Moreover, in addition to dose, chemical toxicity is also a
function of exposure time. In clinical settings, drug toxicity can
correlate with accumulative dose such as the case of doxorubicin-
induced congestive heart failure (34). Thus combination of
nominal concentration and exposure duration has also been used
to more comprehensively characterize PoD dose metrics (35). To
address the concern of in vitro dosimetry selection, Groothius
et al. recommended a decision tree—based on the characteristics
of the in vitro kinetics, cellular endpoint, and mode of action
of the test chemical—to help choose among nominal, measured
total, free, and intracellular concentrations, time-averaged, and
area-under-curve as reported PoD dose metrics (36).

Real-world chemical exposures are complex, leading to
dynamical tissue dosimetry. For accidental exposures, the
internal chemical concentrations can rise acutely in a short period
of time. For chronic environmental exposures, depending on
the exposure scenario and clearance characteristics, the internal
chemical concentrations can be episodic or relatively constant
within a long period of time albeit possibly changing slowly.
For clinical applications, drugs are administrated using a variety
of regimens, resulting in rapidly fluctuating plasma and tissue
concentrations within minutes, hours, and days. Simple in vitro
assays cannot easily duplicate either of the above scenarios.
Microfluidic technology such as organ-on-a-chip devices can
have a more controlled delivery of the test chemical to the
cultured cells or organoids to better mimic clinical applications
and environmental exposures, but currently it is challenging to
scale up in a high-throughput, economical manner to cover the
chemical space and toxicity pathway space to be tested (37).

Constructing and Calibrating Toxicity Pathway

Models With in vitro Assay Data
To bridge the data gap between in vitro and in vivo kinetics
and correct for the resulting difference in the PoD chemical
dose metrics, computational toxicity pathway models and likely
in vitro kinetic models are needed (Figure 1). The former
is to mathematically reconstruct the relevant biochemical
circuits operating in the cells as a dynamical system by using
coupled differential equations (23). These differential equations
mechanistically describe the KEs in the toxicity pathway of
the chemical’s AOP, including the interactions and regulations
between key biochemical nodes across different omic scales.
In a dynamical pathway model, model parameters typically
include transcription and translation rates, mRNA and protein
half-lives, binding affinities for ligand-protein, protein-protein,
and protein-DNA interactions, apparent Hill coefficient for
ultrasensitive responses, and Michaelis-Menten constants for
enzymatic reactions (23, 38–40). A useful pathway model
will mechanistically capture the perturbation dynamics of
the underlying biochemical circuits from the MIE through
downstream signaling events. For in vitro testing where
organoids or 3-D tissues are used, computational virtual tissue
models capturing cell-to-cell interactions that give rise to
tissue structures will be needed, especially for understanding
developmental processes (41, 42). These virtual tissue models
normally use an agent-based modeling approach where the
behavior of each agent, representing a cell, can be described by
predetermined rules or through mechanistically-based toxicity
pathway modeling as described above (43).

To calibrate these toxicity pathway models, the in vitro
kinetic information of the test chemical is needed as model’s
input. Therefore the chemical concentration, particularly the
free concentrations, in the culture media and cells during
the course of the in vitro experiment should be determined
whenever possible. As high-throughput non-depletive methods
of quantifying chemicals in miniaturized assays improve,
determining chemical concentration kinetics is becoming
increasingly practical (44). In some cases, an in vitro kinetic
model describing the chemical concentration changes in the
culture medium and cells over time can be constructed
(Figure 1). Research efforts have been under way to construct
in vitro kinetic models for validating and predicting chemical
concentration variations in widely used cell lines (30, 45–47).
The Virtual Cell Based Assay (VCBA) project in Joint Research
Centre in European Union aims to predict time-dependent
concentrations of a test chemical both in the culture medium
and within the cells by using ordinary differential equations
that incorporate the physicochemical properties of the chemical
and metabolic and cellular properties of the cell lines. The
determined free concentrations in the culture medium can be
different from the nominal concentrations by several orders
of magnitude, emphasizing the importance of characterizing
chemical distribution in in vitro assays (46, 47). These in vitro
kinetic models can be used to predict cultural and intracellular
chemical concentration changes over time for initial chemical
dose or repeated dose not experimentally tested. The in vitro
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FIGURE 1 | Schematic illustration of the workflow of computational approaches supporting dose-response modeling and in vivo extrapolation based on in vitro

testing data.

kinetics predicted or actually measured will then be used as
input to calibrate the toxicity pathway or virtual tissue models.
The model output will be the dynamics of the key biochemical
nodes and other cellular metrics identified collectively as the
PoD biomarker set, many of which are experimentally measured
with the in vitro assays. Model parameters are calibrated through
minimizing the difference between the model output and in
vitro assay data obtained at different time points for different
initial concentrations of the chemical tested. This calibration is
essentially a training process for the dynamical toxicity pathway
model.

