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Abstract: Ferritin possesses an immune function to defend against pathogen infection. To elucidate
the immunity-protecting roles of ferritin from Ctenopharyngodon idellus (Ciferritin) against virus
infection, the cDNA and promoter sequences of Ciferritin were determined, and the correlations
between Ciferrtin expressions and promoter methylation levels were analyzed. In addition, the
functional role of Ciferrtin on GCRV (grass carp reovirus) infection was assessed. The full-length
cDNA of Ciferritin is 1053 bp, consists of a 531 bp open-reading frame, and encodes 176 amino acids.
Ciferritin showed the highest sequence identity with the ferritin middle subunit of Mylopharyngodon
piceus (93.56%), followed by the subunits of Megalobrama amblycephala and Sinocyclocheilus rhinocerous.
Ciferritin contains a conserved ferritin domain (interval: 10–94 aa), and the caspase recruitment
domain (CARD) and Rubrerythrin domain were also predicted. In the spleen and kidney, significantly
higher Ciferritin expressions were observed at 6, 12, 24, or 168 h post GCRV infection than those in the
PBS injection group (p < 0.05). The Ciferrtin expression level in the progeny of maternal-immunized
grass carp was significantly higher than that in the progeny of common grass carp (p < 0.05). Ciferritin
promoter methylation level in the progeny from common grass carp was 1.27 ± 0.15, and in the
progeny of the maternal-immunized group was 1.00± 0.14. In addition, methylation levels of “CpG9”
and “CpG10” loci were significantly lower in the progeny of maternal-immunized fish than those
in the common group. Except for the “CpG5”, methylation levels of all other detected “CpG” loci
negatively correlated with Ciferritin expression levels. Furthermore, the total methylation level of
“CpG1–10” negatively correlated with the Ciferritin expressions. The Ciferritin expression level was
significantly up-regulated, and the VP7 protein levels were significantly reduced, at 24 h post GCRV
infection in the Ciferritin over-expression cells (p < 0.05). The results from the present study provide
sequence, epigenetic modification and expression, and anti-GCRV functional information of Ciferritin,
which provide a basis for achieving resistance to GCRV in grass carp breeding.

Keywords: ferritin middle subunit; cDNA and promoter; methylation level; immune response;
anti-GCRV function

1. Introduction

Iron is an essential trace element for both the host and pathogen due to its role in
energy metabolism, nucleic acid synthesis, and cell proliferation [1]. As an important
intracellular iron storage protein, ferritin has been shown to store iron during times of
iron overload and release iron in the condition of deficiency [2]. Ferritin consists of key
domains, including a ferroxidase diiron center, an iron ion channel, and a ferrihydrite
nucleation center [3,4]. As a hollow iron storage protein, it is composed of 24 subunits
of heavy-chain and light-chain ferritins [5]. Specifically, three kinds of ferritin protein
subunits were identified: heavy-chain homologous, which has a conserved ferroxidase
site to facilitate the rapid oxidation and uptake of ferrous iron; light-chain homologous,
which assists with the nucleation of the ferrihydrite iron core; and middle-type subunit,
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which possesses both a ferroxidase center and ferrihydrite nucleation center, [6]. Two kinds
of channels, including the four-fold hydrophobic channel and the three-fold hydrophilic
channel, were discovered in the protein shell of ferritin [7]. Iron enters ferritin to form
3.5–7.5 nm size iron cores mainly through the three-fold hydrophilic channels in the protein
shell [8,9]. Ferritin keeps the redundant iron in a nontoxic and biologically available form
and is a biomarker of iron-related disorders and infection [10].

Some viral pathogens promote their proliferation and diffusion by disturbing the iron
homeostasis of the host cell [11,12]. Based on its iron storage property, ferritin has consider-
able effects on immune cell function, differentiation, and a host’s innate immune response
to various pathogens [13,14]. In aquatic animals, ferritins have been reported to be involved
in the immune response to pathogen infection. The transcriptional response of Atlantic
salmon (Salmo salar) to infectious hematopoietic necrosis virus was investigated, and ferritin
H was found to be involved in anti-viral replication via iron sequestering [15]. In hemocytes
and hepatopancreas of red swamp crayfish (Procambarus clarkii), white spot syndrome virus
(WSSV) and Aeromonas hydrophila infection induced the mRNA and protein expressions
of ferritin, ultimately resulting in the inhibition of WSSV replication; moreover, the WSSV
copy number was much larger in ferritin-silenced shrimp than in the control group [16].
The loss-of-function of ferritin in the red claw crayfish (Cherax quadricarinatus) led to a
significantly higher expression of an envelope protein VP28 of WSSV, as demonstrated by
the inhibited replication of WSSV after the transfection of recombinant ferritin protein [17].
Negative roles of ferritins in anti-disease were also observed in other fish species. For
instance, in sea bass, recombinant ferritin-H function in the immune-suppression reaction
of CXCR4, which is detrimental to innate immunity [18]. In addition to fishes, the ability of
ferritin to enhance immune function is widely reported in other species [19,20].

