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Abstract: The objective of the present review was to evaluate whether exercise can counteract
a potential high-fat diet-induced memory impairment effect. The evaluated databases included:
Google Scholar, Sports Discus, Embase/PubMed, Web of Science, and PsychInfo. Studies were
included if: (1) an experimental/intervention study was conducted, (2) the experiment/intervention
included both a high-fat diet and exercise group, and evaluated whether exercise could counteract
the negative effects of a high-fat diet on memory, and (3) evaluated memory function (any type) as
the outcome measure. In total, 17 articles met the inclusionary criteria. All 17 studies (conducted in
rodents) demonstrated that the high-fat diet protocol impaired memory function and all 17 studies
demonstrated a counteracting effect with chronic exercise engagement. Mechanisms of these robust
effects are discussed herein.
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1. Introduction

Unlike traditional advice that promotes a low-fat diet [1], recently, high-fat diets (HFDs) are
gaining popularity among athletes [2] and the general population [3]. However, HFDs have been
shown to impair episodic memory function [4,5]. In humans, episodic memory function refers to
the retrospective recall of information from a spatial-temporal context [6]. That is, episodic memory,
a contextual-based memory, involves what, where, and when aspects of a memory [7]. In rodents,
however, episodic memory is primarily evaluated from a spatial memory task, such as the Morris
water maze task or a T-maze task.

As discussed elsewhere [8], a cellular correlate of episodic memory is long-term potentiation
(LTP), a form of activity-dependent plasticity that results in enhancement of synaptic transmission [9].
The complementary process of LTP is long-term depression (LTD), in which the efficacy of synaptic
transmission is reduced [10]. It is thought that LTP and LTD play an important role in memory as
LTP- and LTD-like changes in synaptic strength occur as memories are formed at various sets of brain
synapses [11–13]. The adverse episodic memory effects from an HFD may, in part, occur through
alterations in processes that influence synaptic transmission and production of plasticity-related
proteins [14–16]. For example, research demonstrates that a chronic HFD impairs hippocampal
dendritic spine density [17], induces astrocyte alterations [18], reduces expression of the NR2B
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subunit of NMDA receptors [19], decreases CREB expression [20], and reduces hippocampal BDNF
production [21].

Of central interest to this review is whether exercise can counteract HFD-induced memory
impairment. Such an effect is plausible for several reasons. We speculate that this counteracting
effect may occur from exercise activating some of the neurophysiological pathways that are involved
in episodic memory function (e.g., BDNF). Further, we speculate that exercise may counteract
HFD-induced memory impairment by, not only activating these pathways, but by also inhibiting
the downregulation of these pathways induced by HFD. First, chronic exercise has been shown to
enhance episodic memory function [22] and LTP [23]. Chronic exercise may subserve episodic memory
function via inducing neurogenesis [23,24] and altering LTP-related receptor (e.g., NMDA) structure
and function [25,26].

Couched within the above, HFD may impair episodic memory and exercise has been shown to
enhance episodic memory function. Further, exercise has been shown to regulate processes (e.g., LTP)
that are impaired with HFD. Thus, the specific research question of this systematic review was to
evaluate the extant literature to determine whether exercise can counteract a potential HFD-induced
memory impairment effect.

2. Methods

2.1. Computerized Searches

The evaluated databases included: Google Scholar, Sports Discus, Embase/PubMed, Web of
Science, and PsychInfo [27]. Articles were retrieved from inception to 22 April 2019. The search terms,
including their combinations, were: exercise, physical activity, diet, high-fat, memory, cognition, and
cognitive function.

2.2. Study Selection

The computerized searches were performed separately by two authors and comparisons were
made to render the number of eligible studies. Consensus was reached from these separate reviews.
After conducting the searches, the article titles and abstracts were evaluated to identify applicable
articles. Articles meeting the inclusionary criteria were retrieved and evaluated at the full text level.

2.3. Inclusionary Criteria

Studies were included if: (1) an experimental/intervention study was conducted, (2) the
experiment/intervention included both an HFD and exercise group, and evaluated whether exercise
could counteract the negative effects of an HFD on memory, and (3) evaluated memory function (any
type) as the outcome measure.

2.4. Data Extraction of Included Studies

Detailed information from each of the included studies were extracted, including the following
information: author, subject characteristics, exercise protocol, diet protocol, temporal assessment of
the exercise and diet protocols, memory assessment, whether the diet protocol impaired memory,
whether exercise counteracted the diet-induced memory impairment, and evaluated mechanisms of
this attenuation effect.