An ultimate goal of constructing the in vitro kinetic and
toxicity pathway models and calibrating them based on data
from the in vitro assay protocols is to help identify the
true in vivo PoD chemical concentrations or other relevant
dose metrics in target tissues under realistic or anticipated
human exposure scenarios (Figure 1). For certain environmental
exposure settings where the exposure is chronic and the chemical
clearance is slow so its plasma and tissue concentrations are
relatively constant, static chemical concentrations can be virtually
applied to drive the calibrated computational toxicity pathway
models to reach or surpass the predetermined PoD to predict
the in vivo chemical concentration in the target tissue that
would lead to an adverse outcome. For clinical applications or
other environmental exposure settings where the chemical tissue
concentrations are episodic and constantly changing, dynamic
chemical concentrationsmimicking these conditions, likely aided

by toxicokinetic models, will be applied to the computational
toxicity pathwaymodels to predict the dosing scenario that would
result in the predetermined toxicity PoD in the model (48).

Determining and Modeling Molecular KEs
of Toxicity Pathways and PoD
To determine appropriate in vitro PoDs in the new toxicity
testing framework, identifying key, experimentally measureable
biochemical and cellular events is a critical step. The choices
of in vitro PoD have been so far arbitrary and many of which
are chosen for convenience due to conventional usage. For
example, AC50, and IC50 are routinely used to evaluate chemical
effects on signaling events such as receptor binding, reporter
gene expression, enzyme inhibition, as well as ATP depletion
and cell viability. Many follow-up studies analyzing the ToxCast
and Tox21 data focused on the concentration point giving rise
to 50% of the maximum response (49–52). While using these
biomarkers are valuable in ranking the potency of chemicals
and prioritizing them for further testing, their usage as in vitro
PoD to infer adverse health outcome is questionable due to lack
of quantitative correlations. In certain cases, the benchmark-
dose (BMD) approach or its variants are used to define in vitro
PoD (53). This approach considers the shape of the entire in
vitro concentration-response curve and variability. While an
improvement over using AC50 and IC50, the choice of BMD
levels, such as BMD10, BMD20, can be arbitrary and face a similar
issue of relating to in vivo effects.
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Moreover, changes in many of the cellular PoDmetrics are not
only a function of chemical concentrations, but also a function
of the duration of chemical treatment. An obvious example is
the cell viability assay, where incubation with a chemical for
a longer time generally results in more cell deaths (35). This
time-dependency generally leads to a left-ward shifting of the
concentration-viability curve, and as a result, a different PoD
concentration regardless of using IC50 or BMD10. For many
transcriptionally-mediated cellular stress responses, induction of
the stress genes peaks at various times depending on the genes
and chemical concentration, thus concentration-response data
obtained at a single time point can barely represent the overall
response profile (39, 54). Therefore, it is unrealistic to define a
PoD solely based on a single cellular metric obtained at a single
time point. Rather, PoDs should contain dynamic information,
i.e., both the magnitude and duration of the changes of the
relevant biomarkers that can adequately represent the sufficiently
perturbed cellular state that would ultimately lead to adverse
outcomes in vivo.

Modeling Adaptive Cellular Stress Response for PoD
Defining the scope and degree of cellular perturbations that
culminate in adverse outcomes is a challenging task requiring
basic knowledge on biological robustness and homeostasis, such
as how cells handle stress to continuously function and survive
in the face of adversity (55). Adaptation is a salient feature of
biological systems and is often framed as a determinant of PoD
when the adaptive capacity is reached (7). It is commonly thought
that if cells have adapted to the stress posed by a chemical and
as a result restored cellular homeostasis, the chemical at the
tested concentration can be considered safe. This view however
poses many questions about the relevance of using a PoD so
derived in human risk assessments. The immediate question
is what aspect of the cellular state should be looked at to
determine whether and how well the cells have adapted. Is it
the general cellular heath state, stress pathway status, cell growth
or the cell’s specialized function? If cells have adapted well with
the general cellular heath state (as measured by biomarkers
such as ROS, ATP, viability, and LDH) largely indistinguishable
from unstressed cells, are their specialized functions equally
preserved or nonetheless compromised (56)? Shah et al. has
used multiple cellular biomarker data deposited in the ToxCast
database, including those representing general cellular health and
activation of specific stress pathways, to represent cellular state
trajectories in response to chemical perturbations (57). In the
study, cells with trajectories that move irreversibly away from the
basal state were deemed to exceed a tipping point while those
with recovering trajectories are still within or returning to the
bound of the normal state. It is unclear though whether these
“recovering” cells have or will completely reset their states from
the chemical stress or would retain some long-term memory
that would affect their response to future insults. It has been
shown that epigenetic changes can occur after recovering from
stress, which can be inherited through several cell generations to
transcriptionally affect future stress response, as demonstrated in
C. elegans that undergo heat stress (58). It is unclear whether this
post-stress epigenetic memory is a general phenomenon.

