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Abstract

Neurons can have widely differing intrinsic membrane properties, in particular the density of specific conductances, but
how these contribute to characteristic neuronal activity or pattern formation is not well understood. To explore the
relationship between conductances, and in particular how they influence the activity of motor neurons in the well
characterized leech heartbeat system, we developed a new multi-compartmental Hodgkin-Huxley style leech heart motor
neuron model. To do so, we evolved a population of model instances, which differed in the density of specific
conductances, capable of achieving specific output activity targets given an associated input pattern. We then examined
the sensitivity of measures of output activity to conductances and how the model instances responded to hyperpolarizing
current injections. We found that the strengths of many conductances, including those with differing dynamics, had strong
partial correlations and that these relationships appeared to be linked by their influence on heart motor neuron activity.
Conductances that had positive correlations opposed one another and had the opposite effects on activity metrics when
perturbed whereas conductances that had negative correlations could compensate for one another and had similar effects
on activity metrics.
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Introduction

Many critically important behaviors are controlled by neuronal

networks called Central Pattern Generators (CPGs) [1]. CPGs

underlie many canonical movement patterns which are critical for

life, such as respiration [2], locomotion [3–7], and circulation, the

system on which we focus here. The successful production of these

movement patterns requires coordinated muscle activity. Motor

neurons driven by these CPG networks have generally been

considered followers of the CPG output. More recently, studies

have found that motor neurons, in particular leech heart motor

neurons, themselves contribute to the production of their output

patterns [8–10]. While inputs from premotor interneurons of a

leech heart CPG are responsible for the majority of the motor

neuron output, motor neurons do not simply follow their input:

intrinsic properties appear to play an important role [8], although

only a few have been specifically studied [9,10].

There is a growing consensus in the field that neurons have

widely different underlying parameters, especially those associated

with intrinsic membrane properties, even while maintaining their

identity and characteristic activity [11–17]. Intrinsic membrane

properties, especially those determined by the maximal conduc-

tances (ḡ) of pools of voltage-gated ion channels, can show in the

identifiable neurons of invertebrate nervous systems considerable

(up to five fold) animal-to-animal variability, which has been

particularly well documented in the crustacean stomatogastric

nervous system (STNS) [11,16]. In the STNS the levels of mRNA

that code for these channels have similarly been found to be highly

variable [14,18]. Nevertheless, networks of neurons and even

individual neurons can produce tightly regulated activity patterns

despite having these widely different underlying parameters. Such

animal-to-animal variability in maximal conductances has also

been shown for synaptic strengths in the leech heartbeat system

[19,20]. In all these cases, the wide range in values observed could

simply be because measured parameters, i.e. the maximal

conductance of synapses or ionic currents, do not meaningfully

influence the characteristic activity of those neurons, or pairs or

sets of these properties could jointly maintain characteristic

activity. In particular, the maximal conductances of voltage gated

currents that oppose or compensate for one another may be co-

regulated or counter-regulated, respectively. In such cases, we

should find correlations between these parameters, likely linked by

their influence on characteristic activity. Beyond the putative

existence of such correlations in the motor neurons we are

investigating, it is important to determine how cellular parameters

affect the input-output transformation of these neurons. How are

leech heart motor neurons coordinated by their inputs, what do

they contribute to the patterns they produce, and in particular

what role do active membrane conductances play in producing a

coordinated motor pattern? Accordingly, we sought a motor

neuron model that accurately produced their biological activity

and recapitulated the animal-to animal variability of biological

neurons.

Leech Heartbeat System
We investigated the heart (HE) motor neurons that innervate

the tubular hearts of the leech. The leech heartbeat system has
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been described in great detail previously [19,21–25], so we briefly

outline the relevant features of its organization here. The bilateral

heart tubes are driven by the ipsilateral member of the pairs of

leech heart (HE) motor neurons in ganglia 3 through 18 (HE(3)-

HE(18)) of the 21 midbody segmental ganglia [21,26]. These

motor neurons are controlled by barrages of inhibitory synaptic

input from a core CPG consisting of 7 pairs of interneurons

located in midbody ganglia 1–7 of the animal. The motor neurons

in ganglia 8 through 14 receive input from the four ipsilateral

premotor interneurons of this core CPG, so the temporal pattern

of spikes each receives from each ipsilateral premotor interneuron

is identical, except for conduction delays, in particular for the two

pairs we specifically focus on, HE(8) and HE(12) (Figure 1A). The

heart motor neurons in ganglia 3 through 7 receive input from

only a subset of the premotor interneurons, as shown in Figure 1A,

as well as input from a pair of unidentified interneurons (not

shown), and those in 15 through 18 receive additional input from

the rear interneurons [25]. The CPG produces a bilaterally

asymmetric pattern, with the premotor interneurons on one side

coordinated nearly synchronously while the opposite side is

coordinated in a peristaltic rear-to-front progression. These two

patterns are imposed on the motor neurons, which produce the

corresponding patterns, by the interneurons on each side sculpting

the tonic activity of ipsilateral motor neuron into bursts with

inhibitory synaptic input. Thus each side of the whole heartbeat

system expresses one of two coordination modes of activity at any

point in time (Figure 1B): either nearly synchronous activity

(referred to as the synchronous mode) which gives rise to near

synchronous contractions in the ipsilateral heart tube, or a rear-to-

front progression of activity, which gives rise to a corresponding

peristalsis in the ipsilateral heart tube (referred to as the peristaltic

mode) [27,28]. The core CPG, and thus the heartbeat system as a

whole, alternates between one state (left/peristaltic right/synchro-

nous), where the entire left side of the network is producing the

peristaltic pattern and the right side is producing the synchronous

pattern, and the reciprocal state (left/synchronous right/peristal-

tic), with the transitions between these states occurring precipi-

tously every 20–40 beats [29,30]. Since each motor neuron

alternately produces both activity modes, each motor neuron has

to produce both input-output transformations, with the pattern

produced depending on the temporal pattern of its input. Not only

do the switches between modes occur every few minutes, but

measurements of synaptic weights show no difference between

modes [19], so each motor neuron must produce both patterns

without any change in its synaptic weights.

To develop a new model of HE motor neurons, we took

advantage of a unique complete input-output data set. Norris et al.

[23] recorded simultaneously from all interneurons which synapse

onto the midbody heart motor neurons as well as from two motor

neurons (HE(8) and HE(12)) themselves during both the peristaltic

and synchronous modes, giving us a complete temporal pattern of

input and output for 12 animals, one of which was used for this

investigation (Figure 1). Furthermore, the strength of these

synapses was measured in the same preparation after recording

these temporal patterns (see Figure 1C). Measures of the motor

neuron activity, in particular phase, duty cycle, and spike

frequency, can be used as targets associated with a specific input

pattern. The combination of the synaptic strengths with the

temporal patterns of spikes from each premotor interneuron gave

us a complete input pattern that, when combined with

corresponding output targets, allows us to focus on the intrinsic

properties of the motor neurons we seek to model. It is important

to emphasize here that the only difference between the input to the

HE(8) and the HE(12) motor neurons is the synaptic weights of

their four inputs in each of the coordination modes, although there

is a small offset in spike timing of 80 ms due to conduction delay.

The requirement that each model motor neuron must be capable

of producing both the peristaltic and the synchronous output

patterns appropriate to its segment and the individual animal

dataset give us the ability to constrain our models with

electrophysiological targets specific to both the peristaltic and

synchronous input patterns with which they are simulated.

Previous modeling work has created model leech heart motor

neurons which qualitatively captured some of the activity pattern

features of those found in the living system, but had difficulty

achieving the appropriate phase within a reasonable window [8–

10]. This heart motor neuron model simplified the morphological

complexity into a single isopotential compartment and contained

an incomplete complement of membrane conductances. We built

upon these modeling efforts and developed a multi-compartmental

leech heart motor neuron model which compromised between

capturing morphological complexity and reducing computational

complexity and included all active conductances believed to be

present in the living system. This model was parameterized by the

maximal conductance densities of the active membrane conduc-

tances and the electrical coupling as described in the Methods.

Each instance of the model had a unique set of specific values for

each of these maximal conductance densities. Rather than hand

tune or attempt a deterministic multi-target optimization algo-

rithm, we used an evolutionary algorithm to find model instances

which achieved our target ranges on our fitness metrics.

Evolutionary algorithms, including the specific algorithm we used

[31,32], have been shown to be efficient at identifying good model

instances, although they are typically stochastic and not guaran-

teed to be successful [33–35]. To generate and evaluate these

model instances, we used an input-output dataset from a single

animal and the corresponding targets on each of our metrics.

Because we had input-output data for both HE(8) and HE(12)

heart motor neurons, we were also able to examine possible

differences between them to generate predictions of general

properties of leech heart motor neurons.

Methods

We developed a multi-compartmental leech heart motor neuron

model parameterized by the maximal conductance (ḡ) densities of

voltage-gated membrane currents and the electrical synapse

between the two neurons of each pair (Figure 2). We then used

a multi-objective evolutionary algorithm to generate a large

number of model instances, each defined by the specific parameter

values. Each model instance was simultaneously simulated as four

neurons in two pairs with the same parameter values, the heart

motor neurons in ganglia 8 and 12 (HE(8) and HE(12)), and the

resulting membrane voltage traces were evaluated with the

quantitative fitness metrics detailed below. We then examined

the distribution of model instances in parameter space, the

sensitivity of fitness metrics to parameter perturbation, and the

response to injected current of quantitatively good (i.e., within

target ranges on our fitness metrics) model instances.

Simulation and Analysis Framework
All model instances were implemented in the general neural

simulation system (GENESIS) version 2.3 [36], and were

simulated with a time step of 0.05 ms using the Crank-Nicolson

[37] method of the Hines solver for all objects except the electrical

coupling, which was solved with the exponential Euler solver. The

resulting soma compartment membrane voltage was recorded with

a time step of 0.5 ms and then analyzed with a suite of custom
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MATLABH functions to detect bursts and compute the fitness of

each model instance (see Figure 3). The fitness values for all model

instances in each generation were passed to a multi-objective

evolutionary algorithm [31,32,38], which was implemented in

C++ and unchanged except for being adapted to interact with our

simulations. These three components were coordinated with Bash

shell scripts. Although our framework could run on a desktop

computer, we took advantage of its inherently parallel structure,

which ensured that each model instance could be simulated and

analyzed entirely in isolation, and conducted our evolutions on a

high performance computing cluster (Ellipse, Emory IT, ,1024

nodes). The model and associated input/output files will be

uploaded to ModelDB upon publication.