The functional mechanisms of ferritins involved in pathogen infection immune reac-
tions have been partially clarified. The host could use an iron withholding mechanism
to restrict the availability of this essential nutrient to the invading pathogens. However,
pathogens use various strategies to overcome this host defense. For example, WSSV
protein kinase 1 interacts with the shrimp ferritin to prevent the ferrous ions binding of
apoferritin [21]. Ferritin overexpression results in reduced expressions of MyD88-IRAK4,
NF-κB, and TNFα promoter activity [22]. Ferritin also regulates the expressions of hepcidin
through the NLRC5/MHC I/β2M axis and affects the adhesion of Aeromonas hydrophila
to host cells by changing the expression of extracellular matrix proteins, integrin β1 and
fibronectin [10].

The grass carp is one of the most widely cultured fish species in China, with its
high production and remarkable economic contribution to agriculture. However, the
hemorrhagic disease caused by grass carp reovirus (GCRV) threatens the sustainability of
the grass carp farming industry. The disease resistance of grass carp individuals varies,
and the identification of the immune molecule and its anti-GCRV function is pivotal for
the molecular-assisted breeding of disease-resistant strains of grass carp. Female parents
vaccinated with a GCRV-attenuated vaccine could produce a GCRV-resistant progeny, and
we found that protein levels of Ciferritin were significantly higher in eggs of maternal-
immunized grass carp than those of common fish [23]. In the present study, the full-
length cDNA and promoter sequences of Ciferritin were identified, and their bioinformatic
characteristics were analyzed. In addition, correlations between Ciferrtin mRNA and
promoter methylation levels in grass carp individuals with different GCRV resistance were
investigated. Furthermore, the immune functional effects of Ciferrtin on GCRV infection
were evaluated. The results from this study help to deepen the understanding of fish
ferritin involved in the viral infection process, providing a potential molecular resource for
grass carp anti-disease breeding.
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2. Results
2.1. Full-Length cDNA of Ciferritin

The full-length cDNA sequence of Ciferritin (GenBank accession no. MK934175.1)
is 1053 bp in length. It consists of a 531 bp open-reading frame, a 202 bp 5′-terminal
untranslated region, and a 320 bp 3′-terminal untranslated region. The predicted Ciferritin
protein encodes 176 amino acids. The calculated molecular weight of Ciferritin is 86.81 kDa,
and the isoelectric point is 4.98. In the 3′ non-coding region, polyadenylation signal site
“AATAAA”, and the unstable motif “ATTTA” were identified (Figure 1).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 19 
 

 

2. Results 
2.1. Full-Length cDNA of Ciferritin 

The full-length cDNA sequence of Ciferritin (GenBank accession no. MK934175.1) is 
1053 bp in length. It consists of a 531 bp open-reading frame, a 202 bp 5′-terminal untrans-
lated region, and a 320 bp 3′-terminal untranslated region. The predicted Ciferritin protein 
encodes 176 amino acids. The calculated molecular weight of Ciferritin is 86.81 kDa, and 
the isoelectric point is 4.98. In the 3′ non-coding region, polyadenylation signal site “AA-
TAAA”, and the unstable motif “ATTTA” were identified (Figure 1). 

 

Figure 1. The nucleotide and deduced amino acid sequences of Ciferritin. The start co-
don is highlighted by the box, and the termination codon is marked with “*” and a box. 
The main domain of eukaryotic ferritin is marked with a gray shadow. The mRNA un-
stable motif (ATTTA) and polyadenylate termination signal (AATAAA) are double-un-
derlined. 

2.2. Sequence Alignment and Functional Structure of Ciferritin 
The BLAST analysis showed that Ciferritin shared the highest sequence identity with 

the Mylopharyngodon piceus ferritin middle subunit (93.56%, KY926441.1), followed by 
those of Megalobrama amblycephala (90.26%, KP288029.1) and Sinocyclocheilus rhinocerous 
(87.02%, XM_016540013.1). Multiple amino acid sequence alignment showed that the 
Ciferritin contains a conserved ferritin domain (interval: 14–155 amino acids). There were 
54 identical amino acid residues among ferritin proteins and 44 conserved residues in the 
ferritin functional domain (Figure 2). Tertiary structure models of ferritins were con-
structed (Figure 3). The confidence score for the Ciferritin model is 1.04, and the estimated 

Figure 1. The nucleotide and deduced amino acid sequences of Ciferritin. The start codon is
highlighted by the box, and the termination codon is marked with “*” and a box. The main domain
of eukaryotic ferritin is marked with a gray shadow. The mRNA unstable motif (ATTTA) and
polyadenylate termination signal (AATAAA) are double-underlined.