Transcriptional induction of suites of stress genes is the
hallmark of cellular stress responses to chemical insults and has
been proposed as a general method for chemical surveillance
and in vitro screening (59). A typical stress pathway (Figure 2A)
involves a sensor molecule to detect the cellular state change, a
transcription factor that can be specifically activated by the senor
molecule or by the state change directly, and a battery of stress
proteins which are induced transcriptionally and participate
in reactions that restore the perturbed cellular state, such as
altered ROS, DNA damage, ATP levels, to homeostasis (59).
These canonical stress response pathways are organized primarily
as negative feedback loops and have been constructed into
mathematical pathwaymodels to understand their dose-response
behaviors (60–63). With an integral control or proportional
control with high loop gains, the cellular state maintained by the
feedback loops can exhibit threshold phenomena in response to
chemical perturbations, where the threshold point corresponds
to the stress intensity that causes the maxing out of the induction
of stress genes (60, 64). This threshold chemical concentration
where maximal induction of stress genes occurs often demarcates
the beginning of deterioration of general cell heath as determined
by assays such as cell viability and LDH release, suggesting
that stress gene expression that increases concurrently with
increasing chemical stress intensity is responsible formaintaining
cell survival (39, 54). If cell survival is used as a biomarker for
PoD, a mathematical model of the relevant stress pathway can be
constructed and calibrated to predict PoD by simulatingmaximal
stress gene induction.

Despite the above considerations, it is questionable whether
loss of adaptation as a result of gene induction saturation
and subsequent decline in cell survival can be used as proper
biomarkers for predicting in vivo adverse outcomes (65).
Emerging evidence suggests that they may be too insensitive for
this purpose for reasons below. Cellular stress response is a highly
energy-demanding process, as a number of stress proteins are
being synthesized de nova to levels several to tens of folds of their
basal levels (66–71). Bioenergetically constrained, cells under
stress initiate global translational reprogramming and metabolic
reprogramming to preserve energy for the stress response for cell
survival while sacrificing other non-survival-essential programs.
In sufficiently stressed cells, the translation of most proteins is
inhibited or shutdown through stress-induced posttranslational
modification of translation initiation factors such that the normal
5′ cap-dependent translation initiation becomes compromised
(72–74). In contrast, the mRNAs of many essential stress proteins
(such as antioxidant enzymes, DNA repair enzymes, heat shock
proteins in the canonical stress pathways) are continuously being
translated because they contain alternative internal ribosome
entry sites (IRES) in their 5′ untranslated regions, permitting
ribosome assembly and initiation of cap-independent translation
at these IRES sites (75). Through this mechanism and others, the
induction of stress genes is unaffected (76). However, due to the
global translation inhibition, the synthesis of proteins involved
in specialized cell functions (which are unlikely essential to cell
survival at the moment of stress) is likely halted. In addition
to translational reprogramming, metabolic reprogramming may
also occur to optimize energy distribution in the face of cellular
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FIGURE 2 | Schematic illustration of PoD resulting from perturbation of stress pathways and bistable gene networks. (A) A simplified view of a cellular stress response

network where posttranslational control (dashed arrow) increases the activities of stress proteins and transcriptional control activated by transcription factor (TF)

increases the abundance of stress proteins. (B) Chemical concentration-dependent transition of the stress response. At low chemical concentrations, the activities of

basal, preexisting stress proteins are augmented (through posttranslational control) to maintain homeostasis of the cellular state and specialized cell function and

fitness are intact. When the chemical concentration reaches a level that maximizes the activities of the preexisting stress proteins, transcriptional control is initiated to

increase the abundance of stress proteins to continue to maintain homeostasis and survival. The onset of transcriptional control may define a PoD because

specialized function/fitness may be compromised due to translational and metabolic reprogramming (not shown and refer to main text for details) associated with

transcriptional control. (C) Cellular phenotype can be determined by the state of a gene network which can be perturbed by chemicals. (D) If the gene network forms

a bistable switch, the bifurcation point of the network defines a PoD. For chemical concentrations below the PoD concentration, cells remain in the normal state; for

chemical concentrations above the PoD concentration, cells switch to the adverse state. Gene expression levels can exhibit different variabilities depending on the

cellular state. When normal-state cells are exposed to chemical concentrations well below the PoD concentration, the variability of gene expression within the bistable

gene network is small (blue dots on the far left of the curve, representing gene expression levels in single cells). When normal-state cells are close to the PoD, gene

expression variability dramatically increases (blue dots close to PoD). Once cells switch to the adverse state, gene expression variability decreases again (blue dots on

the top curve). Refer to main text for further details.

stress (77, 78). In the case of oxidative stress, the flux through
the pentose phosphate pathway is promoted to synthesize more
NADPH as reducing agent to handle the stress, which takes the
carbon flux away from the glycolysis and downstream Krebs
cycle, resulting in less energy available for other cellular processes
(79). Therefore, as a result of stress-induced translational
and metabolic reprogramming that accompanies the onset of
transcriptional induction of stress genes, cells enter a survival
mode to avoid being killed, with their specialized functions and
other nonessential activities sacrificed or suspended temporarily
(80). This mode of cellular stress response suggests that the
beginning of transcriptional induction of stress genes may define
a fitness-relevant PoD (Figure 2B). In keeping with this notion,
a recent ecological study with brook trout, a cold-water fish,
showed that the threshold water temperature inducing the onset
of heat shock protein expression in the gill is consistent with
the average water temperature limiting the fish population in the
field, suggesting a connection between thermal stress response
and fitness (71).

