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Abstract
The aim of this study was to understand the acclimatization mechanisms of photosynthetic

apparatus in Brachypodium pinnatum (L.) P. Beauv grass during its expansion. Twelve

populations differentiated by age: young (30–50 years old), intermediate age (ca. 100 y)

and old (>300 y) were studied. It was confirmed that the decrease of the number of geno-

types as a result of environmental stress and competition were reflected in changes in

chlorophyll fluorescence (ChlF) parameters. The old stands were dominated by a few geno-

types which seem to be the best acclimatized to the self-shading/competition by lowering

their photosynthetic performance during light-phase of photosynthesis. On the other hand,

the 'high-speed' photosynthetic rate observed in the young populations can be seen as

acclimatization to very adverse conditions. Our results clearly confirm that ChlF is a power-

ful method of inferring physiological mechanisms of the expansion of tor grass. The Princi-

pal Component and Redundancy Analyses, followed with k-means classification, allowed to

find the differentiation of groups of distinct ChlF parameters and enabled us to relate them

to changes in genotypic diversity of populations. We conclude that the plastic morphological

and physiological response to changeable habitat light conditions with its optimum in half-

shade refers to its forest-steppe origin.

Introduction
Native species, similar to invasive alien (IAS) ones, can also have negative ecological and eco-
nomic impact. They spread within their natural range attaining in some cases extreme abun-
dances and exert effect on native vegetation [1]. Brachypodium pinnatum (L.) P. Beauv.
belongs to the 'native invaders', which naturally occur in low abundance within calcareous
grasslands. Its expansion, however, heavily reduces the biodiversity of calcareous grasslands
[2,3] and often ends with formation of nearly monodominant stands [4]. The spread of false
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brome in Europe was triggered at the end of the 1960s as a result of the abandonment of tradi-
tional land use such as grazing and mowing [5,6]. Deposition of airborne nitrogen and phos-
phorus is considered to be a second possible reason for its expansion in Western Europe [7,8].
Numerous aspects of biology have been reported to date including the plastic response to light
conditions [8], biomass and nutrient allocation, nutrient cycling [9–11], mycorrhizal coloniza-
tion [12] karyotype evolution [13] and the population genetic diversity of this species along
colonization gradients or under different management [6,14,15]. Moreover, several attempts
have been made to control the Brachypodium expansion [16,17]. However, there is still a need
for a quick, easy-to-perform and low cost method of monitoring the viability of large numbers
of individuals, aimed at assessing its physiological acclimatization to changes in environmental
conditions during expansion It is crucial in elaborating the proper management schemes.

Chlorophyll fluorescence (ChlF) measurements, which have been frequently performed
[18–20], could be a method that meets these requirements and enables to assess different stress
effects on photosynthetic apparatus using this technique, particularly on Photosystem II (PSII)
status and linear electron transport rate. ChlF is a naturally occurring phenomenon, character-
istic to all photosynthetic organisms. The ca 1–8% of the sun’s energy that is not used to drive
photosynthesis is dissipated as heat radiation or re-emitted as light photons [21]. The analysis
based on high time-resolution measurements of the ChlF transient represents a method for
gaining detailed information about PSII photochemical activity, electron transport events and
the different regulatory processes. Fast ChlF kinetics data are derived from the time dependent
increase in fluorescence intensity achieved after application of bright light to a dark adapted
sample. The resulting curve is called the Kautsky curve or ChlF transient [19].

The fluorescence parameters obtained in this way, called OJIP-test, allow the quantification
of the stepwise flow of energy through PSII, using input data from the fluorescence transient
and are formulated with a simplified model of the energy fluxes incorporating the parameters
that define each type of flux [22,23]. The energy fluxes consist of an absorbed flux (ABS), trap-
ping flux (TR), electron transport flux (ET) and the flux defining the dissipation of non-
trapped energy as heat (DI)–a flux quantifying the reduction of Photosystem I (PSI) end accep-
tor (RE) was later introduced [19,24–26].