Heart Motor Neuron Model
The heart motor neuron model constructed here using

GENESIS 2.3 [36] consists of 7 isopotential compartments whose

physical dimensions approximate the surface area found in adult

leech heart motor neurons as estimated from confocal reconstruc-

tions and previously published morphology [39] as shown in

Figure 2. In heart motor neurons, a single main neurite tapers

from the soma through the ganglion and out into the periphery as

an axon. From the main neurite in the ganglion emerge many

secondary neurites that branch extensively and form the input

regions of the neuron. We approximated the main neurite and

axon using four distinct cylindrical compartments with diminish-

ing diameters whose lengths were set to a maximum of 1/10 the

Figure 1. Leech heart motor neuron circuit in segments 3–12 and input/output pattern. A. Simplified circuit diagram for heart (HE) motor
neurons depicting the premotor heart (HN) interneurons (ganglia of origin indicated) and the synapses from the former to the latter. Adjacent to each
neuron is a representative extracellular recording with the middle spike indicated by a small symbol above each burst. One period is indicated by the
grey background bar. Connectivity between interneurons is not shown (for detail, see [20,57,58]). Note that ipsilateral midbody motor neurons (e.g.,
HE(8) and HE(12) above, highlighted with the red broken line) receive the same complement of inputs. B. Relative phasing of first, middle and last
spikes in heart motor neurons and interneurons recorded from a single animal, a portion of which is shown in panel A, as reported by Norris [23] and
used previously in earlier modeling efforts [9,10]. Error bars indicate standard deviations. The peristaltic pattern exhibits a strong rear-to-front phase
progression in both the interneurons and motor neurons, whereas the synchronous pattern exhibits a minimal phase progression. Note that the
HE(8) synchronous (s) and peristaltic (p) motor neuron bursts are nearly perfectly out of phase, unlike the HE(12)p and HE(12)s motor neuron bursts
which partially overlap. C. Relative synaptic strength of synapses onto heart motor neurons calculated from spike-triggered averaged IPSCs. Adapted
with permission from [23].
doi:10.1371/journal.pone.0079267.g001
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passive electrotonic length constant. The most distal compartment

represented the spike initiation zone and axon and is here called

the axon compartment. Although there exist no experimental data

specifying the exact spike initiation zone, it must be sufficiently

distant so that spikes are relatively small when recorded in the

soma, and we adjusted the total length of the neurite and axon

compartments to achieve an attenuated spike height. The complex

structure of the arbor of secondary neurites emerging from the

main neurite was approximated by two linked compartments: a

passive secondary neurite compartment linked between neurite

compartments 1 and 2, and a distal synaptic compartment. Each

compartment was linked through an axial resistance determined

by its diameter and length to its parent compartment. We thus had

a spherical soma compartment (diameter = 40 mm), three neurite

compartments (neurite 1 diameter = 10 mm, length = 115 mm;

neurite 2 diameter = 9 mm, length = 110 mm; neurite 3 diameter

= 8 mm, length = 100 mm), an axon compartment (diame-

ter = 3 mm, length = 58 mm), a secondary neurite compartment

(diameter = 5 mm, length = 20 mm), and a synaptic compartment

(diameter = 5 mm, length = 5 mm), see Table 1. The passive

parameters were set to a specific membrane resistance of 1.1Vm2,

a leak reversal potential of -40 mV, a specific axial resistance of

0.25V/m, and a specific capacitance of 0.02 F/m2, resulting in

input resistances measured in the soma of ,70 MV, which is

within the input resistance range observed in the living system

[40].

Figure 2. Heart motor neuron model. A pair of electrically coupled
7-compartment model heart motor neurons with their inhibitory inputs
shown. The inputs to each model motor neuron were the prerecorded
input spike times from the premotor interneurons (delayed based on
the motor neuron pair’s ganglion of origin), and the relative strength of
the synapses. The soma, neurite and axon compartments contained
active conductances in addition to the passive membrane capacitance
and leak conductance, whereas the secondary neurite and synaptic
compartments were only passive. The soma compartment contained a
gK1 and gK2; the neurite compartments (Neurite 1, Neurite 2, Neurite 3)
each contained gK1, gK2, gKA, gP, gCaS, and gKCa; and the axon
compartment contained gNa, gK1, gK2, and gKA. The synaptic compart-
ment contained synaptic elements and was electrically coupled (gcoup)
to the contralateral heart motor neuron. An instance of the abstract
model was defined by specific values for the maximal conductance (ḡ)
density of each conductance shown above.
doi:10.1371/journal.pone.0079267.g002

Figure 3. Fitness metrics used to quantitatively evaluate model
output. The soma compartment membrane voltage was split into low
pass and high pass components, spikes were identified, and 5 fitness
metrics were calculated: phase, duty cycle, mean intraburst spike
frequency, mean spike height, and slow-wave height. A. The unfiltered
soma compartment membrane voltage (blue trace) with the first spike
(fuchsia vertical line) and last spike (red vertical line), phase reference
(green vertical lines), phase target (black circle and ochre line), and
measured phase (blue dot and topaz line), burst duration (black
horizontal line), and period (red horizontal line) indicated. The low-pass
trace shown in panel C is in red behind the primary trace. The relative
phase of the middle spike was calculated with reference to the middle
spike of the reference HN(4)p interneuron as shown in Figure 1. The
duty cycle was calculated from the phase of the last spike minus the
phase of the first spike. All phases were measured with reference to the
HN(4)p middle spike. B. High-pass filtered soma compartment
membrane voltage (blue trace) with identified spikes (red vertical lines)
and spike height indicated. Spike frequency is the inverse of the inter-
spike interval within the identified burst. The spike height was defined
as the value of the high pass trace at the peak of each spike within the
burst. Both the spike height and spike frequency were averaged within
each burst. C. Low-pass filtered soma compartment membrane voltage
(black trace) with slow-wave height defined as filtered voltage
difference at the middle spike relative to the minimum voltage in the
inter-burst region.
doi:10.1371/journal.pone.0079267.g003
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We then distributed both established conductances and a new

calcium-sensitive potassium conductance according to our best

estimate of their distribution while still minimizing the number of

model parameters by only placing conductances where they were

believed to be located and by constraining the neurite compart-

ments to have the same conductance density [8,34,40]. Each

isopotential compartment was modeled in the Hodgkin-Huxley

formalism with:

C
dVm

dt
~{(INazIPzIKAzIK1zIK2zIKCA

zICaSzIsynzIcoupzIleakzIaxialzIinj)

ð1Þ

Where all active conductances were modeled as Hodgkin-

Huxley style membrane conductances with the general formula:

INa~�ggNam3
NahNa(Vm{ENa) ð2Þ

The specific formula for each membrane conductance is given

in Table 2. Both m and h follow the form:

dm

dt
~am(Vm) 1{mð Þ{b(Vm) mð Þ ð3Þ

Genesis 2.3 uses pre-calculated tables for a and b during the

simulation, where both a and b were calculated from steady state

(see Figure 4) and time constant curves by:

t(Vm)~
1

a(Vm)zb(Vm)
ð4Þ

And

m?(Vm)~
a(Vm)

a(Vm)zb(Vm)
ð5Þ

Where those curves (e.g., Figure 4) were specified for each

conductance by curves given by:

m?(C,D)~
1

1zeC Vm{Dð Þ ð6Þ

And

tm(A,B,C,D)~Az
B

1zeC Vm{Dð Þ ð7Þ

Except for thNa, for which h is given by:

thNa(A,B,C,D)~Az
B

1zeC Vm{Dð Þz
0:01

e300 Vm{0:017ð Þ ð8Þ

Where A is the baseline value, B scale factor, C is the slope and D

is the midpoint of the hyperbolic tangent curve. See Table 3 for

the specific values of A, B, C and D for each conductance.

In addition to the established leech conductance models for gK1,

gK2, gKA, gCaS, and gNa we incorporated, we added a calcium

sensitive potassium conductance model based on the gK2

conductance with a right-shifted half activation, slower dynamics,

and a saturating linear calcium gate (see Tables 2 and 3) to

approximate previously published electrophysiological data

[40,41]. To activate the calcium gate of this channel, we added

a calcium conductance feeding a calcium pool with a simple

exponential decay to baseline (t= 1.5s) linked to the gate. Earlier

heart motor neuron models did not include gKCa or gCaS, even

though gKCa and gCaS were known to be present [40]. We

included gKCa and gCaS not only to better replicate what is found

in the living system, but because preliminary modeling suggested

that they were capable of altering burst characteristics.

Electrophysiological experiments have provided evidence for

the rough distribution of established currents with respect to the

compartments used to model these motor neurons. The spikes are

small when recorded in the soma, indicating that they are initiated

in some distal compartment and are not regenerated or sustained

by fast sodium conductances in compartments close to the soma,

and thus the axon compartment is the only one which contains a

fast sodium conductance, gNa. The axon compartment also

contains potassium conductances that underlie spike generation

and pacing, gK1, gK2, and gKA. In the model, the neurite

compartments act as an integrating region, combining the

inhibitory input from the premotor interneurons and its

Table 1. Dimensions and upper bounds of conductance densities allowed in the MOEA.

Compartment
Length
(mm)

Diameter
(mm)

Na
(S/m2)

P
(S/m2)

CaS
(S/m2)

K1
(S/m2)

K2
(S/m2)

KA
(S/m2)

KCa
(S/m2)

Coup
(nS)

Soma 40 40 25 25

Neurite 1 115 10 9.5 0.5 375 375 50 50

Neurite 2 110 9 9.5 0.5 375 375 50 50

Neurite 3 100 8 9.5 0.5 375 375 50 50

Secondary Neurite 20 5

Synaptic 5 5 10

Axon 58 3 3500 500 500 750

Conductance densities are in Siemens per square meter (S/m2) except for Coup, which is the upper bound of the static conductance for the electrical coupling in nS.
doi:10.1371/journal.pone.0079267.t001
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membrane properties to suppress or drive spiking in the adjacent

axon compartment. The 3 neurite compartments each contained

all active conductances except gNa: the purely voltage gated

potassium conductances gK1, gK2, and gKA, a calcium and voltage

gated potassium conductance, gKCa, a slowly inactivating calcium

conductance, gCaS, and a persistent sodium conductance, gP. Since

these motor neurons were known to express high levels of outward

currents as measured from the soma [40], the model soma

compartment contains the two potassium conductances likely to be

active during normal activity, gK1 and gK2. These conductances

represent the product of the maximal conductance density of each

and the surface area of the compartment in which they were

contained. The synaptic compartment and the secondary neurite

which connects it to the first neurite compartment were both

modeled as passive compartments, but the synaptic compartment

contained 4 spike-mediated synapse modules, described in detail

below, one for each ipsilateral premotor heart interneuron. The

synaptic compartment also contained an electrical junction

connecting to the contralateral heart motor neuron, gCoup. The

electrical junction current flow was filtered by a simple rc filter

with a time constant of 0.02s applied to the synaptic compartment

voltage of each HE neuron of the pair:

V
0
m½t�~aVm½t{1�z(1za)V

0
m½t{1�

where a~e
Dt
t for timestep Dt

ð9Þ

To keep the number of parameters allowed to vary in the

evolutionary algorithm to a minimum, the three neurite compart-

ments had the same conductance densities. Each instance of this

heart motor neuron model was thus defined by 13 specific

maximal conductance density values: the soma ḡK1, soma ḡK2,

neurite ḡK1, neurite ḡK2, neurite ḡKA, neurite ḡP, neurite ḡCaS,

neurite ḡKCa, gCoup, axon ḡNa, axon ḡK1, axon ḡK2, and axon ḡKA

(see table 1).