This mode of action raises the question on the mechanisms
cells utilize to counter stress in the absence of transcriptional
induction of stress genes. When exposed to mild and/or transient
stresses, cells do not necessarily and sometimes are unable to
launch transcriptional responses (81–83). For one, this is because
stress response through transcription is too slow to be initiated
to handle transient, but sometimes detrimental, stresses (65).
Moreover, the transcriptional network can be insensitive to low-
level stresses due to the relatively small feedback loop gain
near the basal condition where transcription factor-independent
constitutive expression of stress genes can be dominant (60).
Instead, there appear to be a number of posttranslational
control mechanisms cells can engage to promote their anti-
stress capacity, by activating pre-existing stress proteins that are
normally inactive (Figure 2A) (65). The activation can be both
through allosteric regulation or posttranslational modification
such as phosphorylation, oxidation, and acetylation (84–86).
These processes are fast in responding and demand much
less energy than de novo protein synthesis. Therefore, it is
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possible that cells adapt to stresses through a two-tiered process
depending on stress intensity (65). At low stress levels, cells
use posttranslational regulation of basal, pre-existing stress
proteins to enhance their activities to maintain homeostasis
while their specialized functions are unaffected because there is
no global translation inhibition and metabolic reprogramming
yet (Figure 2B). At higher stress levels, all the pre-existing
stress proteins are activated and their abundance needs to
be increased—through initiating transcriptional induction—to
continue to maintain homeostasis and survival. Concomitant
with the initiation of transcriptional control, cells enter
survival mode, and stress-induced translational and metabolic
reprogramming diverts energy and molecular resources away
from the maintenance and synthesis of non-survival-essential
proteins, including those executing specialized cellular functions
(56). At very high stress levels where transcriptional control is
maxed out, cell viability starts to decrease with increasing cell
death.

Therefore, the transition or switching of cells from
posttranslational control to transcriptional control may
demarcate a functional PoD, where specialized cell functions start
to deteriorate or other activities conducive to fitness starts to slow
or pause. As a result of this two-tiered operation, it may require
us to shift the monitoring focus from measuring transcriptional
changes to measuring posttranslational modifications as
biomarkers to more sensitively detect PoD that is associated with
functional alterations. Concomitantly, computational toxicity
pathway models describing both the short, fast posttranslational
feedback loop and the slow, transcriptional feedback loop need to
be constructed to simulate the transition from posttranslational
to transcriptional control. Such pathway models, calibrated
based on in vitro assays measuring transcriptomic and proteomic
responses, will allow us to extrapolate functional PoD for tissue
chemical concentrations encountered in real world exposures.

Transcriptomic Alterations and Apical Adverse

Outcomes
The idea that transcriptional alteration can be associated
with adverse outcomes has also emerged recently from
toxicogenomic studies. Since the RNA microarray technology
and subsequently next-generation sequencing became available
and affordable, many animal studies have been conducted to
examine transcriptomic changes at confirmed or suspected
target organs or tissues in response to chemical exposures (87–
89). Many of the tested chemicals are legacy chemicals, such
as pharmaceutical compounds and well-studied environmental
toxicants, with known apical endpoint toxicities. The primary
purpose of these toxicogenomic studies was to explore whether
detecting transcriptomic changes within a short exposure time
and with fewer animals can replace the traditional apical
endpoint tests. Initially it was thought that transcriptomic
changes may be a very sensitive biomarker for this purpose,
i.e., they may occur at earlier time points and at lower doses
than required for apical endpoints to manifest. However, the
vast majority of these studies have shown, surprisingly, that
there is basically a temporal and dose concordance between
transcriptional changes in the most sensitive pathways and the

adverse health outcomes in the animals, for both cancer and
non-cancer endpoints (90–95).

These findings are in agreement with the two-tiered cellular
stress response profile discussed above, where if a chemical
dose is high enough to induce transcriptional alterations, the
cell’s specialized function or other activities conducive to the
fitness of the organism may be compromised, resulting in
adverse outcomes. While toxicity pathway alteration at the
transcriptional level can be both the cause and result of adverse
outcomes, these toxicogenomic studies suggest that examining
transcriptomic changes may not be early and sensitive enough
to predict and avert toxicity. Although these studies were done
primarily in animals, they provide important clues to guide
toxicity pathway-based in vitro testing, with respect to the omic
tiers that should be examined. For chemicals inducing cellular
stress responses, proteomic and metabolomic changes may act as
sensitive biomarkers for detection.