The aim of this research was to understand the mechanisms of acclimatization of photosyn-
thetic apparatus during expansion of tor grass populations. Particularly, the following ques-
tions were asked: (i) How the ChlF parameters, related to different aspects of PSII functioning,
change with habitat age and (ii) is there any relationship between genotypic/genetic diversity
and ChlF parameters. It was expected that ChlF parameters can be used in a quick assessment
of genotype acclimatization and can be helpful in management planning intended to prevent
the future expansion of this species.

Materials and Methods

Species
Brachypodium pinnatum (L.) P. Beauv (subsequently referred to as Brachypodium) is a rhizo-
matous, perennial grass with widespread distribution in temperate regions of Northern Hemi-
sphere. It forms clones, usually up to 1.5 (max 4) m in diameter with ca. 80% short rhizomes
(1–10 mm) and dense tillers in form of 'clumps of shoots' (3–5 cm diameter) connected with
longer rhizomes (100–200 mm) [15]. This enables it the long-term occupation of a given area
and quick lateral spread. Brachypodium is both a diploid (2n = 18) and allotetraploid species
(2n = 28) [27,28]. The stem height varies from 35 to 120 cm. It starts flowering at the end of
June and set seeds from late July to September. The mean seed production on the study area
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varied from 2 to 45 per inflorescence and from 600 to 5000 per 1 m2 and was lowest on the old
grasslands.

Study area
The study area lies in Cracow-Częstochowa Upland, southern Poland. It consists of the system
of the Upper Jurassic limestone valleys and hills on the plateau between them. The annual aver-
age temperature is 7.5°C in vegetation period and mean annual precipitation reaches 773 mm.
Brachypodium occurs on the S, SW and SE slopes, and sometimes forms nearly monodominant
stands [15,29]. 12 Brachypodium-dominated calcareous grasslands were selected for establish-
ment of the study plots (250 m2 50 x 50 m). The sites were classified according to grassland age
and genotypic diversity of Brachypodium stands. Based on cadastral maps (1791–1970) and
aerial photographs (1957–2009), the sites were classified as young– 30–50 years old: Racławice
[19°400 37.0600E, 50°120 02.1000N], Powroźnikowa 1 [19°40008.4800E, 50°11044.0600N], Powroź-
nikowa 2 [19°40004.5300E, 50° 12002.3900N], Willisowe Skały [19°42030.7600E, 50°11023.4900N],
intermediate age–ca. 100 years old: Dolina Kobylańska [19°45042.0600E, 50°9027.3300N], Skala
Żytnia [19°47054.9600E, 50°11014.7200N], WielkieSkały [19°48020.170E 50°11023.4900N], Bolecho-
wice [19°46058.0800E, 50°9011.2800N], and old>300 years: Grodzisko [19°49046.5500E, 50°
13036.3900N], Grodzisko-Onobrychis [19°49036.8600E, 50°13040.5400N], Dolina Będkowska [19°
44021.2800E, 50°8049.4400N] and Dolina Kluczwody [19°4907.0400E, 50°9049.9400N]. Moreover,
according to the results of the previous population genetic analyses based on AFLP markers, it
was possible to relate age to genotypic richness (G) and the percentage of polymorphic loci
(PPL), which decreased with the habitat age [6,15]. The other criteria for classification of Bra-
chypodium populations were the differences in genotypic diversity and morphological parame-
ters of its clones. According to the results of previous population genetic analyses based on
AFLP markers, it was possible to relate age to genotypic richness (G) and the percentage of
polymorphic loci (PPL), which both decreased with the habitat age [6,15]. Moreover, the aver-
age shoots and 'clumps of shoots' density/1m2[9],the number of leaves in clumps of shoots/
1m2, (given in S1–S3 Figs), roots and rhizome dry biomass increased with habitat age S4 and
S5 Figs). In contrast, the mean density of generative shoots/1 m2 (S6 Fig) and the average seed
production/1m2 [15] were lowest on the old grasslands. We found this as a sign of a competi-
tive exclusion among genotypes during the Brachypodium expansion [15]. The Authors con-
firmed that the field studies did not involved endangered or protected species. The sampling
sites were located on areas with no specific permissions required for locations and activities.