2.2. Sequence Alignment and Functional Structure of Ciferritin

The BLAST analysis showed that Ciferritin shared the highest sequence identity with
the Mylopharyngodon piceus ferritin middle subunit (93.56%, KY926441.1), followed by
those of Megalobrama amblycephala (90.26%, KP288029.1) and Sinocyclocheilus rhinocerous
(87.02%, XM_016540013.1). Multiple amino acid sequence alignment showed that the
Ciferritin contains a conserved ferritin domain (interval: 14–155 amino acids). There were
54 identical amino acid residues among ferritin proteins and 44 conserved residues in the
ferritin functional domain (Figure 2). Tertiary structure models of ferritins were constructed
(Figure 3). The confidence score for the Ciferritin model is 1.04, and the estimated TM score
for the tertiary structure of Ciferritin is 0.86 ± 0.07, supporting the reliability of this model.
Five α-helices existed in the Ciferritin, whereas no β-sheets were identified. Functional
domains of Ferritin, CARD, and Rubrerythrin were all predicted in Ciferritin (Figure 3).
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Figure 3. Tertiary structure of ferritin proteins. Ferritins from (A): grass carp (Ctenopharyngodon
idella), (B): black carp (Mylopharyngodon piceus), (C): zebrafish (Danio rerio), (D): African clawed frog
(Xenopus laevis); (E): Chinese soft-shelled turtle (Pelodiscus sinensis), (F): red junglefowl (Gallus gallus),
(G): mouse (Mus musculus) and (H): human (Homo sapiens).
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2.3. Phylogenetic Tree Construction

A phylogenetic tree was built based on the ferritin protein sequences. The phylogenetic
tree indicated that the ferritin homologs fall into two groups. One group contains the
piscine, mammalian, aves, and amphibian branches, while the other group consists of the
reptilia branches. The Ciferritin first clustered with that of M. piceus, followed by those in
cyprinids, such as Megalobrama amblycephala and Cyprinus carpio (Figure 4).
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2.4. Ciferritin Expression Change after GCRV Infection

The expression levels of Ciferritin in response to GCRV infection and PBS treatment
were detected. For the spleen, GCRV infection induced significantly higher Ciferritin
expression levels at 12 and 168 h than those in the PBS injection group (Figure 5A). In the
kidney, Ciferritin expression levels were significantly higher in the GCRV infection groups
at 6, 12, and 24 h than those in the PBS injection group (p < 0.05) (Figure 5B).
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2.5. Ciferritin Promoter Sequence

The promoter sequence of the Ciferritin gene was cloned by genome walking PCR.
The Ciferritin promoter sequence was 845 bp in length (GenBank: OK539049). Possible
methylation modification “CpG” loci in the promoter and cDNA regions of Ciferritin were
shown by bold letters, and methylation levels of ten “CpG” loci were all detected. Around
the ten “CpG” loci, binding motifs for transcription factors such as SPI1, SP1, BRD3, NRF1,
POU5F1, and ZBTB17 were predicted (Figure 6).
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2.6. Correlation between Ciferritin Expression and Promoter Methylation Level

The expression levels of Ciferrtin in the progeny originated from the maternal-
immunized grass carp and the common grass carp, which were detected using qPCR.
The Ciferrtin expression level in the progeny of the maternal-immunized group was signifi-
cantly higher than that in the progeny of the common grass carp (p < 0.05) (Figure 7A). The
methylation levels of ten detected “CpG” loci in the spleen tissues between the progeny of
maternal immunized and ordinary grass carp were all compared. The total methylation
level of the ten “CpG” loci in the progeny of the common grass carp was 1.27± 0.15, and the
progeny of the maternal-immunized grass carp was 1.01 ± 0.14. Methylation levels of both
“CpG9” and “CpG10” were significantly lower in the progeny of the maternal-immunized
fish than those of the common fish (Figure 7B). In addition, the methylation levels of
“CpG2”, “CpG8”, “CpG9” and “CpG10” loci in the spleen tissues were significantly higher
than those of other loci in the progeny of maternal-immunized and ordinary grass carp.
Correlations between methylation levels of the ten detected “CpG” loci and mRNA levels
of Ciferritin were analyzed. Except for the “CpG5”, methylation levels of all other “CpG”
loci negatively correlated with Ciferritin expression levels, and the methylation levels of
“CpG 1–2”, “CpG 3–5” and “CpG 6–9” negatively correlated with the expression levels of
Ciferritin. The total methylation level of “CpG 1–10” was also negatively correlated with
the Ciferritin expressions (−0.472, p = 0.238).
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Figure 7. Methylation levels of “CpG” loci and mRNA expression levels of Ciferritin in grass carp in-
dividuals of different resistance. (A) Ferritin promoter “CpG” loci methylation levels, and (B) mRNA
expression level comparison in the progeny of ordinary and maternal immunized grass carp. An
asterisk (*) denotes a significant differences (p < 0.05), ** indicates p < 0.01, and n.s indicates no signif-
icant difference (p > 0.05). Letter C indicates progeny from ordinary grass carp, and M represents
progeny from maternal immunized grass carp.