Modeling Critical State Transition Through Bistable

Gene Networks
Transitioning of toxicity pathways and AOPs from normal
to adverse states, as driven by an MIE such as receptor
binding, can be regarded in some cases as switching of the
underlying dynamical system from one attractor state to another
(23). Converging evidence from many fields, including physics,
ecology, climate, finance, biology, and psychology, has revealed
that certain generic features exist in complex dynamical systems
and can be exploited to predict the imminence of abrupt state
transitions such as species vanishing in ecosystems, financial
crisis, or climate change (96, 97). Although often driven
by slowly-varying external or internal factors, the transition
can occur abruptly through a saddle-node or other types of
bifurcation corresponding to a tipping point (98). A common
feature of a dynamical system that is approaching such tipping
point is that its rate of recovery from small, transient perturbation
by random noise slows down dramatically (99). As a result of
this critical slowing down, the state of the system (i) displays
an increased temporal auto-correlation and (ii) fluctuates more
dramatically (increased variation) around the current attractor
state. Both of these features have been utilized to successfully
predict critical transition in many fields (100–103). Stable cellular
fates or phenotypes can be regarded as attractor states of a
complex dynamical system underpinned by gene regulatory
networks (Figure 2C), and transitions between cell states are
driven by physiological signals or exogenous chemicals (104).
It has been postulated that cancers are the result of normal
cells falling irreversibly into cancer attractor states that are
either preexisting or created by mutations or other carcinogenic
drivers (105). As chemical concentration increases or their
immediate effects (such as mutations) accumulate in cells/tissues,
driving the gene network close to the tipping point, based on
the theory of critical slowing down, the gene transcripts and
proteins, which are constantly perturbed by stochastic gene
expression noise (106), would be sluggish to return to their
deterministic steady-state levels and thus become more variable
(Figure 2D). As a result, the expression pattern of these network
genes will exhibit certain statistical features near the tipping
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point (102, 103, 107), despite that their mean expression levels
can remain largely indistinguishable from the normal, healthy
attractor state: it is expected that (i) gene expression variance
will increase dramatically across time and between cells; (ii)
expression correlation between genes in the same network will
increase dramatically due to mutual feedback regulation; (iii)
similarity between individual cells, defined by the gene expression
vector, will decrease. So the pre-tipping point can be predicted
by a composite index derived from the above statistics of
network genes. Practically this can be achieved by analyzing
gene expression data obtained from in vitro RNAseq or real-time
RT-PCR assays performed at single-cell resolution.

Critical transition of a biological system from a healthy
attractor state to a diseased attractor state driven by
environmental exposures can be irreversible such that even
the external and/or internal exposure recedes to a lower level, the
affected system is still locked in the diseased state (Figure 2D). In
dynamical systems theory, such irreversibility may be mediated
through a bistable switch where the system can adopt one of the
two possible states under the same conditions (98). The primary
network motif of bistable switches is a positive or double-
negative feedback loop. Such feedback loops in gene networks
have been shown to play essential roles in mediating many
cellular phenomenon, including proliferation, differentiation,
and apoptosis (108). It defines an unambiguous threshold
beyond which the cellular system will switch irreversibly to a
different state, which can be another physiological state, or in
the event of toxicity, an adverse outcome state. Environmental
and pharmaceutical chemicals have been shown to interfere
with these bistable-switching processes (38, 109). Computational
modeling of these feedback networks capable of alternative,
contrasting attractor states is important for interpreting single-
cell resolution transcriptomic and proteomic data and predicting
PoD for chemicals perturbing bistable-switching toxicity
pathways.

In vitro to in vivo Extrapolation (IVIVE)
Modeling
For human risk assessment based on the advocated in vitro
testing approach, an obvious challenge is how to interpret these
in vitro assay results in the in vivo context and inform safety
assessment for human populations. This task would rely on
computational IVIVE modeling for both toxicodynamics and
toxicokinetics.

IVIVE Modeling for Toxicodynamics of AOPs
The biological scope of an AOP can vary depending on the
chemicals and their adverse outcomes. Some AOPs can be very
local, i.e., the MIEs and the apical endpoints occur within the
same target organs or tissues without much involvement of
other parts of the body. For these localized disease outcomes,
for instance, cancer and certain liver toxicity, the in vitro PoD
dose metrics derived from cell or organoid-based assays may be
directly applicable to in vivo situations with minor adjustment.
For disease outcomes clearly involving whole-body physiology,
such as disorders in blood pressure, body temperature,
hormones, metabolism, and immunity, perturbations at one