Climatic data
The climatic data: monthly precipitation and mean air temperatures for young, intermediate
and old populations were assessed on the basis of climatic service, http://klimat.icm.edu.pl/
serv_climate.php (S1 Table).

Soil and plant analyses
Five soil samples were collected from 0–30 horizons at each site for analysis of the physico-
chemical parameters. The soils samples were pooled, mixed, air-dried, and then grounded and
sieved through 2 mmmesh. The particle size fractions (sand, silt and clay) were determined by
sieving and sedimentation method (Prószyński method). Soil pH was measured electrometri-
cally in water suspension following extraction with 1 M KCl and H2O (1:2.5). Organic matter
content was estimated as loss on ignition (LOI) at 550°C of soil samples dried at 105°C for 12 h
and expressed as a percentage of dry weight. Total N content was assessed applying the Kjel-
dahl method using Automatic Kjeldahl Digestion Units and UDK 129 Kjeldahl DKL
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Distillation Unit (VELP Scientifica, Italy). The total content of Ca, Mg, Mn, Cu and Fe in the
soil and plant material was determined by flame atomic absorption spectrometry (Varian Spec-
tra AA 330) after hot digestion of 3 mg of soil in mixture of 65% HNO3 and 35%H2O2 (8:2)
with ETHOS ONE microwave system (Milestone, S.r.L., Italy) and exchangeable forms of met-
als in soil were estimated in 0.5 M HCl soil extracts [30].

Leaf morpho-anatomical traits
Fully developed leaf blades from each of the populations were collected randomly in order to
compare the morpho-anatomical traits among individuals of Brachypodium from the old and
young populations. The leaf width (LW), height (LH), leaf area (LA), specific leaf area (SLA)
were measured according to standard methods [31]. Anatomical measurements of leaves were
done on slides, prepared following the standard method for fluorescence microscopy. Cross-
sections of leaves were analyzed with Nikon Eclipse with a DS-Fi1-U2 camera (Ni-U, Nikon
Co., Japan) to acquire microscopic images at 10× 20× magnification. The thickness of the leaf
blades, width, height and area of the central vascular bundle of leaf, number of the scleren-
chyma strands on the adaxial and abaxial sides of the tiller leaf were compared among the
leaves from old and young populations.

Measurement of Chl a fluorescence
The first fully developed leaves were collected at each location on July 2014, the optimum
period for vegetative development of the Brachypodium [8]. The sampling was performed
between 6–11 a.m. on cloudy days. 100 fully developed leaves per site were collected from ran-
domly chosen plants. The leaves were put into the paper envelopes, sealed, placed in cooler
bags and transported immediately to the laboratory. ChlF measurements were performed on
the middle part of abaxial leaf blades away from the main leaf vein after additional dark adapta-
tion (30 min) in a dark room using leaf clips. Fluorescence measurements were performed with
the PocketPEA fluorimeter (Hansatech Instruments, King's Lynn, Norfolk, UK). For induction
of fluorescence red actinic light was used (wavelength at peak 650 nm; spectral line half-width
22 nm) with the intensity of 3500 μmol m –2 s –1, and 1 second of transient fluorescence was
recorded [26,32–34]. The fluorescence signal was collected with a maximum frequency of 105

points s –1 (each 10 μs) within 0–0.3 ms, after which the frequency of recording gradually
decreased, collecting a total of 118 points within 1 s. ChlF transient data were used to calculate
basic parameters and the parameters needed for the OJIP-test (Table 1). The FO level was mea-
sured as the fluorescence at 50 μs. The collected data were used for the calculation of basic
parameters, while the fluorescence intensities determined at O-50 μs, J-2ms, I-30 ms and maxi-
mum fluorescence, P ~ 300 ms (FM)were used for the calculation of the OJIP test parameters
(Table 1)[19,35,36]. To visualize the K and L bands, the collected data points were double nor-
malized as relative variable fluorescence between points O-I, O-J and O-K [37]. Then, the
kinetic differences between the old grasslands (treated as control) vs. interm and young were
calculated (Table 1). This procedure helped to reveal bands that are normally hidden between
the O and P steps on relative variable fluorescence (Table 1) [38].