An instance of the heart motor neuron model was hand tuned as

a passive model to achieve experimentally determined membrane

properties, specifically the time constant and input resistance as

determined by a current step injected into the soma compartment.

The active membrane conductances were then distributed to the

appropriate compartments and their maximal conductances tuned

so as to achieve a qualitatively good soma membrane voltage

waveform comprising a duty cycle, spike frequency, spike height

and slow wave height in the biological range. The initial hand

tuned model generated above did not achieve the target phase

within the same tight constraints used in the evolutionary

algorithm, but did achieve the target range for the other fitness

metrics. The evolutionary algorithm was allowed to explore

parameter values from 0.1 to 4.9 times those hand tuned values

(step size of 0.1) with the exception of gCoup, which was limited to

less than 3 times the baseline value and used a step size of 0.06,

because the initial model value was already at the upper end of

what had been observed experimentally, see Table 1 for the

maximum allowed value.

Members of each pair of HE neurons, one pair per ganglion,

were electrically coupled via gCoup. The input pattern contained a

temporal pattern (i.e., the spike times for all 8 premotor

interneurons, 4 in each coordination mode) and a synaptic weight

profile for each pair of heart motor neurons, and was associated

with corresponding target values on the fitness metrics described

below.

Input/output Dataset
We chose an input/output dataset from input/output datasets

extensively described in previous reports [10,22,23]. Briefly, these

datasets consisted of simultaneous extracellular (loose cell-attached

patch) recordings from all ipsilateral premotor heart interneurons

(HN(3), HN(4), HN(6), and HN(7)) in addition to HE(8) and

HE(12) motor neurons, a portion of which is shown in Figure 1.

These extracellular recordings were long enough to include both

the peristaltic and synchronous modes. The interneuron to motor

neuron synaptic weights were subsequently measured by dSEVC

(discontinuous single electrode voltage clamp) of the heart motor

neurons while still recording from the 4 ipsilateral interneurons.

From 12 individual animals thus analyzed, we chose 1 input/

output dataset with which to develop and examine this model. The

two coordination modes were aligned to produce a complete

bilateral input spike time pattern with experimentally observed

phasing between the two sides (0.51) [22] and were constructed by

aligning the 12 synchronous and 12 peristaltic bursts. When used

in our simulations, this input pattern was preceded by a 15s silent

period to allow model parameters to settle and to ensure that

models were tonically active in the absence of synaptic input,

extending the total simulation time to 105s. From each motor

neuron we calculated fitness metrics by analyzing the 10 bursts

which were both preceded and followed by synaptic input for both

neurons in each pair. The output targets for phase, duty cycle and

Table 2. Hodgkin-Huxley style membrane conductance formulae.

Conductance Formula

Leak Ileak~gleakj
Vm{Eleakð Þ

Na INa~�ggNam3
NahNa Vm{ENað Þ

P IP~�ggPmP Vm{ENað Þ
CaS ICaS~�ggCaSm2

CaShCaS Vm{ECað Þ

K1 IK1~�ggK1m2
K1hK1 Vm{EKð Þ

K2 IK2~�ggK2m2
K2 Vm{EKð Þ

KA IKA~�ggKAm3
KAhKA Vm{EKð Þ

KCa

IKCa~�ggKCaCKCam2
KCa(Vm{EK ) CKCa

~

0,
Ca½ �{ Ca½ �min

Ca½ �max{ Ca½ �min

,

1,

if Ca½ �v Ca½ �min

if Ca½ �minƒ Ca½ �ƒ Ca½ �max

if Ca½ �w Ca½ �max

8><
>: Where Ca½ �min~60e{9, Ca½ �max~15e{8

doi:10.1371/journal.pone.0079267.t002
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spike frequency were those metrics measured in the recorded

output pattern and then averaged across the bursts. Slow-wave

height and spike height require unclamped intracellular recordings

which were not available for every motor neuron, so these targets

were taken from established average values from leech heart motor

neurons recorded in other experiments. In aggregate, the input/

output dataset consisted of spike times and synaptic weight profiles

for the 4 premotor interneurons in each coordination mode and

fitness targets for the spike height (15 mV), slow-wave height

(10 mV), spike frequency (7.37 Hz), peristaltic phase (HE(8): 0.56,

HE(12): 0.48), peristaltic duty cycle (HE(8): 0.34, HE(12): 0.46),

synchronous phase (HE(8): 0.08, HE(12): 0.11), and synchronous

duty cycle (HE(8): 0.44, HE(12): 0.46.

Inhibitory Input Synapse Model
The inhibitory input synapse model was based on a previously

described spike-mediated synapse model [8,10] with modifications

to more closely match the observed conductance waveform of

synaptic events in heart motor neurons. This synapse model

consisted of two spike-triggered double exponentials, one with a

shorter fall time (tfall = 12.5 ms, trise = 4 ms) and the other with a

longer fall time (tfall = 150 ms, trise = 4 ms), with the slower

component’s maximum conductance set to 0.33 times the faster

component (ḡslow = 0.33 ḡfast), resulting in a combined waveform

which approximated the shape of inhibitory post-synaptic currents

(IPSCs) observed in the living system, which has both spike

mediated and graded components [19]. Thus for each spike we

have the normalized spike-triggered waveform given by:

fSyn(t)~
e
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The synaptic reversal potential was set to -62.5 mV as in prior

models [8–10] and as measured in the living system [42].The

maximal conductances were initially the unscaled relative

strengths reported in [19] but were adjusted with scaling factor

(s) to produce a combined inhibitory input that more closely

matched that observed in the living system and was capable of

sculpting heart motor neuron bursts in our hand-tuned model as in

previous models [8]. Furthermore, in the living system the

inhibitory synapses from HN onto HE neurons exhibit intraburst

synaptic plasticity: IPSCs are initially quite small and then increase

to a plateau level before declining towards the end of each

presynaptic burst [19]. This plasticity is believed to be due to

presynaptic Ca2+ accumulation as spike-mediated synapses in the

leech heartbeat system are known to be modulated by presynaptic

Ca2+ entry through LVA Ca channels driven by the slow-wave of

presynaptic membrane voltage in heart interneurons [41]. Both

presynaptic membrane voltage and free Ca2+levels are experi-

mentally inaccessible at present, so we approximated modulation

by presynaptic background calcium with a pre-calculated modu-

lation waveform that approximated this rising and falling behavior

with an exponential rise from a factor of 0.01 to 1 for 90% of the

burst duration and then an exponential decay for the final 10%,

similar to previous heart motor neuron models [8–10]. For each

presynaptic burst (l) starting at time t0 we have the waveform given

by:

MHN(#),l(t)~
1{0:99e

{(t{ts0)
t tƒ90%burstlength

0:01z0:99e
{(t{ts0)

t tw90%burstlength

8<
: ð11Þ

For each prerecorded input (each HN spike train), we calculated

the appropriate rise- and fall-time constants from the average time

for the first and final 5 spikes of each burst, for rise- and fall-time

constants, respectively, for each premotor interneuron. The

synaptic conductance waveforms summate and were weighted

by the relative synaptic weight measured in the living system for

each HE neuron HN neuron pair, �ggSyn½HN(#),HE(#)�, the modula-

tion waveform MHN(#)(t), and the scaling factor s and were

combined for each HE motor neuron modeled giving:

ISyn½HE(#)� t,Vmð Þ~s Vm{Esyn

� �
X

HN(#)

MHN(#)(t)�ggSyn½HN(#),HE(#)�
X

n

fSyn(t{tn)

ð12Þ

Thus the complete input pattern delivered to each model

instance consisted of a modulation waveform and a train of spikes

for each premotor interneuron. These were delayed with a fixed

conduction delay of 20 ms per segment (the delay from ganglion 8

to 12 was thus 80 ms).

Fitness Metrics
Our fitness metrics comprised measures of output attributes that

correspond to canonical characteristics of heart motor neuron

activity and the overall fictive motor pattern produced. Thus, to

evaluate each model instance quantitatively, we used 5 metrics for

each neuron being evaluated: phase, duty cycle, intraburst-spike

frequency, slow-wave amplitude, and spike height (see Figure 3).

Each of these metrics was calculated for every burst of each motor

neuron simulated and the resulting values for each burst were then

averaged across all bursts for each motor neuron. Because the

Figure 4. Steady state activation and inactivation curves for
voltage-gated conductances. The activation and inactivation gating
variables for each of the 7 active membrane conductances used are
shown. Solid lines represent activation curves and the dotted lines
represent inactivation curves. All conductances except the calcium
sensitive potassium conductance have been used in previous heartbeat
system models [8,57].
doi:10.1371/journal.pone.0079267.g004
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neural activity we were examining was rhythmic and we aimed to

describe the relative phase relationships among the various

constituent neurons of the system, we had to select a phase

reference, an event within each cycle to define as 0 phase. We used

the HN(4) interneuron in the peristaltic mode for this phase

reference as in previous reports, e.g. [23,26]. The period of each

cycle was defined as the time between the middle spikes, with the

middle spike defined as the median-spike time of subsequent bursts

of the HN(4) interneuron in the peristaltic mode as in [23]. The

phase of each neuron was defined by the timing of the middle

spike of its burst relative to the associated middle spike of the

HE(4) interneuron in the peristaltic mode divided by the

associated period of the same. The duty cycle of each neuron

was defined as the time between the first and last spikes of each

burst divided by the associated period. Intraburst spike frequency

was calculated for all interspike intervals within detected bursts,

thus excluding spurious spikes between detected bursts, and was

averaged within each burst to produce that burst’s mean spike

frequency. The soma compartment membrane voltage was split

into high- and low-pass components using a low-pass filter (1001

point zero-phase FIR filter with a -10 dB cutoff at 1.794 Hz) such

that the high-pass component was the remainder when the low-

pass component was subtracted from the original waveform. The

slow-wave height was the value of the low-pass filtered soma

compartment membrane voltage at the trough of the inhibited

portion of the cycle minus the value at the middle spike of the

burst. Finally, the spike height was the value of the high-pass

filtered soma compartment membrane voltage at the peak of each

spike within a burst and, as with spike frequency, was averaged

within each burst. These 20 values, 5 for each of the 4 simulated

neurons, were combined to form 11 metrics that represent the

performance of the pairs of HE(8) and HE(12) motor neurons by

breaking them into two groups: first, the phase and duty cycle for

each of the 4 motor neurons, and second, the basic fitness metrics

(the mean intraburst spike frequency, slow wave amplitude, and

spike height) which did not differ greatly between each of the 4

motor neurons in each simulation and were averaged across the 4

motor neurons. All model instances had to achieve the target

range on the basic fitness metrics to be considered functional. The

multi-objective evolutionary algorithm selected the best models

independently on each of these metrics, so by combining

redundant fitness metrics we avoided overemphasis on model

instances which only achieved the target value for one of the basic

fitness metrics. If a model instance produced an excellent spike

frequency, but was otherwise poor, it would be represented in four

fitness metrics if they were not collapsed into one. Since we cared

most about phase and duty cycle, and unlike the basic fitness

metrics these varied greatly between the 4 motor neurons in each

simulation, we did not want such overrepresentation. The target

and error threshold for each fitness metric are given in table 4.