target site can be systemically compensated through feedback or
feedforward regulations that involve other body parts tomaintain
homeostasis. For example, the local effect of an endocrine
disrupting chemical that inhibits thyroid hormone secretion can
be compensated, within a limit, by the hypothalamic-pituitary-
thyroid (HPT) axis feedback through enhancing TSH secretion
(110). It is conceivable that an isolated, in vitro assay using
thyroid follicles to measure inhibition of thyroid hormone
synthesis/secretion will not be able to inform—by itself—the
degree of deviation in hormone levels in vivo, including the
expected increase in TSH, which can have a proliferative
effect on the thyroid gland. While this PoD gap between in
vitro and in vivo situations may be addressed to some extent
by future organ-on-a-chip technology that can create a mini
HPT system, dynamic computational models of the endocrine
feedback axis will be able to bridge the gap by taking the in
vitro assay results as the input and predict in vivo hormonal
changes as the output. Computational HPT models for both
rats and humans have been constructed and applied to predict
the in vivo effects on thyroid hormones of several thyroid
disruptors such as thyroperoxidase inhibitors and sodium-iodide
symporter inhibitors (111–113). A computational model of the
endocrine system can also simulate cyclic hormone dynamics and
incorporate population variability into the relevant physiological
processes to conduct risk assessment based on in vitro testing
data. Bois et al. has recently linked ToxCast aromatase inhibition
data to a menstrual cycle model to predict cycle length changes
in women for chemical mixtures (114). Therefore, for the risk
assessment of endocrine disruptors, we should aim to model
endocrine systems by integrating different biological scales of
the relevant AOPs and utilize these models to predict in vivo
effects by taking in vitro toxicity pathway perturbation data
(115). Developing these quantitative AOP models capable of risk
prediction will aid regulatory decisions (116). Similarly, in the
pharmaceutical research front, quantitative systems toxicology
plays an emerging but important role in predicting drug
toxicity to support drug development based on in vitro, animal,
and clinical studies. As the R&D cost continues to escalate
exponentially, the need for reliable IVIVE in toxicodynamics
and pharmacodynamics using cell culture data at the early stage
of drug development ever increases (117). To this end, many
mathematical models describing the underlying pathophysiology
of drug adverse effects have been developed for predicting renal
toxicity, gastrointestinal toxicity, arrhythmia, and liver injury
(118–120).

IVIVE Modeling for Toxicokinetics
Compared to the nascent effort in toxicity pathway and systems
toxicology modeling, toxicokinetic or pharmacokinetic modeling
of chemical fates within the human or animal bodies has
been around for a number of decades. Physiologically-based
toxicokinetic (PBTK) or pharmacokinetic (PBPK) modeling has
been used to understand and predict the absorption, distribution,
metabolism, and excretion (ADME) for environmental and
industrial chemicals since the 1970s (121). Challenges abound,
PBTK models play an increasingly important role in chemical
health risk assessment (122). More recently, PBPK modeling
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has seen a resurgence in the pharmaceutical industry, as
drug developers aiming to achieve more accurate efficacy and
safety are increasingly focusing on compound concentrations
in the target tissues and cells and in the meantime hoping
to achieve individualized precisions (123, 124). Neither tissue-
specific chemical concentrations nor inter-individual variability
can be easily addressed with traditional, compartmental PK
models; in contrast PBPK or PBTK models are structurally
superior by modeling chemical ADME based on human anatomy
and physiology. PBPK and PBTKmodeling has been traditionally
used in a forward fashion, i.e., given a chemical exposure, these
models can predict the tissue concentration dynamics of the
parent chemical and its metabolites. Since the publication of the
2007 NRC report advocating for in vitro assay-based toxicity
testing, applying PBTK models to reverse dosimetry, i.e., IVIVE
of toxicokinetics, has become an active research area (125, 126).
Researchers are eager to apply PoD concentrations derived from
low- or high-throughput in vitro assays to existing or newly
developed PBPK models to back-extrapolate external exposure
levels that would produce equivalent target tissue concentrations
(Figure 1). As an essential computational modeling component
in the TT21C framework, toxicokinetic IVIVE is finding its
applications in both environmental chemical risk assessment and
drug development based on results from in vitro assays (29, 117).
Due to space limitation, we would not dwell on the technical
details of toxicokinetic IVIVE through PBTK modeling. Readers
can refer to excellent reviews indicated above.

Population Variability Modeling
In addition to labeling chemicals by their potential hazards, the
ultimate goal of toxicity testing is to provide safety assessment
for the human population, protect the majority of the public by
regulating exposure limit of chemicals of concern, and provide
tools for personalized risk assessment. Variations in human
individual susceptibility to environmental challenges can be due
to both intrinsic and extrinsic factors, including differences in
genetics/epigenetics, preexisting disease conditions, nutrition,
life stage, co-exposed chemicals, and exposomic history (127).
Thus, addressing the issue of human population variability in
response to environmental exposures is a complex integrating
process involving convergence of multiple data streams in the
above areas (128). If relying on in vitro human cell and organoid
studies mainly, how can we inform public health risk better
than applying the default 10 or 100-fold uncertainty factors that
are routinely used for inter-species extrapolation from animal
studies?

In vitro Approach for Individual Variability
The data gap and challenge in using in vitro assays to inform
population health risk are multi-faceted. First and at least for
now, most of the in vitro assays in development utilize existing
cell lines of either animal or human origin. Many of these cell
lines are mutant, cancerous cells that have been immortalized or
otherwise transformed, so it is questionable how representative
they are for an average response of healthy individuals. Despite
this caveat, efforts have been under way to utilize human Epstein-
Barr virus (EBV)-transformed lymphoblastoid cell lines derived

from individuals in the 1,000 Genomes Project. These diversity
cell lines are routinely used in the pharmaceutical industry
for drug screening (129), but a subset of them were tapped,
through using high-throughput assays measuring cytotoxicity,
ATP, and caspase levels, for understanding human population
variability in chemical toxicity (130, 131). More recently, the
effort has been further expanded to include over a thousand
cell lines representing nine populations from five continents to
characterize human inter-individual variability for a number of
chemicals (132). These studies, while not only characterizing the
response variability, also help to identify through genome-wide
association analysis the primary gene polymorphisms responsible
for the heterogeneous cellular responses.