Determination of Chl a and b content
The leaf greenness index as the average of five readings for each of 30 leaves per site was
obtained using a portable chlorophyll meter (SPAD-502 Konica-Minolta, Japan). The SPAD
recordings were obtained from a leaf disc of area 169.72 mm2. After recording, the plant tissue
was stored in a glass tube containing 5 mL DMSO (96% Dimethyl sulfoxide) [39]. The test
tubes were incubated at 70°C for 48 hours. After cooling the extract in the dark, 3 mL aliquot
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Table 1. Summary of measured and calculated Chl a fluorescence parameters.

Fluorescence parameter Description

Measured parameters and basic JIP-test parameters derived from the OJIP transient2, 3, 4 7, 11, 12

FO~ F50 μs Minimum fluorescence, when all PSII RCs are open.
Fluorescence intensity at 50 μs

FK Fluorescence intensity at K-step (300 μs)

FJ Fluorescence intensity at the J-step (2 ms)

FM Maximum recorded fluorescence at P-step (~300 ms)

FV = FM−FO Maximum variable fluorescence

SM = AM/(FM−FO) Standardized area above the fluorescence curve between FO and
FM is proportional to the pool size of the electron acceptors QA on
the reducing side of Photosystem II

VK = (F300μs−FO)/(FM−FO) Relative variable fluorescence at K-step (300 μs, K-band)

VI = (F30ms−FO)/(FM−FO) Relative variable fluorescence at I-step (30ms)

M0 = 4 (F300μs−FO)/(FM−FO) = ΔV/Δt0
= TR0/RC–ET0/RC

Approximated initial slope of the fluorescent transient. This
parameter is related to rate of closure of reaction centers

Specific energy fluxes expressed per active PSII reaction center (RC) 2, 3, 5, 8, 11, 12

ABS/RC = M0×(1/VJ) ×[1 –(FO/FM)] Apparent antenna size of active PSII RC

RC/CS0 = Fo x φPo x VJ/M0 Density of RCs (QA reducing PS II reaction centres)

TR0/RC = M0×(1/VJ) Trapping flux leading to QA reduction per RC

ET0/RC = M0*(1/VJ)*ψ0 Electron transport flux per reaction center (RC) at t = 0

DI0/RC = (ABS/RC)–(TR0/RC) Dissipated energy flux per reaction center (RC) at t = 0

RE0/RC = M0(1/VJ)(1 –VJ Quantum yield of electron transport from QA
−to the PSI end

electron acceptors

N = (SM/SS) = Sm/M0×(1/VJ),
whereSS = VJ/M0

the number indicating how many times QA is reduced while
fluorescence reaches its maximal value (number of QA redox
turnovers until FM is reached); SS—normalized curve above O-J
curve.

Quantum yields and
probabilities2, 3, 5, 7, 8, 11, 12

φPo � TR0/ABS = [1 –FO/FM)] = FV/
FM

Maximum quantum yield of primary PSII photochemistry

φEo = (1 –FJ/FM)(1 –VJ) Quantum yield for electron transport from QA
−to plastoquinone

φDo = FO/FM Quantum yield (at t = 0) of energy dissipation

ψo (= ψEo) �ET0/TR0 = 1 –VJ Probability (at time 0) that a trapped exciton moves an electron
into the electron transport chain beyond QA