2.7. Anti-GCRV Effect of Ciferritin Overexpression

pEGFP-N1-Flag-Ferritin was successfully expressed in CIK cells (Figure 8A). At 48 h
after Ciferritin overexpression, the CIK cells were infected by GCRV. At 24 h post infection,
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the expression levels of Ciferritin, CiIFN1, CiMx, Vp2, and Vp7 were all evaluated by
qPCR. The mRNA level of Ciferritin was significantly up-regulated in the overexpression
experimental group at 24 h after GCRV infection. However, the CiIFN1 and CiMx showed
no significant differences between the Ciferritin overexpressing group and control group
cells. For the viral content detection, the gene expression levels of VP2 and VP7 from GCRV
were detected, and it was found that both Vp2 and Vp7 expressions were down-regulated
in the Ciferritin overexpression CIK cells (Figure 8A–F). The protein level of GCRV VP7
level was also significantly lower in pEGFP-Ciferritin overexpressing cells (0.8182 ± 0.1066)
than those in pEGFP-N1 transfected cells (1.2655 ± 0.3345) (p < 0.05) (Figure 8G,H).
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asterisk (*) denotes a significant differences (p < 0.05), and ** indicates p < 0.01.
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3. Discussion

Ferritins are major iron storage proteins responsible for iron homeostasis and involved
in pathogen infection immune response [24,25]. For lower order vertebrates, three kinds of
subunits, including the heavy-chain, light-chain and middle-chain ferritins, were discov-
ered [26]. Among the three types of ferritin subunits, the light-chain subunit is responsible
for iron nucleation and mineralization, the heavy subunit facilitates the rapid oxidation
and uptake of ferrous iron, and the middle subunit possesses both the functional properties
of the heavy subunit and the light subunit [27]. Here, we identified both the Ciferritin
middle-subunit cDNA and the promoter sequences for the first time. From the results of the
phylogenetic tree and sequence–structure analysis, Ciferritin showed a closer relationship
with homologous subunits of other fish species, and there are many conserved amino
acids in the functional domains of ferritin. In addition, a caspase recruitment domain
(CARD) and a Rubrerythrin domain have been predicted in the Ciferritin protein. The
CARD associates with other CARD-containing proteins to play roles in apoptosis and
inflammatory signaling [28]. Rubrerythrin-like molecules are the ancestor of ferritin and
perform functions in oxidative stress protection via the catalytic reduction of intracellular
hydrogen peroxide [29,30]. The sequence and functional domain characteristic results
support that Ciferritin possesses a similar function attribute to other homologs.

As the pathogen of grass carp hemorrhage disease, GCRV can infect fish and cause
significant economic loss in the aquaculture industry [31]. Finding gene resources with
anti-GCRV functions is pivotal for high-resistance grass carp breeding. During infection,
both the host and microbe need to access iron and avoid its toxicity, and in this regard,
ferritin has emerged as a biomarker of pathogen infection, and variations in ferritin levels
can be clinically relevant [1]. In this study, the expression changes in Ciferrtin in response
to GCRV infection were investigated. We found that Ciferritin expressions in the immune
tissues of the spleen and kidney were significantly enhanced at time points of 6 h, 12 h,
24 h, or 168 h post GCRV infection, suggesting that this molecule was involved in the
immune response to grass carp hemorrhage disease. In other aquatic animals, ferritin is
also reported to participate in anti-pathogen immune responses. The mRNA expression
levels of scallop (Chlamys farreri) ferritin sharply increased in response to bacterial (Vibrio
anguillarum) and viral (acute viral necrobiotic virus) challenges [13]. Ferritin could protect
shrimp (Litopenaeus vannamei) and red claw crayfish (Cherax quadricarinatus) from WSSV
infection by inhibiting virus replication or the deprivation of intracellular iron ions [17,32].
The purified recombinant ferritin was proven to help in reducing the mortality in shrimp
(Penaeus monodon) infected with Vibrio harveyi [33].

To further clarify the functional effect of Ciferritin on GCRV infection, an overexpres-
sion experiment was successfully conducted, which found that the protein expressions of
GCRV VP7 were reduced when combined with the expression enhancement of Ciferritin.
VP7 is a composition protein of the GCRV outer capsid, which is critical for the assembly
and disassembly of the reovirus [34,35]. Combined plaque and cytopathic effect-based
TCID50 assays showed that the VP7 antibody was capable of neutralizing viral infectivity,
suggesting that VP7 might be a dominating epitope [36]. This indicated that Ciferritin
overexpression resulted in the inhibition of GCRV replication. In addition, we examined
the expressions of CiIFN1 and CiMx in grass carp, where no significant change in expression
levels was monitored, suggesting that Ciferritin may not mainly implement its anti-GCRV
function through the IFN pathway. A relationship between the Ciferritin mRNA expression
and GCRV resistance of grass carp should be further elucidated.