3. Results

3.1. Retrieved Articles

The computerized searches identified 448 articles. Among the 448 articles, 430 were excluded and
18 full text articles were reviewed. Among these 18 articles, 1 was ineligible as it did not meet our
study criteria. Thus, in total, 17 articles met the inclusionary criteria and were evaluated herein.
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3.2. Article Synthesis

Details on the study characteristics are displayed in Table 1 (extraction table). As shown in Table 1,
all studies employed an exercise and diet paradigm in an animal model. The daily exercise protocol
ranged from 6 weeks to 23 weeks. Similarly, the diet protocol ranged from 6 weeks to 23 weeks, with
the majority of studies implementing an ad libitum diet consisting of 60% fat, 20% carbohydrate, and
20% protein. Across the 17 studies, there was variability on the temporal assessment of the exercise
and diet protocols, consisting of either having both protocols occur concurrently or exercise occurring
after the high-fat diet (treatment paradigm). Among the 17 studies, 10 implemented a concurrent
model, whereas 7 implemented a treatment paradigm. Regarding the memory outcome, the majority
of studies utilized a Morris water maze task, with others employing an avoidance task (e.g., passive or
step-down) or a maze task (e.g., y-maze task, radial maze task, evaluated plus maze task).

Regarding the effects of HFD on memory, all 17 studies demonstrated that the HFD protocol
impaired memory function. Notably, in one study, this impairment effect only occurred among a
subgroup of animals (adolescent mice) [28]. Similarly, all 17 studies demonstrated that chronic exercise
engagement counteracted HFD-induced memory impairment. Notably, however, one study showed
that this attenuation effect only occurred if the chronic exercise protocol occurred during the majority
of the HFD period [29].
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Table 1. Extraction table of the evaluated studies.

Study Subjects Exercise Protocol Diet Protocol

Temporal
Assessment of
Exercise and

Diet

Memory
Assessment

Did High-Fat
Diet Impair

Memory?

Did Exercise
Counteract

Diet-Induced
Memory

Impairment?

Mechanisms

Molteni et al.
(2004) [4]

Fisher 344 rats, 2
months old

Free access to
running wheel for 2

months.

2 months on high in
saturated and

monounsaturated fat
(primarily from lard
plus a small amount
of corn oil, approx.

39% energy)

Concurrent Morris water
maze Yes Yes

Exercise reversed the
decrease in BDNF and

its downstream effector,
synapsin I (involved in
BDNF release). Exercise

also increase CREB
transcription.

Maesako et al.
(2012) [5]

APP transgenic
mice

overexpressing the
familial AD-linked

mutation

Enriched
environment with
access to running

wheel; this occurred
from weeks 10–20
(i.e., 10 weeks into
the high-fat diet).

20 weeks of high-fat
diet, involving 60%
fat, 20% CHO, and

20% protein

Concurrent Morris water
maze Yes Yes

Enriched environment
attenuated diet-induced

Aβ deposition.

Maesako et al.
(2012) [30]

APP transgenic
mice

overexpressing the
familial AD-linked

mutation

Voluntary access to
running wheel.

20 weeks of high-fat
diet, involving 60%
fat, 20% CHO, and

20% protein

Concurrent Morris water
maze Yes Yes

Exercise attenuated
diet-induced Aβ

deposition and
strengthened the

activity of neprilysin,
the Aβ-degrading

enzyme.

Maesako et al.
(2013) [29]

APP transgenic
mice

overexpressing the
familial AD-linked

mutation

Voluntary access to
running wheel.

20 weeks of high-fat
diet, involving 60%
fat, 20% CHO, and

20% protein

Concurrent Morris water
maze Yes

Yes, but only if
the exercise

occurred
throughout the
majority of the
diet protocol

Woo et al. (2013)
[31]

4-week-old
Sprague–Dawley

rats

Treadmill exercise
for the first 8 weeks,

involving a
progressive exercise

program, ranging
from 40 to 60

min/day of exercise.

13-weeks of high-fat
diet, involving 45%

fat
Concurrent Morris water

maze Yes Yes Upregulation of BDNF
and MAPK.
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Table 1. Cont.

Study Subjects Exercise Protocol Diet Protocol

Temporal
Assessment of
Exercise and

Diet

Memory
Assessment

Did High-Fat
Diet Impair

Memory?

Did Exercise
Counteract

Diet-Induced
Memory

Impairment?

Mechanisms

Noble et al.
(2014) [32]

7-month-old Naïve
rats

Forced treadmill or
voluntary wheel

access for 7 weeks

16 weeks of high-fat
diet

Exercise
occurring after

high-fat diet
(treatment)

Two-way active
avoidance test Yes Yes Increased BDNF in

CA3.