–

φRo = (1 –FI/FM)(1 –VJ) Quantum yield for reduction of end electron acceptors at the PSI
acceptor side (RE)

γRC Probability, that PSII chlorophyll molecule function as RC

Performance indexes and driving forces2, 3, 6, 11, 12

PIABS = γRC/(1 – γRC) ×φPo/(1 – φPo)
×ψo/(1 –ψo)

Performance index of PSII based to absorption

PItotal = PIABS× δRo/(1 –δRo),
whereδRo = (1 –VJ)/(1 –VI)

Performance index he performance of electron flux to the final
PSI electron acceptors

Connectivity among PSII
units4, 8, 10,11

W = (F100μs−F50μs)/(F2ms−F50μs) Relative variable fluorescence in 100 s

WE = 1 –[(F2ms−F300μs)
/(F2ms−F50μs)]

1/5
Model-derived value of relative variable fluorescence in 100 ms
calculated for unconnected PSII units

C = (WE−W)/[VJ× W×(1 –WE)] Curvature constant of initial phase of the O-J curve

PG = FO × C/(FM−FO) Probability of connectivity among PSII units (grouping probability)

p = [P2G× (FM/ F50μs–1)]/[1 +P2G×
(FM/ F50μs–1)]

Connectivity parameter

(Continued)
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was analyzed spectrophotometrically at 470, 647 and 663 nm wavelength with the DR 5000
spectrophotometer (Hach Lange). The chlorophyll a (Chl a) and b (Chl b) content was deter-
mined according to the following formulas [40]:

Chla ¼ ð12:25� A663 � 2:79� A647Þ � D ð1Þ

Chl b ¼ ð21:50� A647 � 5:10� A663Þ � D; ð2Þ

where A is the absorbance of wavelength, after the correction for scattering at 750 nm and D is
the optical thickness of the cuvette [41]. Then, the chlorophyll content per unit leaf area (mg
per m2) was calculated.

Statistical analyses
The values shown in the tables represent the mean of (i) all fluorescence parameters, (ii) the
values obtained in OJIP test, (iii) the content of selected mineral compounds in the soil and in
the plants and (iv) leaf traits, were calculated for all habitat age. The differences in all these var-
iables among the habitats of different age were tested with one-way ANOVA. Prior to the anal-
yses, the assumption of ANOVA: (i) homogeneity and (ii) normality, symmetry of distribution
and outliers were visually assessed and tested with (i) Levenne and (ii) QQ plots, boxplots and
Shapiro-Wilk W tests [42]. The Welch ANOVA was used in the case of violation of homogene-
ity assumption. If the F-test was significant, a pairwise comparison of means was calculated
using Tukey's test [42]. To visualize the divergence in overall changes of Chl a fluorescence
traits among the grasslands of different age, a Principal Component Analysis (PCA) was

Table 1. (Continued)

Fluorescence parameter Description

Differences in relative variable fluorescence between young, interm. age and old populations11,12

WOI = (Ft−FO)/(F30ms−FO) Double normalized fluorescence readings at points O-I

WOJ = (Ft−FO)/(F2ms−FO) Double normalized fluorescence readings at points O-J

WOK = (Ft−FO)/(F300μs−FO) Double normalized fluorescence readings at points O-K

ΔWOI = WOIyoung or interm−WOIold

(control)

Differences in relative variable fluorescence at points O-I between
young, intermediate age and old (control) populations

ΔWOJ = WOJyoung or interm−WOJold

(control)

Differences in relative variable fluorescence at points O-J
between young, intermediate age and old (control) populations

ΔWOK = WOKyoung or interm−WOKold

(control)

Differences in relative variable fluorescence at points O-K
between young, intermediate age and old (control) populations