Epigenetics plays a core role in affecting the expression of disease resistance-related
genes across multiple generations and influencing the phenotype of individuals [37]. DNA
methylation is the most well-understood epigenetic modification, and methylation lev-
els of genes, such as tumor necrosis factor-like and arylhydrocarbon receptor nuclear
translocator-2, contribute to pathogen resistance [38,39]. In addition, the methylation of
the −534 CpG site of the RIG-I from grass carp had a close association with the resistance
against GCRV and was significantly higher in susceptible individuals than in resistant indi-
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viduals [40]. The epigenetic modification takes part in gene transcriptional regulation [41],
and usually, higher methylation levels in the promoter region are negatively associated
with gene expression levels [42,43]. From the correlation analysis results, we know that the
methylation levels of almost every detected “CpG” locus and the total methylation level of
the ten detected “CpG” loci are negatively correlated with Ciferritin mRNA expressions
and in accordance with the negative relationship between promoter methylation and gene
expression level. In addition, we compared the methylation levels in the promoter region
of Ciferritin between progenies of the maternal-immunized grass carp and the common
grass carp. We found that methylation levels of “CpG9” and “CpG10” in the progeny
of maternal-immunized grass carp were significantly lower than those in the progeny of
common fish, corresponding to significantly higher Ciferritin expressions in the progeny
of maternal-immunized fish. Both innate and adaptive immune-relevant factors could
be transferred from the mother to progeny in fishes and the expression levels of some
immune genes up-regulated in the progeny of maternal-immunized fish [24,44]. The above
results indicate that maternal immunization treatment might reduce the ferritin promoter
methylation level in female parents, and the changed methylation mode may transfer to
the progeny, ultimately corresponding to the up-regulated Ciferritin expression level and
enhanced resistance.

Around the “CpG8” and “CpG9” loci, transcription factors binding motifs for SPI1,
BRD3, POLR2A, NRF1, and SP1 were predicted, as well as POU5F1 and ZBTB17 around
the “CpG10” locus. Transcription factor SP1 could bind to the regulatory element in
the promoter region to promote gene transcription, whereas CpG island methylation
weakens the binding resulting in the down-regulation of gene expression [45,46]. Upon
virus infection, BRD3 promotes the recruitment of the IRF3/p300 complex to the promoter
of Ifnb1, leading to the transcription and production of type I interferon [47]. NRF1
cooperated with DNA methylation to directly regulate the expression of multiple germ-
cell-specific genes, and the conditional ablation of NRF1 dramatically down-regulated
these genes [48]. For other transcription factors, the SPI1 could promote the transcription
of the PARP9 gene [49], and the Pou5f1 could control the transcriptional activation of
zygotically expressed genes in zebrafish embryos [50]. Transcription factors binding to
the “CpG8–10” region may possess the ability to activate the expressions of Ciferritin. In
combination, we can speculate that a lower methylation level in the “CpG8–10” loci in the
progeny of maternal-immunized grass carp may benefit their binding to corresponding
transcriptional factors, and ultimately enhance Ciferritin expression. The detailed effects of
Ciferritin promoter methylation levels change with its expression, and the anti-GCRV effect
should be further investigated.

In conclusion, we obtained the full-length cDNA and the promoter sequence of the
Ciferritin middle unit. Ciferritin showed sequence similarity with homologous from other
fish species, and the predicted functional domains, such as Ferritin, CARD, and Rubrery-
thrin, indicate its core roles in immune reactions. The methylation levels of the “CpG9”
and “CpG10” loci in the progeny of maternal-immunized grass carp were significantly
lower than those in the progeny of common fish, corresponding to significantly higher Ci-
ferritin expression levels in the progeny of maternal-immunized fish. Promoter methylation
and Ciferritin expression levels are negatively correlated. Ciferritin actively responded to
GCRV infection, and its overexpression could inhibit the replication of GCRV. The value
of Ciferritin for high-resistance fish breeding should be further evaluated in grass carp
individuals.