Burst Isolation
Our fitness metrics presume the identification of bursts, and this

had to be accomplished in an automated fashion so that an

unsupervised algorithm, such as the multi-objective evolutionary

algorithm, could be used. We defined bursts as a group of 5 or

more sequential spikes between which the interspike interval (ISI)

was always less than the minimum interburst interval (IBI). For this

investigation, the burst detection algorithm initially set the

minimum IBI to 1s. Unfortunately, many model instances did

not have clearly defined bursts–instead of a clear separation

between bursts evident in the cessation of spiking activity for more

than 1s, these model instances merely exhibited a reduction in

spike frequency. Although these model instances were almost

uniformly deficient on many metrics, we still had to calculate their

fitness where possible. In order to calculate the fitness metrics,

however, bursts first had to be identified. To do so, the minimum

IBI was reduced by a factor of 0.25 until the number of bursts

detected matched the number expected for the corresponding

input pattern or, failing that, the minimum IBI fell below 50 ms

(i.e. below the minimum ISI typically found during normal activity

in the living system). When bursts could not be isolated, or where

spikes were not detected, the model instance was considered to be

bad or failed. Model instances which produced bursts that could

be isolated were considered to be at least quasi-functional (our

fitness metrics could at least be calculated), even if most model

instances did not produce output within the target ranges.

Multi-objective Evolutionary Algorithm (MOEA)
Model instances were generated and selected by a multi-

objective evolutionary algorithm (MOEA) previously used to

produce crustacean stomatogastric neuron model instances

[31,32,38]. Briefly, the first generation was randomized and

subsequent generations were bred from exemplars selected

independently on each individual fitness metric, with a small

amount of random mutation. For example, a model that had an

excellent HE(8) peristaltic mode phase (i.e., the best of the present

and past generations), but which was unsatisfactory on all other

fitness metrics, contributed to the subsequent generation. Since we

did not need to create a weighting between the fitness metrics due

to the structure of the MOEA, we obviated the complexity and

bias that this may produce at the cost of possibly carrying along

Table 3. Voltage-gated conductance model parameter values.

Name Erev
m‘ h‘ tm th

C (1/mV)
(slope)

D (mV)
(V1/2)

C (1/mV)
(slope)

D (mV)
(V1/2)

A (s)
(tmin)

B (s)
(tmax)

C (1/mV)
(slope)

D (mV)
(V1/2)

A (s)
(tmin)

B (s)
(tmax)

C (1/mV)
(slope)

D (mV)
(V1/2)

Na 45 2150 229 500 230 0.0001 0 0.004 0.006 2150 228

P 45 2120 239 0.01 0.2 400 257

CaS 135 2420 247.2 360 255 0.005 0.134 2400 248.7 0.2 8 2250 243

K1 70 2143 221 111 228 0.001 0.011 150 216 0.5 0.2 2143 213

K2 70 283 220 0.057 0.043 200 235

KA 70 2130 244 160 263 0.005 0.011 200 230 0.026 0.0085 2300 255

KCa 70 280 215 0.2 0

doi:10.1371/journal.pone.0079267.t003
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some poor model instances. The influence of this potential

problem was generally negligible because models which were

amongst the best on at least one metric were, by definition,

satisfactory in some way. Due to the sparse sampling of parameter

space (approximately 1e6 models simulated out of the roughly

7e21 model instances that would be required for a brute force

approach with the same granularity) and dependence on the

random seed for the initial generation, breeding, and mutations,

we initiated and combined model instances from a series of 5

evolutions. Model instances which were previously simulated,

either in a previous generation or evolution, were not resimulated

or reanalyzed, so as to optimize usage of computational resources,

but were still treated as if they were by the evolutionary algorithm

by reading the previously calculated fitness values.

Partial Correlations
We evaluated the linear correlational relationships between

parameters by examining the partial correlations (r) between each

pair of parameters [43]. Examining the partial correlation allowed

us to evaluate the relationship between parameters while

controlling with a general linear model (LM) for the remaining

parameters. I.e., for parameters X and Y and remaining

parameters Z, we calculated the Pearson’s r between residuals

X’ and Y’, that is r(X’, Y’), where X’ = X-LM(X,Z) and Y’ = Y-

LM(Y,Z), alternatively expressed as r((X, Y)|Z), the correlation

between X and Y given Z. We set the p threshold conservatively

with a Bonferroni correction for multiple comparisons to 3.2e-4

and dropped parameters which had at least one p value above this

threshold. We then recalculated r for the remaining parameters

that had all p values below the threshold, leaving us with neurite

ḡK1, ḡK2, ḡKA, ḡP, ḡCaS and axonal ḡKA, ḡK2, and ḡNa. The four

parameters which were dropped from this comparison, soma ḡK1,

soma ḡK2, gCoup and neurite ḡKCa, only had one moderate or

stronger partial correlation (where |r|.0.5), that between ḡCaS

and ḡKCa. Dropping these four parameters did not substantively

influence the recalculation of r for the remaining parameters.

Parameter Variation
We initially defined three sets of model instances: set A, which

met all HE(12) and basic metrics targets, set B, which met all

HE(8) and basic metrics targets, and set C, which met all our

fitness targets. This latter set C thus contains the 431 model

instances which were successful as both HE(8) and HE(12) motor

neurons. Since there were too many model instances in sets A and

B, approximately 39,000 and 4,500, respectively, to perform

parameter variation on all model instances in these groups, we

selected a randomly chosen subset of set A and set B with 500

model instances for each. The two subsets were selected to ensure

that all sets were mutually exclusive, so subset A contained only

models which failed on at least one HE(8) metric and subset B

contains models which failed on at least one HE(12) metric. Thus,

no model instance appeared in more than one subset and 1431

model instances were examined with parameter variation. Each

neurite and axon conductance parameter, plus gCoup, were

systematically varied by 650% and 625%, and then evaluated

on our fitness metrics.

Ramp Current Injection
We injected a 5s triangular ramp of current into the soma

compartment of the same subsets used for parameter variation

(subset A, subset B, set C). After a 10s baseline with no current

injected, a 2.5s long ramp from 0 nA to -0.5 nA and then a 2.5s

long ramp from -0.5 nA to 0 nA was injected. This was done in

the absence of input from the premotor interneurons but with

coupling present. We examined and then calculated the change in

spike frequency with respect to injected current as well as the last

spike time of the downward portion and first spike time of the

upward portion relative to time of maximum injected current. We

then normalized the resulting F/I curves to the maximal spike

frequency observed to better visualize the difference between the

downward and upward portion of the ramp injection and

calculated the best fit line for the first and second half of each

ramp with robust least squares (bisquare weighting) regression. We

then analyzed how the first and last spikes differed between the

three subsets with a one-way MANOVA and followed up with

Bonferroni post-hoc tests.

Results

Can We Produce Key Functional Characteristics of Living
Heart Motor Neurons in a Model?

In this study, we successfully created large sets of model

instances which replicated, within reasonable tolerances, impor-

tant functional characteristics of HE(8) and HE(12) motor neurons

in the leech heartbeat system: the phase, duty cycle, spike

frequency, soma spike height and soma slow-wave height (see

Figures 3 and 5). Out of the total of about 700,000 model instances

which were simulated across the multiple evolutions, only about

66% produced bursts that could be analyzed, so the range of

parameter values we covered was large enough to include regions

of parameter space which do not support functional model

instances. There were many model instances that achieved all

metrics for a given motor neuron (HE(8) or HE(12)) but for only

one of the two input modes (peristaltic or synchronous) but not

both. These instances cannot be considered functional because the

living motor neurons produced both output patterns used as

targets [24]. Of the ,500,000 quasi-functional instances that

could be analyzed, 8% were functional HE(12) model instances

(set A), just under 1% were functional HE(8) models (set B), and

about 0.06% were within the target range for all metrics (set C).

Approximately 10% of good HE(8) model instances were able to

achieve all target ranges, whereas only 1% of good HE(12) model

Table 4. Targets, error thresholds and the mean, minimum,
maximum, and standard deviation of set C fitness values for
each fitness metric.

Fitness metric Target
Max
Error Mean Min Max Std

HE(8)p phase 0.556 0.03 0.5288 0.526 0.5369 0.002

HE(8)p duty 0.337 0.1 0.3948 0.3602 0.4161 0.0094

HE(8)s phase 0.077 0.03 0.1054 0.0995 0.107 0.0013

HE(8)s duty 0.436 0.1 0.4752 0.4503 0.4932 0.0085

HE(12)p phase 0.475 0.03 0.482 0.4714 0.4961 0.0042

HE(12)p duty 0.452 0.1 0.5341 0.4814 0.552 0.0132

HE(12)s phase 0.143 0.03 0.1162 0.113 0.1227 0.0021

HE(12)s duty 0.462 0.1 0.5421 0.506 0.5586 0.0084

Spike
frequency (Hz)

7.3682 7 9.6344 5.7768 14.365 1.8715

Spike
height (mV)

15 7.5 19.0846 13.0818 22.4996 2.0668

Slow wave
height (mV)

10 5 11.6903 7.6234 14.8884 1.1506

doi:10.1371/journal.pone.0079267.t004
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instances did so. These observations suggest that the ability of the

model to produce the desired HE(8) activity put more stringent

constraints on parameters than did the HE(12) activity, but that if

a model instance could achieve the desired HE(8) activity then it

was also likely to achieve the desired HE(12) activity.

The model instances in set C were by definition quantitatively

able to replicate the pattern observed in the living system.

Furthermore, the soma membrane voltage waveform qualitatively

resembled that recorded from HE motor neurons in the living

system. We thus produced a varied set of model instances that

appear to be a good representation of HE motor neurons with

which to investigate the distribution of and relationship between

maximal conductance parameters.