Based on
1Malkin and Kok 1966
2Strasser et al. 1995
3Strasser et al. 2000
4Strasser and Stirbet 2001
5Strasser et al. 2004
6Tsimilli-Michael and Strasser 2008
7Strasser et al. 2010
8Stirbet and Govindjee 2011
9Brestic et al. 2012
10Stirbet 2013
11Zivcak et al. 2014
12Kalaji et al. 2014a

doi:10.1371/journal.pone.0156201.t001
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performed. To relate the fluorescence parameters to genetic diversity and leaf Chl content,
redundancy analysis (RDA) was performed. Genetic diversity: percentage of polymorphic loci
(PPL), number of genotypes (G) and distribution of frequency of genotypes (Pareto, beta), was
assessed using AFLP markers (details in Bąba et al. [6,15]. The Pareto index was high when
many genotypes of comparable size occurred in population, and the lowest, when one of the
few genotypes dominated the population. It could be used as a proxy value of competition
among genotypes [43]. The significance of these variables was tested with the Monte Carlo per-
mutation test (N = 999 permutations). In order to reveal the pattern of changes of ChlF param-
eters during expansion of Brachypodium, the classification of Chl a fluorescence parameters
was performed with k-means clustering. The optimal number of groups was estimated based
on the Calinski-Harabasz criterion [44]. All the statistical calculations were performed with R
3.2.0 packages MASS, stats, agricolae and vegan [45].

Results

Soil conditions
In field experiments, as opposed to laboratory ones, the crucial thing is the careful selection of
study locations to make them as comparable as possible in terms of all factors, beside the ones
of interest (i.e. chlorophyll fluorescence). The sites under study did not differ significantly in
soil physico-chemical parameters: skeleton, soil particle fractions percentage content, soil reac-
tion and most of micro- and macroelements content. It was only a slight (but not significant)
increase in total or exchangeable forms of K, P, Fe, Cu and decrease in total Mg with grassland
age (Table 2). Additionally, the mean content of selected macro—and microelements in the
Brachypodium tissue did not show any pattern (Table 2).

Variation of morpho-anatomical and chemical characteristics of leaves
of Brachypodium
The significant differences were found in morphometric traits of leaf blades during the expan-
sion of Brachypodium. The plants from old populations had higher values of leaf dry mass
(LDM), leaf area (LA), leaf length (LL) and leaf width (LW) than those which came from
interm and young populations of Brachypodium (Table 3). Individuals from old populations
had significantly higher number of leaves per ramet (= rooted shoot sensu Falińska et al [46]),
than in the other populations (11.9±2.5 vs. 10.2±4.1 and 10.1±4.1, Welch ANOVA, F = 22.9,
p<0.001). However, there were no significant differences in specific leaf area (SLA) among the
studied populations.

The mean thickness of the tiller leaf blades of plants from young populations and width of
central rib were lower than those from old ones (224 vs. 269 μm and 170 vs. 238μm respec-
tively; Fig 1). Moreover, the differences were found in width (84 vs. 114μm) height (123 vs.
129μm) and area (8574 vs 10050μm2) of the central vascular bundle of leaf, the number and
shape of bulliform cells (6–8 vs. 5–6), the number of the sclerenchyma strands on adaxial (5–7
vs. 4–5) and abaxial (4–5 vs. 6–7) sides of the tiller leaf when compared among the leaves of
individuals from old and young populations (Fig 1). The chloroplasts in the inner part of meso-
phyll aligned in vertical columns along the plant cell walls, which is a well-known mechanism
of avoidance of photodamage in plants [47]; Fig 1). However, the distribution of chloroplasts
in leaves from young populations was more uniform across mesophyll, while those from old
ones had bigger chloroplasts located close to the upper and lower epidermis (Fig 1).

Leaves of individuals from old and intermediate age populations had significantly higher
Chl a, and Chl b content, than young ones. However, it was only slightly higher Chl a/b ratio in
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young populations (3.04 vs. 2.84 in interm and 2.88 in old populations respectively; Table 3).
The increase in total leaf Chl content with population age was also reflected in pattern of leaf
greenness index measured by SPAD (Table 3).