Cheng et al.
(2016) [33]

Twelve-week-old
C57BL/6J mice

Treadmill running,
60 min/day, 5

times/week, 15
m/min, for 16

weeks.

16 weeks of high-fat
diet ad libitum,

involving 60% fat,
20% CHO, and 20%

protein

Concurrent Morris water
maze Yes Yes

p-CREB, BACE1, IDE,
and PSD95 were likely
mediators of this effect.

Kang et al.
(2016) [34]

Sprague–Dawley
rats aged 8 weeks

Treadmill running,
30 min/day, 5

days/week, for 8
weeks.

High fat diet (60% fat)
for 20 weeks

Exercise
occurring after

high-fat diet
(treatment)

Passive
avoidance task Yes Yes

Reduction in
pro-inflammatory
cytokines (TNF-α,
interleukin-1β).

Kim et al. (2016)
[35]

Male C57BL/6 mice,
4-weeks old

Treadmill exercise,
ranging from 30 to

50 min/day;
progressive over a

20-week period.

High-fat diet (60% fat)
for 20 weeks ad

libitum

Exercise
occurring after

high-fat diet
(treatment)

Y-maze test and
radial-8-arm

maze test
Yes Yes

Increased expression of
BDNF and TrkB and

enhanced cell
proliferation.

Klein et al.
(2016) [28]

Six-week-old female
C57Bl/6N mice

Free access to
running wheel.

12 weeks of high-fat
diet, involving 60%
fat, 20% CHO, and

20% protein

Concurrent Morris water
maze

Yes, but only in
adolescent Yes

Modulation of
hippocampal
neurogenesis.

Park et al. (2017)
[36]

Male 4-week-old
C57BL/6 mice

Treadmill exercise, 6
days/week, approx.
40 min/day, for 12

weeks.

20 weeks of high-fat
diet, involving 60%

fat ad libitum

Exercise
occurring after

high-fat diet
(treatment)

Step-down
avoidance task Yes Yes

Reduced insulin
resistance, improved

mitochondrial function,
and reduced apoptosis
in the hippocampus.

Cheng et al.
(2018) [37]

Male 3-week-old
SHR and

normotensive
Wistar–Kyoto rats

Swimming exercise
for 6 weeks.

6 weeks of
low-soybean oil diet Concurrently Morris water

maze Yes Yes
Up-regulation of BDNF

and NMDA-r
expression.



Brain Sci. 2019, 9, 145 6 of 11

Table 1. Cont.

Study Subjects Exercise Protocol Diet Protocol

Temporal
Assessment of
Exercise and

Diet

Memory
Assessment

Did High-Fat
Diet Impair

Memory?

Did Exercise
Counteract

Diet-Induced
Memory

Impairment?

Mechanisms

Jeong et al.
(2018) [38]

Sprague–Dawley
rats aged 20 weeks

Treadmill exercise
for 8 weeks, 30

min/day, 8 m/min, 5
days/week.

High-fat diet for 20
weeks

Exercise
occurring after

high-fat diet
(treatment)

Water maze and
passive

avoidance tasks
Yes Yes

Improved brain insulin
signaling, inhibition of

obesity-induced
NADPH-oxidase

activity.

Jeong et al.
(2018) [39]

Sprague–Dawley
rats aged 8 weeks

Treadmill exercise
for 8 weeks, 30

min/day, 5
days/week,
progressive

intensity.

High fat diet for 20
weeks, including 20%

CHO, 60% fat, and
20% protein

Exercise
occurring after

high-fat diet
(treatment)

Passive
avoidance task Yes Yes

Improved brain insulin
signaling

(PI3K/AKT/GSK-3β),
reduced tau

hyperphosphorylation.

Shi et al. (2018)
[40]

Male C57BL/6 mice
and SIRT3 mice
(2-months old)

Exercise started at
week 6 and

continued for the
remaining 6 weeks.
Engaged in aerobic

intermittent
training, 30 min/day,

5 days/week.
Intermittent

exercise involved
4-min bursts at

80–85% of VO2max,
with 2 min active
recovery periods.

High-fat diet of 45%
kcal fat, 20% kcal

protein, and 35% kcal
CHO for 12 weeks

Concurrent Morris water
maze Yes Yes

SIRT3 upregulation and
improvement in

antioxidative activity

Han et al. (2019)
[41]

Six-week-old
C57BL/6 mice

23 weeks of
treadmill running,

30 min/day, 5
days/week, at 8

m/min.

23 weeks of high-fat
diet ad libitum,

involving 60% fat
Concurrent Morris water

maze Yes Yes
Reduced number of
apoptotic cells and
increased BDNF.