What are the Roles of the Conductances?
The voltage-gated ionic currents, along with passive leak

current, synaptic input, coupling, axial current and capacitive

current, interact through their influence and dependence on the

membrane voltage in complex ways. Figure 6 shows examples of

neurite current flows for two instances of a HE(12) motor neuron

from set C, where Figure 6A is a typical model instance and

Figure 6B is an extreme case which is dominated by IP and IK2

with all other active currents small. The dominant feature of our

model is the rhythmic barrages of inhibitory synaptic currents that

punctuate the normal tonic activity of the model motor. As we can

see from inspection of the individual ionic currents, the currents

contributed to the model neuron’s activity pattern as generally

expected, but IKA in the neurite was present throughout the burst

and during inhibition rather than just between spikes. We

examined the currents during three regions of the cycle: during

the inhibited portion, during the burst, and during the transitions

between inhibition and bursting.

During inhibition, ICaS, IK1, and IKCa were not activated, but Ip,

IK2, and IKA were present. The primary influence these currents

had was shifting the baseline membrane voltage according to the

size of IP relative to IK2 and IKA. In the exemplary model instances

shown in Figure 6, the slow-wave was smaller in the case shown

where Ip was predominantly opposed by IK2 (Figure 6B), and Ip

remained more activated during inhibition than IK2. In the case

where Ip was predominantly opposed by IKA (Figure 6A), the slow-

wave was larger. The baseline currents, especially the balance

between IK2 or IKA and IP, were critical for these model instances

to spike tonically when they were not inhibited and thus to form

recognizable bursts. If there was insufficient IP, or if it was opposed

by too much IK2 or IKA, then the model instance was not

sufficiently excitable to spike tonically without extrinsic current.

During bursts the model instances reached a stable tonic level of

activity, although there was a small amount of spike frequency

adaptation as IKCa and IK2 increased throughout the burst. The

relative proportions of those baseline currents in the absence of

inhibition strongly influenced the spike frequency, the duty cycle,

and, to a lesser extent, the phase, as revealed more clearly in the

sensitivity analysis below. The spike shape, especially the

undershoot, was substantially determined by the faster currents

IKA and IK1, and model instances with low levels of those currents

had less substantial undershoots.

At the beginning and end of inhibitory barrages, we saw the

voltage-sensitive dynamics of these currents come into play. At

the end of an inhibitory barrage, IKCa was almost totally absent,

but IKA and IK2 quickly began to activate more fully, as did IP. IP

quickly rose to its baseline level, as did IKA, whereas IK2 took

slightly longer to reach its baseline level, resulting in an earlier

first spike in Figure 6B. The net result of the remaining synaptic

inhibition and the further activation of these outward currents

was a buildup in spike frequency rather than an immediate jump

to the maximal tonic spike frequency. At the onset of an

inhibitory barrage, IKCa had reached a steady baseline and

contributed to lowering the spike frequency. The outward

currents, especially IK2, began to deactivate, which could prolong

spiking. As we see in Figure 6B, the combination of deactivation

and a reduced driving force resulted in less opposition to IP and

an additional spike, thus prolonging the burst. The dynamics of

the currents as inhibition ends and begins had a primary effect on

the first and last few spikes, respectively, and thus also the duty

cycle. However, their influence on the first and last few seconds of

spikes could also shift the phase of the burst. Although a few

spikes at the beginning and end predominantly influenced the

duty cycle, the phase tolerance was approximately 2 interspike

intervals for the average spike frequency of model instances in set

C (1.37 to 3.4 spikes, mean of 2.28), so it did not take many spikes

to shift the phase outside the target range. We further explored

the difference between the onset and termination of inhibition

between model-instance sets with injected hyperpolarizing

current ramps below.

How are the Maximal Conductances Distributed in
Parameter Space?

We next turned our attention to how the model instances were

distributed in parameter space, or how the parameter values for

successful model instances were related to each other given that

the maximal conductances showed a large range of values. We

Figure 5. Proportions of model instances, depicted as Venn
diagrams, falling within target ranges of fitness metrics. Out of
a total of 734,205 model instances which were simulated, 490,023 were
at least quasi-functional. The left hand column of Venn diagrams shows
the model instances which were capable of producing not only basic
fitness metrics (average spike frequency, spike height, slow-wave
height) but also the proper phase for the peristaltic or synchronous
mode in the indicated heart motor neuron. For example, there were
54,361 models which produced a phase and duty cycle within an
acceptable deviation from the target for the HE(8) motor neuron with
the peristaltic input pattern, but only 4,471 of these also produced the
correct activity with the synchronous input pattern. 431 instances
produced output which was within the target range for all metrics, i.e.
they produced the target output with all four input patterns: HE(8)p,
HE(8)s, HE(12)p and HE(12)s. Three sets were used in subsequent
analyses based on the targets they achieved in addition to the basic
metrics: set A (blue), the instances which achieved output within the
target range for the HE(12) metrics; set B (green), HE(8) metrics; and set
C (red), the intersection of sets A and B.
doi:10.1371/journal.pone.0079267.g005
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found it difficult to directly visualize the potential interactions

between parameters when considering the distribution of model

instances represented as points in the full 13 dimensional

parameter space, so we considered each pair of conductances

one at a time. To do so, we examined the 2d projection of the

acceptable model instances from sets A, B and C, which contained

model instances that achieved the target range on the basic fitness

metrics, as well as for HE(12) (Set A), HE(8) (Set B), and both

Figure 6. Membrane currents and soma membrane potential in the neurite 2 compartment of two model instances. All actively gated
currents (IK1, IK2, IKA, IP, ICaS, IKCa) in the neurite 2 compartment from two representative HE(12)p model instances. Traces are offset for clarity and the
solid black line indicates the zero reference for the corresponding trace. On the soma voltage trace, small red circles indicate identified spikes, large
red dots indicate the phase reference, blue circles indicates target phase,the short vertical black lines indicate measured phase and the horizontal
black line indicates the target range. A. Representative model instance from set C with low ḡK2 and ḡP but ḡKA in the middle of the allowable range. B.
Extreme model instance selected from set C with high ḡK2, near maximum ḡP for set C, and low ḡKA.
doi:10.1371/journal.pone.0079267.g006
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HE(8) & HE(12) (Set C) fitness metrics, respectively (Figure 5). In

Figure 7 we show overlaid scatter plots for three sets with set A in

blue under set B in green under set C in red for each pair of

conductance parameters. Starting first with the gross trends which

were apparent upon inspection, we saw that neurite ḡP was

strongly limited in range in all three sets of model instances to a

small window about the value used in the base model. When hand

tuning our base model, we found that model activity was highly

sensitive to neurite ḡP. When neurite ḡP was too high, the model

instance could not be sufficiently inhibited to terminate firing and

when it was too low the model instance would rarely spike, let

alone form bursts. Next, we found that neurite ḡK2 tended towards

the lower portion of its allowable range, although the restriction

was stronger in sets B and C than in set A. As we saw in Figure 6,

Figure 7. Effect of parameter interaction on fitness set. Functional model instances projected onto 2-D parameter space for each pair of
parameters are shown for sets A (blue), B (green), and C (red). Each subplot is a layered scatter plot of set C over set B over set A of the parameter
values of functional model instances for each pair of parameters. Each point may represent many models. Axes are from the minimum to maximum
allowable value for the parameter indicated. No clear relationship between pairs of parameters was obvious upon inspection in most cases, but some
did present interesting structures. The highlighted subplots show three particularly interesting relationships that are apparent upon inspection
(shown as insets above right): ḡK2 appears correlated with ḡP and is somewhat restricted in its distribution; ḡKCa and ḡCaS appear to form a non-linear
relationship; and electrical coupling (ḡcoup) is generally restricted to lower values in HE(8) motor neurons (set B) than in HE(12) motor neurons (set A).
Black tick marks on the axes and boxes on highlighted subplots indicate the baseline model’s parameter value.
doi:10.1371/journal.pone.0079267.g007
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neurite ḡK2 could oppose the effect of neurite ḡP, and the influence

of neurite ḡK2 on firing was generally opposite that of neurite ḡP,

although our fitness metrics were less sensitive to perturbation of

neurite ḡK2 than neurite ḡP. When ḡK2 was too large, the model

instance ceased spiking and when it was small, the model

instance’s activity was not sculpted into identifiable bursts.

When we considered the axonal conductances, we found that

the range of ḡNa was somewhat limited. It could not be too small

simply because model instances with very small values of ḡNa could

not produce spikes. The remaining axon conductances were not

limited, but there was a tendency towards lower values for axon

ḡK2 that is more obvious in Figures S1–S3. When we examined the

electrical coupling in the synaptic compartment, which passed

current between the two HE motor neurons in each ganglion, we

found an interesting difference between the sets of model

instances. In set A, the range of gCoup did not appear to be

restricted and there were model instances distributed across the

full range of values, whereas in set B, and thus in set C as well,

gCoup was restricted to smaller values generally below the hand-

tuned value. Larger values of gCoup reduced the phase difference

between the coupled neurons as also observed in previous work

[8,10], consistent with the sensitivity results below, and the side-to-

side phase difference between the targets for HE(12) motor

neurons (0.33) was smaller than that for HE(8) motor neurons

(0.48).

Next, we considered the interaction between parameters

apparent upon inspection of the plots in Figure 7. First, neurite

ḡP and ḡK2 appeared to be correlated, which is consistent with

what was evident when we inspected the currents in individual

model instances in Figure 6. The slow wave components of IP and

IK2 opposed one another, which mostly mitigated the effects of one

another on membrane voltage and excitability. However, even if

they perfectly cancelled one another, which they did not, such

increases in overall membrane conductance could result in partial

shunting, reducing the size of spikes and synaptic inputs as they

spread through the affected compartments.

Finally, we come to ḡKCa and ḡCaS, which were only present in

the neurite compartments. The distribution of model instances for

ḡCaS and ḡKCa was a non-linear relationship that demonstrates a

clear example of why a population approach is well suited to

modeling neurons–an average parameter value would likely fall

outside of the area of support, an example of a failure of averaging

[44].

How are Currents Correlated?
The partial correlations, the correlations between parameters

after compensating for the remaining parameters with a linear

model, were then examined for set C. Figure 8 shows these partial

correlations for a subset of parameters which were used in the final

calculation because they had significant p values (p,0.00032).

Neurite ḡK2 was correlated with neurite ḡp, as expected from our

inspection of Figure 7, but neurite ḡKA, axon ḡK2 and axon ḡKA

were also correlated with neurite ḡp, which was not clear in

Figure 7, but the relationship between neurite ḡKA and neurite ḡp

is illustrated by the currents shown shown in Figure 6. This

correlation was somewhat unexpected because, unlike ḡP and ḡK2,

ḡKA inactivates and is generally considered to be responsible for

delaying spikes [45,46]. However, we did observe a baseline

window current during bursts, and to a lesser extent during

inhibition, in the neurite compartments. The faster potassium

current, neurite ḡK1, was also correlated with neurite ḡP, although

this was far weaker and was not present for the axon ḡK1.