4. Materials and Methods
4.1. Experimental Fish and Sample Collection

Grass carp, with an average body weight of 21.5 ± 2.4 g and an average body length
of 12.5 ± 0.85 cm, were purchased from the Xiangyin Fisheries Research Institute, Yueyang,
China. All fish were maintained in tanks for two weeks at a constant temperature of 28 ◦C
and fed twice daily at 3% of their body weight. For the in vivo experiment, the GCRV106
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strain with 1.78 × 107 50% tissue culture infective dose (TCID50)/mL was obtained from
the Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science
(Wuhan, China). An experimental group and a control group were established for the
GCRV infection. Thirty individuals in the experimental group were intraperitoneally
injected with 200 µL of GCRV 106. Those in the control group (30 individuals) were
intraperitoneally injected with 200 µL of PBS. The fish were euthanized by an overdose
of tricaine methanesulfonate (200 mg/L) before sampling. In each group, samples (the
kidney and the spleen) from five individuals were separately taken at 0, 6, 12, 24, 72, and
168 h after treatment. In addition, a GCRV JX-0901 strain (1 × 103.625 50% tissue culture
infective dose (TCID50)/mL) was used for the cell infection experiment. Finally, spleen
tissues of progeny from maternal immunized grass carp (female parent was immunized
with a GCRV attenuated vaccine 40 days before fertilization), and tissues of progeny from
ordinary grass carp were sampled for Ciferritin mRNA expression level and promoter
methylation level detection.

4.2. RNA Extraction and cDNA Template Synthesis

For full-length Ciferritin cDNA cloning, total RNA was extracted from C. idellus spleen
tissue using the Total RNA Kit (Omega Bio-Tek, Inc., Norcross, GA, USA), according
to the manufacturer’s instructions. The concentration of RNAs was measured using a
spectrophotometer (Eppendorf BioSpectrometer Basic, Hamburg, Germany), and the RNA
integrity was analyzed by 1.3% agarose gel electrophoresis. RNA with an OD260/280 value
ranging from 1.8 to 2.0 was chosen for cDNA synthesis. The template synthesis for full-
length cDNA cloning was completed according to the SMARTer RACE cDNA amplification
kit (Clontech, Palo Alto, CA, USA). For the quantitative real-time PCR (qPCR) template,
the RNAs from tissues were treated with DNase I, and then the cDNA was synthesized
using the ReverTra Ace-first-strand cDNA synthesis kit (Toyobo, Osaka, Japan), as per the
manufacturer’s instructions.

4.3. Full-Length cDNA Cloning of Ciferritin

Based on the conserved sequences of ferritins from other fish species, primers Ft-F1
and Ft-R1, Ft-F2 and Ft-R2 for partial ferritin cDNA cloning were obtained using Oligo 7.0
software (Table 1). Based on the cloned sequence, two gene-specific primers, the Ferritin F
and Ferritin R were designed for 5′ RACE and 3′ RACE PCR, respectively. The total volume
of the RACE PCR system was 50 µL, including 15.5 µL PCR grade H2O, 25 µL 2× Seq Amp
Buffer, 1 µL Seq Amp DNA Polymerase, 2.5 µL 3′ or 5′ cDNA template, 5 µL Universal
Primer A Mix, and 1 µL 10 pmol/µL primer Ferritin F or Ferritin R. The PCR program
was as follows: 95 ◦C for 5 min, 35 cycles at 95 ◦C for 30 s, 68 ◦C for 30 s and 72 ◦C for
1.5 min; and 72 ◦C for 7 min. The PCR products were purified, ligated into the pTOPO-TA
vector (Solarbio, Beijing, China), transformed into Escherichia coli DH5α cells, and sent to
the Sangon Biotech Company (Shanghai, China) for sequencing.

Table 1. The primers used in cDNA and promoter cloning, qPCR, and overexpression.

Primer Name Primer Sequence 5′-3′ Usage

Ft-F1 AGATTCGCCAGAACTACGAAC RACE
Ft-R1 GCTGCATGACAACATTAGCTT RACE
Ft-F2 GAAGAACGTCAACCAGGCTCT RACE
Ft-R2 ACATTCAAGAACGCATTGGCT RACE

Ferritin F CGTATTCCGACGTAGACTCTT qPCR
Ferritin R AAAGTTAACATTTAGAGGCTACA qPCR
Ferritin P1 ATGAATTTCTCGGCATGCTCGCGCTCCT Promoter cloning
Ferritin P2 AGTGTAGCCAGCATAAAGCTCCAGATTCACCA Promoter cloning
Ferritin YF TCTTCCCGGTTTTGCCAAGT qPCR
Ferritin YR TCATCGCGCTCAGGTTTCTT qPCR
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Table 1. Cont.