Compared to immortalized human cell lines, primary human
cells are closer to mimicking in vivo conditions. Numerous
studies have been conducted demonstrating individual variability
using primary cells. For instance, umbilical cord blood-derived
cells were exploited to examine individual variability in the
proliferative response to low-dose radiations (133, 134). Primary
human B lymphocytes from different donors were utilized to
characterize the inter-individual variability in the immunotoxic
effect of dioxin on the antibody secretion response and to
ascertain how the variability may affect the linearization of
the population-average dose response curves (21). Many of the
studies with primary human cells use blood cells for their easy
access; lack of easy access to solid living human tissues limits
the usage of primary cells for toxicity testing. In the past decade,
however, with the discovery of induced pluripotent stem cells
(iPSC) and maturing experimental protocols to differentiate
iPSCs to desired cell lineages, the opportunity of addressing
human individual variability and susceptibility using in vitro
approaches has improved considerably (135). For instance,
recently iPSC-derived cardiomyocytes from healthy donors
have been used to study the inter-individual variability in the
cardiotoxicity of pharmaceutical compounds (136). While iPSC-
derived cells may not be able to fully recapitulate the behavior of
the corresponding cells in vivo, as our understanding of the cell
differentiation process improves and the differentiation protocols
are further refined, this approach presents the most promising
future in generating—in large quantity—different types of cells
representing different human races and individuals.

Modeling Individual Variability in Toxicodynamics
Regardless the availability of cells representing human
populations, to address population variability experimentally,
the testing space as defined by the product of individuals,
cell types, toxicity pathways, key events, and chemicals is
astronomically huge and can be economically prohibitive.
Developing experimental assays and further reducing their costs
aside, it is appealing and more economical to use computational
modeling of toxicity pathways, virtual tissues, and AOPs to
explore individual variability and human population risk. In
theory, once an average, mechanistically-based model for a
toxicodynamic process is developed and validated, individual
responses can be cheaply explored computationally by varying
relevant model parameters based on defined distributions.
Each combination of parameter values randomly drawn from
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these distributions would represent a human individual.
The challenge lies in how to come up with the parameter
distributions that can represent a human population. Depending
on the granularity of the computational model, i.e., how
much biochemical details it describes, model parameters can
either have real physical representations, such as binding
affinity between a ligand and a receptor, or describe nominal
ones as a composite for a number of processes or factors not
explicitly modeled. For a toxicity pathway model simulating
cellular responses, parameter differences between cells from
different individuals can be due to genetic, epigenetic differences
which affect the transcription, translation, degradation, and
activity of the proteins involved. For organism-level models,
such as the endocrine system, individual difference can be
captured in parameters governing hormone synthesis, release,
metabolism, and feedback regulation, etc. (137). To determine
the most important parameters contributing to individual
variability, sensitivity analysis can be performed to scan for
parameters that affect the model behavior the most (138).
In addition, key determinants for heterogeneous individual
responses can be gleaned from genome-wide association
studies (GWAS) and epigenome-wide association studies
(EWAS) of in vitro assays that identify differences among
individuals in key genes and the modifications in their
regulatory regions (132, 139–141). Such information can be
incorporated into relevant computational models to explore
population variability in silico. GWAS and EWAS studies can
also help identify important information on joint distributions
of certain physiological parameters, which occur through
co-evolution or influence by some common yet unknown
factors.

Modeling Individual Variability in Toxicokinetics
Compared to toxicity pathway modeling of toxicodynamics,
simulating toxicokinetics through PBTK modeling to
recapitulate population variabilities is in a far more advanced
stage. This is largely because (1) individual variabilities in
anatomical parameters, such as body weight, cardiac output
and tissue volume, which play a significant role in the ADME
of a chemical, can be well documented and defined in a
human population. (2) A PBTK model generally has far fewer
biochemical parameters besides those concerning enzyme and
transporter kinetics, which can be experimentally determined
more easily. Commercial PBPK/TK simulation software such
as Simcyp often has a built-in capability to simulate a virtual
population with pre-stored physiological parameter distributions
describing body weight, organ weigh and volume, cardiac output
and tissue blood flow for difference life stages and races
(142–144). Recently population variabilities in the TK of a
number chemicals have been explored by using physiological
parameters and biomonitoring data from the National Health
and Nutrition Examination Survey (NHANES) (145). As far as
chemical-specific parameters are concerned, their distributions
can be estimated in several ways (127, 146). For human data-rich
compounds, such as drugs, these parameter distributions can
be back-calculated in a posterior fashion. For parameter-rich
compounds obtained through experimental measurement,

distributions can be assumed a priori. Lastly, with a Bayesian
PBTK modeling approach, prior parameter distributions
can be further constrained through comparing PBTK model
output with the measured chemical tissue concentrations
to arrive at posterior distributions that are less uncertain
(147, 148).