Furthermore, there were similar, but weaker, correlations between

neurite ḡK1, ḡK2, and ḡKA with axon ḡNa and even weaker with

neurite ḡCaS. We see a similar pattern with the axon ḡK2, and ḡKA

correlated with ḡNa as well as with neurite ḡCaS, although again the

correlations with ḡCaS were weak. On the other hand, the outward

neurite and axon ḡK2, ḡKA, and ḡK1 conductances were negatively

correlated with one another, although these correlations were

strongest between ḡK2 and ḡKA for both axon and neurite. We see

the same pattern with the inward currents, where ḡP and ḡNa and

ḡCaS were negatively correlated with one another, although the

correlations with ḡCaS were very weak. Thus the general pattern

we observe is that the outward conductance parameters were

positively correlated with the inward conductance parameters,

whereas the inward conductances were negatively correlated with

one another, and similarly the outward conductances were

negatively correlated with one another. This pattern of partial

correlations held for set A and set B (data not shown), but the

partial correlation values were greatly diminished for those sets.

How did the Parameters Influence the Fitness Metrics?
To explore the influence of parameters on fitness metrics, we

perturbed model instances by 625% and 650% for each neurite

and axon parameter, plus coupling. As it was not feasible to

simulate approximately 2 million perturbed model instances in sets

A, B and C, we randomly selected 500 model instances each from

sets A and B as described in Methods, in addition to all of set C.

Only data for set C is shown in Figures 9 and 10, but data were

consistent across the subsets. Most of the results were consistent

with our general expectation that increases in outward conduc-

tances should reduce spike frequency and reduce the duty cycle

whereas the opposite should be the case for inward conductances.

Manipulation of neurite ḡCaS, however, followed the pattern of

outward conductances because an increase in ḡCaS led to increased

IKCa. Spike frequency was most sensitive to perturbations of ḡP,

consistent with our experience when hand tuning the initial model

and with the observation that the range of ḡP in good model

instances is limited. Duty cycle followed the pattern observed with

spike frequency, with increases in outward currents reducing the

duty cycle and increases in inward currents increasing it.

We found some unexpected results when we considered the

influence of maximal conductance density parameter perturba-

tions on phase. In the peristaltic mode, an increase in neurite ḡP

resulted in a phase delay and a decrease in ḡP resulted in a phase

advance, and this was consistent for both HE(8)p and HE(12)p

motor neurons (Figure 9). In the synchronous mode, however, we

observed a phase advance for HE(12) and a phase delay for HE(8)

as a result of reducing ḡP and a minimal effect of increasing ḡP.

This result was somewhat confounded by the many model

instances which failed when ḡP was reduced by 50% and the

extreme excitability induced by increases in ḡP requiring a

reduction of the minimum interburst interval to isolate bursts,

thus dropping some spikes. However, we found the corresponding

reverse pattern when we examined the effect of perturbing neurite

ḡKA or neurite ḡK2, (Figure 10). In the peristaltic mode, a decrease

in neurite ḡKA or ḡK2 resulted in a small phase advance and an

increase in these conductances resulted in a larger phase delay. In

the synchronous mode, an increase in neurite ḡKA or ḡK2 resulted

in a phase delay in HE(8) and a phase advance in HE(12) motor

neurons, consistently in opposition to what was observed for

neurite ḡP. We also observed a difference between the influence of

axon ḡKA and neurite ḡKA. IKA’s canonical role is to regulate spike

frequency, primarily through being active after spikes before

inactivating enough to allow another spike to be initiated. In the

present model, we saw a result consistent with IKA‘s canonical role

when we increased the axon ḡKa, where such an increase resulted

in a decreased spike frequency. When we increased the neurite
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ḡKA, however, we saw a smaller effect on spike frequency, as

shown in Figure 10, but a greater influence on phase.

How Do the Sets Differ in Response to Current Injection?
We then explored how the model instances differed between the

sets A, B, and C with respect to their intrinsic properties. To do so,

we used the same subsets as were used for parameter perturba-

tions, subsets A, subset B and set C, and examined their activity

during injections of hyperpolarizing current ramps that serve as a

rough approximation of the inhibitory synaptic input. We

measured the spike frequency vs. injected current and the time

of the last spike during the down ramp and the first spike during

the up ramp of triangular hyperpolarizing current. Even though

the model instances produced a wide range of spike frequencies

(from 5.78 Hz to 14.37 Hz, mean of 9.63 Hz for set C), we

observed that during the down ramp, when the hyperpolarizing

current is increasing, the spike frequency was consistently lower

than on the up ramp (see figure S4), when the hyperpolarizing

current was reducing. This was the case for all three subsets, but

set C appeared more tightly constrained than subset A or subset B,

having a lower spike frequency on the down ramp (weighted R2

and s from the robust regression were: subset A down (0.639,

0.1367), subset B down (0.775, 0.1262), subset C down (0.865,

0.0884)). We then examined the last and first spikes relative to the

trough of hyperpolarizing current to measure their excitability and

ability to spike during hyperpolarization and recover from

hyperpolarization due to current injection, and determine how

the three groups differed; see Figure 11. The model instances from

subsets A and B were more widely distributed, consistent with

what was observed for the F/I relationships. When examined

statistically, we found that there was a significant difference

between sets in the last and first spike times (F(6, 2782) = 624.171,

p,0.0005; Pillai’s trace = 1.148, partial g2 = 0.574). The set C

model instances continued to fire longer than either subset A or B

model instances (Bonferroni, p,0.0005), and subset B continued

to fire longer than set A (Bonferroni, p,0.0005). On the up ramp,

set C resumed spiking earlier than either set A or set B (Bonferroni,

p,0.0005), but subset A and subset B did not differ significantly

(p = 0.111). These results suggest that the ability to fire early when

inhibition is waning and to continue to fire later when inhibition is

building make a model instance adaptable to different input

patterns (e.g., HE(8) vs. HE12).

Discussion

The broader goal of our research was to understand how

neuronal networks can generate coordinated motor patterns and

thus coordinated movements, and, specifically, how the leech

heartbeat central pattern generator coordinates segmentally

repeated motor neurons into the fictive heartbeat motor pattern.

Figure 8. Partial Correlation (r) matrix for a subset of parameters. Warmer colors indicate positive and colder colors negative partial
correlations. In general, pairs of conductances which oppose each other were positively correlated and pairs that could compensate for each other
were negatively correlated. Numbers shown are calculated r. All partial correlation shown were significant (p,0.00032).
doi:10.1371/journal.pone.0079267.g008
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Furthermore, we sought to understand better how the intrinsic

properties of motor neuron contribute to this input-output

transformation. The heartbeat CPG rhythmically inhibits the

heart motor neurons, and previous research has shown that,

although the majority of the motor neuron output pattern is

dictated by this input from the CPG, the heart motor neurons are

believed to contribute to pattern formation [9,10]. We thus set out

to develop a heart motor neuron model that more fully captured

the complexity of the living system than did previous models, and

we successfully developed the first model of HE motor neurons

that was capable of quantitatively achieving the target ranges on

our fitness metrics, including the phasing observed in the living

system.

To develop a more realistic heart motor neuron model, we first

constructed a baseline hand-tuned multi-compartmental model

and then used a multi-objective evolutionary algorithm to generate

model instances (variations of this model) that had differing

maximal conductance parameters, but all other properties of each

model instance remained the same between instances. These

model instances were evolved to achieve target ranges on fitness

metrics which captured key output measures or electrophysiolog-

ical characteristics recorded in the living system. In so doing, the

algorithm produced model instances which were capable of

quantitatively achieving appropriate target phases and soma

membrane voltage waveforms that qualitatively resembled those

recorded in the living system.

We focused on how the conductance densities contributed to

the fitness of model instances because previous modeling studies

implicated intrinsic membrane properties in motor neuron

phasing [8–10]. We found strong partial correlations between

many key conductance densities, in particular between neurite

ḡKA, ḡK2, ḡP and axon ḡKA, ḡK2, ḡNa. Parameters that had strong

partial correlations, either positive or negative, appear to be linked

by their influence on each of the fitness metrics we used to select

good model instances. Conductances that opposed one another

had the opposite effects on fitness metrics when perturbed while

Figure 9. Phase, duty cycle and spike frequency sensitivity to
neurite ḡP parameter perturbation. Maximal conductance param-
eters were perturbed by 650% and 25% of their initial value for all
model instances in set C. The resulting changes in phase, duty cycle and
average spike frequency are plotted above for each mode of HE(8) and
HE(12) motor neurons. Data shown as mean 6 std.
doi:10.1371/journal.pone.0079267.g009

Figure 10. Phase, duty cycle and spike frequency sensitivity to
neurite ḡKA and ḡK2 parameter perturbation. Maximal conduc-
tance parameters were perturbed by 650% and 25% of their initial
value for all model instances in set C. The resulting changes in phase,
duty cycle and average spike frequency are plotted above for each
mode of HE(8) and HE(12) motor neurons. Data shown as mean 6 std.
doi:10.1371/journal.pone.0079267.g010
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conductances that could compensate for one another had similar

effects.

Selection of Fitness Metrics
We chose a restricted subset of possible fitness metrics – phase,

duty cycle, average spike frequency, spike height, and slow-wave

height – with which to evaluate our model and to evolve model

instances. Phase and duty cycle are fundamental metrics when

describing rhythmically active processes. Furthermore, phase and

duty cycle, along with spike frequency, specify the output of these

motor neurons–the timing, duration, and intensity of the activity

that controls the heart muscle fibers they innervate. The average

spike frequency, height, and slow-wave height are important

metrics that capture the gestalt of heart motor neurons. In the

living system, heart motor neurons are not only identified by their

location and soma dimensions, but also by their characteristic

activity: appropriately phased bursts of relatively small spikes with

moderate spike frequency and a marked reduction in soma

membrane voltage during inhibition. Thus, the metrics used in the

present study represent the minimal complement necessary to

accurately evaluate a heart motor neuron model.

Parameter Correlation and Regulation
When we examined the resulting model instances we found

several interesting relationships between the maximal conductance

parameters we allowed to vary in the evolutionary algorithm.

Inward and outward currents that opposed one another were

generally positively correlated, whereas those which could

compensate for the loss of one another were negatively correlated.

These relationships held across compartments. These results

validate our intuition that conductances which are broadly in

opposition, specifically the persistent inward sodium and the

outward potassium conductances, could be ratiometrically in-

creased (coregulated) without substantially altering activity.