Mehta et al.
(2019) [42]

Sprague–Dawley
male rats

Running wheel
access for 6 weeks,
25–30 min/day, 5

days/week.

15 days of high-fat
diet (310 gm/kg Lard)

Exercise
occurring after

high-fat diet
(treatment)

Passive
avoidance and
elevated plus

maze

Yes Yes

Reduction in
neuroinflammatory
markers (e.g., IL-1β,

TNF-α).
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4. Discussion

The present review examines whether exercise can counteract HFD-induced memory impairment.
Main findings from the present review are twofold: (1) chronic HFD robustly impairs memory function,
and (2) chronic exercise engagement, occurring either concurrently or after the diet protocol, robustly
counteracted HFD-induced memory impairment. This latter finding occurred among studies that
employed various exercise protocols, such as voluntary access to a running wheel or forced exercise on
a treadmill. Similarly, across these studies, the exercise protocol varied from 6 to 23 weeks. Further,
various spatial-related memory tasks were employed across the evaluated studies. Despite these
variations in the exercise protocols and memory tasks, exercise robustly counteracted HFD-induced
memory impairment.

A mechanism through which exercise may counteract HFD-induce memory impairment is likely
through alterations in processes related to synaptic transmission and production of plasticity-related
proteins. As thoroughly addressed elsewhere [43–48], LTP involves several phases, including early-LTP
(E-LTP) and late-LTP (L-LTP) [47]. In brief, E-LTP, a protein synthesis-independent process, involves the
activation of several kinases (e.g., PKA, CaMKII), which play a critical role in phosphorylating proteins
and receptors (e.g., AMPA, NDMA), eventually potentiating synaptic transmission [47]. Endocytosis
of such receptors, via, for example, phosphatase activity, may induce LTD [10]. In contrast to E-LTP,
L-LTP, a protein synthesis-dependent process, involves gene expression and local protein synthesis via,
for example, the TrkB receptor [47]. The following paragraphs link some of these processes to episodic
memory function, how HFD impairs these processes, and how exercise influences these processes.

As noted in Table 1 and as shown in Figure 1, potential mechanisms of this exercise-related
counteraction effect of HFD-induced memory impairment are multifold. Such effects may include
exercise-induced alterations in some of the above-mentioned pathways. For example, activation of the
BDNF receptor, TrkB, plays an important role in spatial memory [49]. Specifically, BDNF appears to
play a critical role in the consolidation of memories, as previous work demonstrates that continuous
intracerebroventricular infusion of antisense BDNF oligonucleotide causes spatial memory deficit [50].
An HFD has been shown to reduce hippocampal BDNF levels and downstream effectors [20], which
may lower the neurochemical substrate of the hippocampus that is needed for optimal neuronal
function. Exercise may counteract this HFD-induced BDNF reduction and memory impairment via its
role in augmenting BDNF levels, via β-hydroxybutyrate alteration [51]. Exercise-induced increases in
β-hydroxybutyrate are thought to inhibit histone deacetylases, ultimately facilitating hippocampal
BDNF expression [51].

In addition to BDNF, synapsin 1, a neuronal phosphoprotein, plays an important role in regulating
neurotransmitter release. A chronic HFD has been shown to lower synapsin 1 levels [20] and reduction
of synapsin 1 leads to spatial memory deficit [52,53]. Exercise has been shown to increase synapsin
1 levels [54], which is likely occurring from exercise-induced increases in BDNF (i.e., BDNF may
promote the phosphorylation of synapsin 1) [55]. BDNF also plays an important role in hippocampal
neurogenesis [56], which may play a causal role in spatial memory. Ablation of adult hippocampal
neurogenesis results in impairment of acquiring spatial reference memory [57]. Neurogenesis plays an
important role in spatial memory and may, for example, occur via pattern separation mechanisms [58].
A chronic HFD may impair neurogenesis through increases in corticosterone [59], with exercise
potentially counteracting this effect via BDNF-mediated hippocampal neurogenesis [60].

In conclusion, this review demonstrated that episodic memory may be impaired with a chronic
HFD, yet this effect may be counteracted by chronic engagement in exercise. Future work should
consider this model in the context of a preventive paradigm. All of the evaluated studies in this review
employed a concurrent or treatment-based model and, thus, it would be worthwhile to evaluate if
a period of exercise prior to an HFD protocol can counteract the detrimental effects of an HFD on
memory function. Furthermore, future work should also consider evaluating other memory systems
(e.g., working memory, episodic memory, procedural memory, prospective memory) to determine
whether the observed associations hold true across different memory systems.
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