Linking Toxicokinetic and Toxicodynamic Models
The full power of computational modeling lies in combining
TK and TD models to address the exposure-to-outcome
continuum along the aggregate exposure pathway (AEP) and
AOP frameworks (149, 150). A population PBTK/TD model will
draw parameter values from defined distributions to simulate
the responses of virtual human individuals to dynamic chemical
inputs gathered or predicted from exposure studies (151).
To this end, epidemiological data such as those from the
NHANES database and cohort studies can be utilized to provide
information on the internal exposure and endogenous biomarker
levels in the same individuals for constructing and calibrating
population PBTK/TD models (111). Recently Bois et al. has
demonstrated that linking exposure model, TK model, and
dynamic hypothalamic-pituitary-ovarian model can be used to
predict disruption of the menstrual cycle by aromatase inhibitors
in women populations (114). Combined mechanistically-based
population PBTK/TD model can also facilitate estimating mixer
effects (152, 153). For instance, the PBTK submodel can simulate
the chemical-chemical interaction effects due to cross-induction
of metabolism. The TD submodel can simulate toxicological
responses to mixers due to cross-talk between different
toxicity pathways or different MIEs converging on the same
pathways.

CHALLENGES IN COMPUTATIONAL
MODELING

While mechanistic computational modeling holds great promises
to bridge the data gaps from in vitro testing to chemical
safety assessment, this approach itself faces its own challenges.
Uncertainty in parameters and model structures is one
of the primary obstacles to constructing a reliable model.
Ironically, given all the high-throughput and high-content omics
technologies that catapult biological research into the big-data
era, efforts to characterize biochemical parameters are still sparse
and sporadic. There are no concerted, systematic efforts in
the research community to map out biological parameters so
far. While a lessor issue for PBTK modeling as the structure
of a PBTK model is relatively fixed and it involves far fewer
parameters with many physiological parameters well defined,
the lack of parametric information has limited the growth of
toxicity pathwaymodels into large-scale networkmodels that can
better represent human physiology. Technological advancement
has allowed globalmeasurements of protein abundance, synthesis
rates, and half-lives in the cells, but more needs to be done to
enable systems biology pathway modeling (154, 155).

The majority of mathematical models at biochemical pathway
levels are constructed to simulate the behavior of an averaged
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cell population, as often reported in bulk cell assays measuring
aggregated responses. Yet, individual-cell behaviors can be far
different than the average, especially for switching responses
where cells often diverge into two distinct subpopulations while
the cell population average is more graded (156). Cell-to-cell
variability due to stochastic gene expression can obscure the
deterministic threshold theoretically predicted by computational
toxicity pathway models. Therefore, under this situation the
effect of cell-to-cell variability in toxicity pathway modeling
needs to be account for, before individual human variability
is considered. Moreover, for a bistable gene network, the
switching behavior can be random due to gene expression
noise, a phenomenon that a deterministic model using ordinary
differential equations cannot easily reproduce (40). Thus, to
identify the PoD of bistable gene networks, by utilizing the gene
expression variance and correlation metrics as discussed above,
a stochastic modeling approach simulating individual cells will
be more helpful. As single-cell transcriptomic analysis becomes
feasible, data are available for calibrating these stochastic
single-cell models. However, stochastic modeling algorithms are
computational intensive as they simulate reactions one step
at a time (157). This would challenge the IT infrastructure
for achieving simulations in realistic time frame. Moreover,
simulations at single-cell resolution are also needed in virtual
tissue modeling to help interpret organoid-based assay results.
Biosimulations at this scale will need to account for not only
single-cell behavior, but also interactions between different
cells. Therefore, as biochemical pathway modeling becomes
more sophisticated, balancing between sufficient computational
description of the underlying biology and realistic simulation
time can be a challenge.

CONCLUDING REMARKS

As the financial and intellectual investment in in vitro toxicity
testing continues to increase worldwide, it is time to move
beyond priority screening and develop, on top of omic-wide
studies, fit-for-purpose assays. These toxicity pathway-focused
assays need to be complemented by computational modeling
to extrapolate the in vitro findings to real-world, in vivo
dose-response outcomes. Mechanistically-based mathematical
models of in vitro and in vivo kinetics, toxicity pathway
perturbations, virtual tissue dynamics, and in vivo AOPs
constitute the founding pieces for this aspect of next-generation
risk assessment (158–160). Despite many experimental and
computational challenges remaining, the usage of these models,
either alone and in combination, will not only help make
more reliable predictions for in vitro and in vivo PoDs, but
also for the heterogeneous human population responses. As
the genetic and epigenetic information of individuals becomes
available and is incorporated into these mechanistic models, they
open the door toward population-stratified and personalized risk
assessment.
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