Conversely, outward currents which could partially compensate

for one another were counter-regulated while broadly maintaining

Figure 11. Last and first spike time during F/I ramp injection. First spike vs. last spike relative to the peak hyperpolarizing current injection is
shown as scatter and box plots for model instances from subsets A B and set C. Median, 75th and 25th percentile indicated by the center line and
edges, respectively, for each box. Red crosses indicate outliers. Model instances were probed with a 5s triangular ramp current from 0 to -0.5 nA and
back to 0 injected into the soma compartment. There was a statistically significant difference in last and first spike time for the FI protocol based on
set, F(6, 2782) = 624.171, p,0.0005; Pillai’s trace = 1.148, partial g2 = 0.574. Post hoc tests (Bonferroni) showed a significant difference between set C
and subset A (p,0.0005) as well as between set C and subset B (p,0.0005) for the first spike time, but not between subsets A and B (p = 0.111). There
was a significant difference between all sets/subsets for the last spike time (p,0.0005).
doi:10.1371/journal.pone.0079267.g011
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a characteristic output pattern. In our model, the inward and

outward currents had positive partial correlations and thus we

would expect them to be co-regulated in the living system provided

that the proportions are considered as a larger group than

individual pairs of conductances. On the other hand, many of the

conductances we found to be correlated have very different

dynamics, so it was somewhat surprising to see such strong positive

and negative correlations until we considered their influence on

the fitness metrics. For example, the target range allowed for phase

is small, and achieving it appears to require a coordinated balance

between parameters. If we consider a model instance slightly

outside of the target range, then shifting into the target range

would require coordinated changes to several parameters that

individually and in combination shift the phase in the desired

direction while not shifting the activity outside of the acceptable

range on any other fitness metric. For many models, perturbations

of individual parameters helped achieve one target while shifting

away from another. Even though the allowable ranges for spike

frequency and duty cycle were larger, as were the observed ranges

for those metrics in the living system, these metrics are the most

sensitive to parameter perturbation, so they could also be driving

the observed correlations. The influence on spike frequency in

particular appears to be related to the baseline current during the

burst, and the conductances with larger baseline currents were

more strongly correlated. The prediction that these conductances

are correlated and that this is through their influence on the

metrics we used to define the model instance sets is supported by a

recent investigation in the pyloric CPG of the crustacean

stomatogastric ganglion [47]. In that study, a dynamic clamp

was used to vary three currents, IA, Ih, and a compound current,

IHTK, and many of the activity attributes measured were

influenced by all three currents investigated, with the influence

of combinations reflecting compensatory effects between the

currents.

One unexpected aspect of our results is that IKCa appeared to be

limited, either through low to moderate values of ḡCaS or ḡKCa.

This relationship is likely due to the interaction between ḡCaS and

ḡKCa and their influences on the fitness of model instances. The

direct effects of ḡCaS were relatively small compared with ḡP, and

ḡCaS is not limited in range. Even though the direct effects of ḡCaS

were small, it is of critical importance because the accumulation of

Ca2+ in each neurite compartment’s calcium pool gates IKCa

which, if present at sufficient levels, has an adverse influence on

our fitness metrics. ICaS was linked to gKCa’s calcium gate through

a simple calcium pool model within each neurite compartment.

High levels of both ḡKCa and ḡCaS resulted in a high level of IKCa,

which can prematurely terminate bursts, radically advance phase,

reduce the duty cycle, and substantially reduce the spike

frequency, all of which result in fitness values outside of the target

range. When examined in our sensitivity analysis, increases in

ḡKCa advanced the phase whereas decreases delayed the phase,

although the effect was small. The previous single compartmental

model’s synchronous phase was delayed relative to the living

system [8], so the phase advance resulting from IKCa should have

helped achieve the target synchronous phase. However, our results

showed that IKCa must be limited. Even so, IKCa may help achieve

the F/I results, as the down ramp of the injected hyperpolarizing

current resulted in a lower spike frequency than the up ramp when

the model instance resumes firing, although the dynamics of all the

conductances in the neurite, axon and soma compartments will

have to be carefully explored in future research to fully elucidate

their relative contributions.

Another parameter which appeared to be tightly restricted is ḡP.

The distribution of good model instances in parameter space and

the extreme sensitivity of the fitness metrics to perturbation of ḡP

indicate that this conductance is important. This result is not

surprising because neurite ḡP drives the membrane voltage in the

axon compartment, via its direct influence in the neurite

compartments, into a range where spikes are initiated in the spike

initiation zone in the neighboring axon compartment. The

opposition of ḡP by ḡKA and ḡK2 appears to be a primary driving

factor in the correlational relationships we found, and this

relationship is likely due to the baseline currents in the neurite

compartments.

In contrast to the previous heart motor neuron model, which

predicted that a gradient of electrical coupling that increased

towards the rear of the animal would be necessary to achieve the

intersegmental phase relationships observed in the living system

[8,9], we found that a coupling gradient is not necessary for proper

pattern formation. Coupling conductance values in the range that

supports sets B and C would work just as well for set A, so there

was no requirement for a gradient. Furthermore, the coupling in

sets B and C appeared to be constrained to the range observed in

the living system. We did find that the coupling can influence

phase by bringing the phases of the two heart motor neurons in

each pair closer, but this effect was small. As such, an increasing

gradient from the front to the rear of the animal could help

achieve the progressively closer phases between the peristaltic and

synchronous heart motor neurons, as predicted by prior modeling

work, but our results do not indicate that this is required and thus

it is unlikely to be a primary feature of heart motor neurons in the

living system.

Neural Identity and the Consequences of Variability
In nervous systems with unambiguously identifiable neurons,

such as the leech, in which we can often identify specific neurons

by their physical attributes including location, size and morphol-

ogy, but ultimately by their characteristic activity. We found that

attributes of this characteristic activity, as measured by our fitness

metrics, are influenced by the conductance densities we allowed to

vary between model instances. When we perturbed individual

parameters, although some of the fitness metrics might improve

(i.e., move closer to their target value) others would move away

from the target value. Such a perturbation would typically result in

values outside of the target range on at least one metric. The

maintenance of multiple attributes of characteristic activity, and

thus neural type, requires coordinated changes to multiple

conductances that oppose or can compensate for one another,

manifesting as partial correlations in our analysis. In systems

where the mRNA that codes for the ion channels that underlie

membrane conductances has been measured, some correlations

have been found to be neural-type specific. For example, in the

STNS, the copy number of mRNA coding for hyperpolarization

activated non-specific cation current (IH, Ih), a transient potassium

current (shal, IA), two delayed rectifier potassium currents (Shaw

and shab, IKd), and a calcium sensitive potassium current (BKKCa,

IKCa) are correlated with one another in combinations and

proportions specific to each neuron type [18]. Furthermore, IH

and shal are significantly correlated with activity features such as

phase mean interspike interval [11,18,48] and models of the STNS

have shown that linear conductance correlations appear to help

maintain such activity features as spike and burst phase, spike

frequency and count, and other measures of neuronal type

[15,49,50]. Even though such correlation can maintain activity

features, the cellular cascades responsible are not necessarily

activity dependent, as one might initially expect [51,52].

The input patterns and output targets we used were drawn from

characteristic activity patterns under standard conditions. When
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other input patterns were used in small pilot evolutions, the small

number of resulting model instances appeared to follow the same

patterns observed in the present data set. The input pattern used

here had a middle of the road HE(8)-HE(12) phase progression

and was otherwise typical, so we do not believe our results would

substantially change given a different input/output data set, but

follow-up experiments will have to directly address this question.

In non-standard circumstances – such as the application of

drugs, neuromodulation, or perturbation of other cellular param-

eters – the consequences of intrinsic parameter variability can

come to the fore, manifesting as varying responses to perturbation.

For example, temperature can affect membrane conductances

differently [53]. Simplistically, we can consider the case of two

conductances which are strong, but oppose one another, and are

exposed to a shift in temperature. If this shift differentially affects

these conductances, then the activity pattern it produces can be

radically altered or even terminated. For example, if ḡP were to be

influenced by modulation or temperature out of proportion to ḡK2,

then the result would tend toward extremes, either the cessation of

spiking activity or spiking through periods of inhibition. Such a

differential response to perturbation is exactly what is believed to

underlie the results of recent investigations into the effect of

temperature on the crustacean stomatogastric ganglion [54,55].

The differential response of conductances to perturbation is also of

concern when we consider the influence of neuromodulators or

drugs. Neuromodulators and drugs influence subsets of conduc-

tances, but their effects on neural activity is influenced by the

extant conductances (ion channels in the cellular membrane) in

each neuron. As such, the intrinsic variability of intrinsic

properties could lead neurons that appear similar to respond

differently to these factors. Recent experimental work in the crab

cardiac ganglion has shown disruption of conductances with

pharmacological blockers results in differential response between

cells, even within a single cell type in an individual animal, and a

disruption of normal activity at the network level [56].

General Conclusion
We developed the first model of heart motor neurons that was

capable of producing a quantitatively accurate activity pattern and

used it to elucidate relationships between parameters that are

necessary to maintain the production of this activity pattern. No

model will ever perfectly capture the entirety of what it represents–

all models are, in some way, limited. In the case of models of

neurons, we accept many reductions and simplifications in order

to focus on the particular characteristics we are interested in–for

example, we collapse regions of the neuron into isopotential

compartments and approximate populations of discrete ion

channels with Hodgkin-Huxley style differential equation based

models, to name just a few common reductions. Even so, we can

produce models with striking predictive power that not only

accurately represent specific neurons but also elucidate basic

mechanisms controlling activity that apply to them and to neurons

in general. In this paper, we have taken advantage of some of the

unique characteristics of the leech heartbeat system as well as a

population based modeling approach to further elucidate the

electrophysiology of motor neurons. The model we have

developed provides a large population of model instances with

which to perform virtual experimentation, including those

involving the manipulation of properties and parameters not

experimentally accessible in the living system. Furthermore, the

approach we have taken easily generalizes to other neuron types or

even small neuronal networks.

Supporting Information

Figure S1 Parameter histogram for set A. Counts are

normalized to the total number of model instances in set A. Bin

size is 0.04.

(EPS)

Figure S2 Parameter histograms for set B. Counts are

normalized to the total number of model instances in set B. Bin

size is 0.04.

(EPS)

Figure S3 Parameter histograms for set C. Counts are

normalized to the total number of model instances in set C. Bin

size is 0.04.

(EPS)

Figure S4 Normalized spike frequency vs. injected
current. Model instances in subset A, subset B, and set C were

probed with a 5s triangular ramp current from 0 to -0.5 nA and

back to 0 injected into the soma compartment. Spike frequency is

normalized to maximum spike frequency during ramp protocol.

Panels A, B, C contain the data for subset A, subset B and set C,

respectively. Black dots and the dashed regression lines represent

spikes from the first half (downward portion) of the ramp and

colored dots and solid regression lines represent spikes from the

second half (upward portion). Panel C compares the regression

lines from the three groups. Regression lines are calculated with

robust least squares regression (bisquare weighting). Weighted R2

and s for the regression lines were: subset A downward (0.639,

0.1367), subset A upward (0.848, 0.0999), subset B downward

(0.775, 0.1262), subset B upward (0.878, 0.0969), subset C

downward (0.865, 0.0884), subset C upward (0.837, 0.0999).