Primer Name Primer Sequence 5′-3′ Usage

β-actin YF GCTATGTGGCTCTTGACTTCG qPCR
β-actin YR GGGCACCTGAACCTCTCATT qPCR

18sYF ATTTCCGACACGGAGAGG qPCR
18sYR CATGGGTTTAGGATACGCTC qPCR

IFN1 YF AATGCTCTGCTTGCGAATG qPCR
IFN1 YR CCTGGAAATGACACCTTGG qPCR
Mx YF CGACCACAGAAGCATTGCAGA qPCR
Mx YR CCCTTCAGTGCCTTTATCCACCA qPCR
VP2F GAGCTTACCGGCGTCCTGAT qPCR
VP2R GGTCGGAGGCCATCGTGTAA qPCR
VP7F CCATGACACTCACGCACACG qPCR
VP7R GGCAAGCGAAGGTCAGGTTG qPCR

Ferritin MF aggaagagagAGAATGATAGATAGTTTTTTGTTGGA Methylation detection
Ferritin MR cagtaatacgactcactatagggagaaggctCATAAAACTCCAAATTCACCATCTT Methylation detection
Ferritin OF tcgagctcaagcttcgaattcATGGATTCTCAGATTCGCCAGA Overexpression
Ferritin OR cgtcatggtggcggcggatccGCTGTCTCCATCCAGGGTGTG Overexpression

4.4. Promoter Cloning of Ciferritin

Genomic DNA was extracted from grass carp muscle by a DNA Kit (Omega Bio-tek,
Norcross, GA, USA), following the manufacturer’s instructions. Four promoter libraries
were constructed using the Universal GenomeWalker 2.0 Kit (Clontech, Mountain View, CA,
USA). To obtain the promoter sequence of Ciferritin, two rounds of PCR were performed.
The total volume of the first-round PCR was 50 µL, including 5 µL 10× BD Advantage 2
PCR Buffer, 1 µL BD Advantage 2 Polymerase Mix (50×), 1 µL dNTP (10 mM each), 1 µL
10 pmol/L AP1 primer, 1 µL 10 pmol/L ferritin P1, 1 µL template from the constructed
EcoRV, PvuII, StuI or DraI genomic library, and an added 40 µL of ddH2O. The cycling
program was as follows: 7 cycles of 94 ◦C for 25 s, 72 ◦C for 3 min; 32 cycles at 94 ◦C for
25 s, 67 ◦C for 3 min; and 67 ◦C for 7 min. In the second PCR cycle, one microliter of the
reaction product from the first-round PCR was diluted 30 times and used as the template,
and the primers AP2 and ferritin P2 were used for genome walking PCR. The PCR program
was as follows: 5 cycles at 94 ◦C for 25 s and 72 ◦C for 3 min; and 20 cycles at 94 ◦C for
25 s, 67 ◦C for 3 min; and 67 ◦C for 7 min. The PCR products were detected by 1.5% gel
electrophoresis, transformed into DH5α cells, and sent for sequencing.

4.5. Bioinformatics Analysis

The full-length cDNA of Ciferritin was joined by DNAMAN software, and the open
reading frame and the deduced amino acid sequence of Ciferritin were predicted using
the ExPASy-Translate tool (https://web.expasy.org/translate/ (accessed on 16 January
2022)). The isoelectric point and molecular weight of deduced amino acid sequences
were predicted using the ExPASy-ProtParam tool (https://web.expasy.org/protparam/
(accessed on 12 February 2022)), and the domains of Ciferritin protein were analyzed by the
Simple Modular Architecture Research Tool (http://smart.emblheidelberg.de/ (accessed
on 18 February 2022)). Multiple sequence alignments were performed in DNAMAN
7.0 software, and a phylogenetic tree was constructed using the MEGA 7.0 software.
Transcription factor binding characteristics in the ferritin promoter region were predicted
by AnimalTFDB 3.0 [51].

4.6. Ciferritin Expressions in Grass Carp after Infection and of Different Resistance

The Ciferritin levels were detected in fish treated with PBS and GCRV, and in progenies
of different GCRV resistances from maternal immunized grass carp (with enhanced GCRV
resistance) and ordinary grass carp, quantitative real-time PCR (qPCR) was performed on
the CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA,
USA). The amplifications were in triplicate with a total volume of 10 µL containing 1 µL

https://web.expasy.org/translate/
https://web.expasy.org/protparam/
http://smart.emblheidelberg.de/
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cDNA template, 5 µL of TB Green Premix Ex Taq II (2×), 0.4 µL primer ferritin YF, 0.4 µL
primer ferritin YR and 3.2 µL ddH2O. The PCR program was as follows: 95 ◦C for 10 min,
followed by 35 cycles of 95 ◦C for 10 s, 60 ◦C for 10 s, and 72 ◦C for 10 s. The β-actin and
EF1α were chosen as the reference genes, and the relative expression levels of the target
genes were calculated by the 2−∆∆Ct method. The primers for the reference gene β-actin
were β-actin YF and β-actin YR, and the primers for 18S were 18sYF and 18sYR (Table 1).