(EPS)

Acknowledgments

The authors would like to thank Brian Norris and Angela Wenning for

many useful discussions and the input-output dataset and Tomasz

Smolinski for sharing his implementation of the Multi-Objective

Evolutionary Algorithm used in the present study.

Author Contributions

Conceived and designed the experiments: DGL RLC. Performed the

experiments: DGL. Analyzed the data: DGL. Contributed reagents/

materials/analysis tools: DGL RLC. Wrote the paper: DGL.

References

1. Marder E, Calabrese R (1996) Principles of rhythmic motor pattern generation.

Physiological reviews 76: 687–717.

2. Ramirez JM (2011) The human pre-Botzinger complex identified. Brain 134: 8–

10.

3. Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev

Neurosci 29: 279–306.

4. Kiehn O (2011) Development and functional organization of spinal locomotor

circuits. Curr Opin Neurobiol 21: 100–109.

5. Kiehn O, Dougherty KJ, Hagglund M, Borgius L, Talpalar A, et al. (2010)

Probing spinal circuits controlling walking in mammals. Biochem Biophys Res
Commun 396: 11–18.

6. Mullins OJ, Hackett JT, Buchanan JT, Friesen WO (2011) Neuronal control of

swimming behavior: comparison of vertebrate and invertebrate model systems.
Prog Neurobiol 93: 244–269.

7. Lamb D, Calabrese R (2011) Neural circuits controlling behavior and autonomic
functions in medicinal leeches. Neural Systems & Circuits 1: 13.

8. Garcia PS, Wright TM, Cunningham IR, Calabrese RL (2008) Using a model to

assess the role of the spatiotemporal pattern of inhibitory input and

Correlated Conductances Affect Pattern Formation

PLOS ONE | www.plosone.org 18 November 2013 | Volume 8 | Issue 11 | e79267



intrasegmental electrical coupling in the intersegmental and side-to-side

coordination of motor neurons by the leech heartbeat central pattern generator.
J Neurophysiol 100: 1354–1371.

9. Wright TM Jr., Calabrese RL (2011) Contribution of motoneuron intrinsic

properties to fictive motor pattern generation. J Neurophysiol 106: 538–553.
10. Wright TM Jr., Calabrese RL (2011) Patterns of presynaptic activity and

synaptic strength interact to produce motor output. J Neurosci 31: 17555–
17571.

11. Goaillard JM, Taylor AL, Schulz DJ, Marder E (2009) Functional consequences

of animal-to-animal variation in circuit parameters. Nat Neurosci 12: 1424–
1430.

12. Grashow R, Brookings T, Marder E (2009) Reliable neuromodulation from
circuits with variable underlying structure. Proc Natl Acad Sci U S A 106:

11742–11746.
13. Marder E (2011) Variability, compensation, and modulation in neurons and

circuits. Proc Natl Acad Sci U S A 108 Suppl 3: 15542–15548.

14. Tobin AE, Cruz-Bermudez ND, Marder E, Schulz DJ (2009) Correlations in ion
channel mRNA in rhythmically active neurons. PLoS One 4: e6742.

15. Hudson AE, Prinz AA (2010) Conductance ratios and cellular identity. PLoS
Comput Biol 6: e1000838.

16. Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate

circuit parameters. Nat Neurosci 7: 1345–1352.
17. Hudson AE, Archila S, Prinz AA (2010) Identifiable cells in the crustacean

stomatogastric ganglion. Physiology (Bethesda) 25: 311–318.
18. Schulz DJ, Goaillard JM, Marder EE (2007) Quantitative expression profiling of

identified neurons reveals cell-specific constraints on highly variable levels of
gene expression. Proc Natl Acad Sci U S A 104: 13187–13191.

19. Norris BJ, Weaver AL, Wenning A, Garcia PS, Calabrese RL (2007) A central

pattern generator producing alternative outputs: pattern, strength, and dynamics
of premotor synaptic input to leech heart motor neurons. J Neurophysiol 98:

2992–3005.
20. Roffman RC, Norris BJ, Calabrese RL (2012) Animal-to-animal variability of

connection strength in the leech heartbeat central pattern generator.

J Neurophysiol 107: 1681–1693.
21. Kristan W, Calabrese R, Friesen W (2005) Neuronal control of leech behavior.

Progress in neurobiology 76: 279–327.
22. Norris BJ, Weaver AL, Morris LG, Wenning A, Garcia PA, et al. (2006) A

central pattern generator producing alternative outputs: temporal pattern of
premotor activity. J Neurophysiol 96: 309–326.

23. Norris BJ, Weaver AL, Wenning A, Garcia PS, Calabrese RL (2007) A central

pattern generator producing alternative outputs: phase relations of leech heart
motor neurons with respect to premotor synaptic input. J Neurophysiol 98:

2983–2991.
24. Norris BJ, Wenning A, Wright TM, Calabrese RL (2011) Constancy and

variability in the output of a central pattern generator. J Neurosci 31: 4663–

4674.
25. Wenning A, Norris BJ, Doloc-Mihu A, Calabrese RL (2011) Bringing up the

rear: new premotor interneurons add regional complexity to a segmentally
distributed motor pattern. J Neurophysiol 106: 2201–2215.

26. Maranto AR, Calabrese RL (1984) Neural control of the hearts in the leech,
Hirudo medicinalis. Journal of Comparative Physiology A 154: 367–380.

27. Thompson WJ, Stent GS (1976) Neuronal control of heartbeat in the medicinal

leech. Journal of comparative physiology 111: 309–333.
28. Wenning A, Cymbalyuk G, Calabrese R (2004) Heartbeat control in leeches. I.

Constriction pattern and neural modulation of blood pressure in intact animals.
J Neurophysiol 91: 382–396.

29. Gramoll S, Schmidt J, Calabrese R (1994) Switching in the activity state of an

interneuron that controls coordination of the hearts in the medicinal leech
(Hirudo medicinalis). The Journal of experimental biology 186: 157–171.

30. Lu J, Gramoll S, Schmidt J, Calabrese RL (1999) Motor pattern switching in the
heartbeat pattern generator of the medicinal leech: membrane properties and

lack of synaptic interaction in switch interneurons. J Comp Physiol A 184: 311–

324.
31. Smolinski TG, Prinz AA (2009) Multi-objective evolutionary algorithms for

model neuron parameter value selection matching biological behavior under
different simulation scenarios. BMC Neuroscience 10.

32. Smolinski TG, Prinz AA, Zurada JM (2008) Hybridization of rough sets and
multi-objective evolutionary algorithms for classificatory signal decomposition.

Rough computing: Theories, technologies, and applications: 204–227.

33. Vanier MC, Bower JM (1999) A comparative survey of automated parameter-

search methods for compartmental neural models. J Comput Neurosci 7: 149–
171.

34. Tobin AE, Van Hooser SD, Calabrese RL (2006) Creation and reduction of a

morphologically detailed model of a leech heart interneuron. J Neurophysiol 96:
2107–2120.

35. Hendrickson EB, Edgerton JR, Jaeger D (2011) The capabilities and limitations
of conductance-based compartmental neuron models with reduced branched or

unbranched morphologies and active dendrites. J Comput Neurosci 30: 301–
321.

36. Bower JM, Beeman D, Wylde AM (1998) The book of GENESIS: exploring

realistic neural models with the GEneral NEural SImulation System: Telos New

York, NY.

37. Crank J, Nicolson P. A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type; 1947 1947. Cambridge

Univ Press. pp. 50–67.

38. Smolinski TG, Prinz AA. Computational intelligence in modeling of biological
neurons: A case study of an invertebrate pacemaker neuron; 2009 2009. IEEE.

pp. 2964–2970.

39. Tolbert LP, Calabrese RL (1985) Anatomical analysis of contacts between

identified neurons that control heartbeat in the leech Hirudo medicinalis. Cell
and tissue research 242: 257–267.

40. Opdyke CA, Calabrese RL (1995) Outward currents in heart motor neurons of

the medicinal leech. J Neurophysiol 74: 2524–2537.

41. Ivanov AI, Calabrese RL (2003) Modulation of spike-mediated synaptic

transmission by presynaptic background Ca2+ in leech heart interneurons.
J Neurosci 23: 1206–1218.

42. Angstadt JD, Calabrese RL (1991) Calcium currents and graded synaptic

transmission between heart interneurons of the leech. J Neurosci 11: 746–759.

43. Fisher RA (1924) The distribution of the partial correlation coefficient. Metron

3: 329–332.

44. Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in
the construction of a conductance-based neuron model. J Neurophysiol 87:

1129–1131.

45. Connor JA, Stevens CF (1971) Prediction of repetitive firing behaviour from

voltage clamp data on an isolated neurone soma. J Physiol 213: 31–53.

46. Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward
membrane current in gastropod neural somata. J Physiol 213: 21–30.

47. Zhao S, Golowasch J (2012) Ionic current correlations underlie the global tuning

of large numbers of neuronal activity attributes. J Neurosci 32: 13380–13388.

48. Schulz DJ, Goaillard JM, Marder E (2006) Variable channel expression in

identified single and electrically coupled neurons in different animals. Nat
Neurosci 9: 356–362.

49. Soofi W, Archila S, Prinz AA (2012) Co-variation of ionic conductances supports

phase maintenance in stomatogastric neurons. J Comput Neurosci 33: 77–95.

50. Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances

determine electrophysiological properties in a multicompartment model.
J Neurosci 29: 5573–5586.

51. MacLean JN, Zhang Y, Goeritz ML, Casey R, Oliva R, et al. (2005) Activity-

independent coregulation of IA and Ih in rhythmically active neurons.
J Neurophysiol 94: 3601–3617.

52. MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM (2003) Activity-
independent homeostasis in rhythmically active neurons. Neuron 37: 109–120.

53. Hille B (2001) Ion channels of excitable membranes. SunderlandMA: Sinauer.

814 p.

54. Tang LS, Taylor AL, Rinberg A, Marder E (2012) Robustness of a rhythmic
circuit to short- and long-term temperature changes. J Neurosci 32: 10075–

10085.

55. Rinberg A, Taylor AL, Marder E (2013) The effects of temperature on the

stability of a neuronal oscillator. PLoS Comput Biol 9: e1002857.

56. Ransdell JL, Nair SS, Schulz DJ (2013) Neurons within the Same Network
Independently Achieve Conserved Output by Differentially Balancing Variable

Conductance Magnitudes. J Neurosci 33: 9950–9956.

57. Hill A, Masino M, Calabrese R (2002) Model of intersegmental coordination in

the leech heartbeat neuronal network. Journal of neurophysiology 87: 1586–
1602.

58. Hill A, Masino M, Calabrese R (2003) Intersegmental coordination of rhythmic

motor patterns. Journal of neurophysiology 90: 531–538.

Correlated Conductances Affect Pattern Formation

PLOS ONE | www.plosone.org 19 November 2013 | Volume 8 | Issue 11 | e79267