4.7. Promoter Methylation Level Detection

The Ciferritin promoter methylation level was detected using the MALDI-TOF mass
array technique, and the primers of Ferritin MF and Ferritin MR were designed for promoter
region amplification by Agena EpiDesigner (http://www.epidesigner.com/ (accessed on
10 April 2021)). The amplification reaction containing 1 µL 10× PCR Buffer, 1 µL 200 uM
dNTPs, 0.2 µL 5U/µL HotStar Taq (Qiagen, Valencia, CA, USA), 0.2 µL 10 pmol/µL ferritin
MF, 0.2 µL 10 pmol/µL ferritin MR (Table 1), and 1 µL 10 ng/uL bisulfite treatment DNA
template. The reaction programs were: 94 ◦C for 4 min; 45 cycles of 94 ◦C for 20 s, 56 ◦C for
20 s, and 72 ◦C for 1 min, followed by 72 ◦C for 3 min. The unincorporated dNTPs were
removed by adding 1.7 µL RNase-free ddH2O and 0.3 U of Shrimp Alkaline Phosphatase
to 5 µL PCR products. The reaction was performed at 37 ◦C for 2 min, and 85 ◦C for 5 min.
The following transcriptase digestion reaction, dilution of the mixture, and mass spectra
data analysis were similar to the report by Li et al. [52].

4.8. Anti-GCRV Function of Ciferritin Overexpression in CIK Cells

For the overexpression experiment, the open reading frame of Ciferritin was PCR-
amplified with primer pairs Ferritin OF and Ferritin OR (Table 1). The total volume of PCR
reactions was 50 µL, including 1 µL TransStart FastPfu Fly DNA polymerase (TransGen,
Beijing, China), 10 µL 5× TransStart FastPfu Fly Buffer, 1 µL primer Ferritin-OF, 1 µL
primer Ferritin-OR, 4 µL dNTPs, 2 µL cDNA template (spleen-originated template for
qPCR) and 31 µL ddH2O. The PCR programs were one cycle at 95 ◦C for 2 min, 40 cycles at
95 ◦C for 20 s, 60 ◦C for 20 s and 72 ◦C for 30 s, and 72 ◦C for 5 min. The pEGFP-N1-Flag
vector (Clontech, Palo Alto, CA, USA) and ORF PCR product were digested with BamHI
and EcoRI, separately. The recombinant vector pEGFP-N1-Flag-Ferritin was constructed
by cloning the purified ferritin ORF products into the pEGFP-N1-Flag vector, and the
recombinant vector pEGFP-N1-Flag-Ferritin was sequence-verified. The pEGFP-N1-Flag-
Ferritin was introduced into CIK cells. The experimental procedures were as follows: CIK
cells were seeded into 25 cm2 cell culture flasks for 24 h with a minimum essential medium
containing 10% FBS. A mixture of 8 µg plasmid, 16 µL P3000 and 15 µL lipofectamine 3000
(Invitrogen, Carlsbad, CA, USA) with 500 µL Opti-MEM medium were transferred into
cells. Then, the transfection reagent was replaced with a fresh minimum essential medium
at 6 h after transfection. At 48 h after overexpression, the cells were infected by GCRV
JX-0901, and cells were sampled at 24 h post GCRV infection. The mRNA level of Ciferritin,
CiIFN1, CiMx, VP2, and VP7 in pEGFP-N1-Flag-Ferritin overexpressed CIK cells were all
detected by qPCR, and the primers are shown in Table 1. The relative GCRV Vp7 protein
levels in cells at 24 h after GCRV infection were detected by Western blot, with a procedure
similar to Li et al. [53]. For Vp7 protein detection, the Vp7 polyclonal antibody (diluted
1:1000 in PBS) and the secondary antibody HRP-conjugated goat anti-mouse IgG (Abclonal,
Wuhan, Hubei, China, 1:2000 in 1 × TBST) were applied in the Western blot experiment.
For the β-actin protein detection, the β-actin polyclonal antibody and goat anti-rabbit IgG
were adopted.

4.9. Fluorescence Microscopy

Fluorescence microscopy was applied to detect the expression status of the pEGFP-N1-
Flag-Ferritin vector. CIK cells were cultivated into 6-well culture plates (35 mm diameter
for each well) at a density of 2 × 105 cell/mL for 24 h and incubated until the cells reached
approximately 80% confluence. The recombinant vector pEGFP-N1-Flag-Ferritin was

http://www.epidesigner.com/
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transferred into cells, and at 48h after overexpression, the cells were observed under a
fluorescence microscope (Fluorescence Microcopy Olympus IX53, Tokyo, Japan).

4.10. Statistical Analysis

To compare the differences in mRNA and protein levels of tissues and cells, a one-
way analysis of variance followed by Duncan’s multiple range tests in SPSS Statistics
22.0 software were used. Correlations between Ciferritin mRNA levels and promoter
methylation levels were analyzed using Pearson correlation analysis. A p-value lower or
equal to 0.05 was considered statistically significant, and those lower or equal to 0.01 were
termed extremely significant.
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