Chl a fluorescence changes along habitat age gradient
The apparent differences in Brachypodium leaf traits were reflected in the state of Photosystem
II, measured by ChlF. The mean prompt ChlF (OJIP) curves both for particular populations
and for populations of different age differed both in the shape and amplitude, especially among
the young vs. interm and old populations (Fig 2). This suggests possible differences in energy
fluxes at the donor as well as at the acceptor side of PSII [23,41]. Moreover, it was also con-
firmed by mean values of measured and calculated fluorescence parameters (Table 3).

Table 2. The physico-chemical parameters of soil and plant tissue concentration of selectedmicro- andmacroelements.

old grassland intermediate grassland young grassland

(n = 4) (n = 4) (n = 4)

Mean ± SD Mean ± SD Mean ± SD

Soil physico-chemical property:

Skeleton (g/100 g) 32.72 ± 13.15 28.24 ± 13.07 30.51 ± 26.79

Sand (%) 18.50 ± 5.97 17.67 ± 4.16 15.0 ± 3.96

Silt (%) 60.00 ± 3.00 63.67 ± 5.03 64.5 ± 3.45

Clay (%) 17.00 ± 6.21 18.67 ± 3.05 20.00 ± 2.45

pH (KCl) 6.81 ± 0.20 6.81 ± 0.39 6.78 ± 1.21

N (%) 0.43 ± 0.18 0.60 ± 0.33 0.35 ± 0.19

SOM (%) 14.01 ± 4.87 16.09 ± 7.14 12.39 ± 5.75

Exchangeable Ca (mg kg-1) 1718.05 ± 342.5 2754.57 ± 1123.3 3425.23 ± 765.4

Exchangeable K (mg kg-1) 381.7 ± 19.79 341.2 ± 22.77 273.2 ± 13.23

Exchangeable P2O5 (mg kg-1) 596.50 ± 296.93 316.70 ± 197.23 107.20 ± 55.18

Exchangeable Mg (mg kg-1) 644.00 ± 30.58 574.00 ± 40.01 667.50 ± 36.65

Exchangeable Mn (mg kg-1) 45.34 ± 23.3 39.45 ± 11.98 67.23 ± 23.7

Exchangeable Cu (mg kg-1) 2.6 ± 0.4 3.7 ± 0.5 3.9 ± 0.7

Exchangeable Fe (mg kg-1) 645.76 ± 342.64 785.34 ± 453.23 342.45 ± 231.34

Exchangeable Zn (mg kg-1) 34.07 ± 24.9 45.02 ± 35.2 38.34 ± 17.3

Total Ca (mg kg-1) 5738.07 ± 3577.41 10628.91 ± 8597.48 191333.45 ± 2698.13

Total K (mg kg-1) 951.54 ± 362.7 1171.12 ± 734.8 795.54 ± 496.5

Total Mg (mg kg-1) 5342.45 ± 2342.4 6456.34 ± 2453.5 6895.57 ± 4534.2

Total Mn (mg kg-1) 440.73 ± 118.29 1142.91 ± 706.30 598.41 ± 331.08

Total Cu (mg kg-1) 15.57 ± 4.29 21.10 ± 18.62 21.74 ± 7.65

Total Fe (mg kg-1) 13622.68 ± 925.04 17253.25 ± 4640.51 11702.65 ± 3995.32

Total Zn (mg kg-1) 304.77 ± 108.09 353.96 ± 203.51 332.50 ± 190.91

(n = 30) (n = 30) (n = 30)

Plant

Ca (mg kg-1) 23.78 ± 8.7 20.60 ± 12.7 19.86 ± 17.6

K (mg kg-1) 32.00 ± 5.7 39.30 ± 28.4 42.40 ± 15.7

Mg (mg kg-1) 2.21 ± 0.95 1.73 ± 1.02 1.60 ± 1.24

Mn (mg kg-1) 1.38 ± 0.53 1.34 ± 0.78 3.05 ± 1.54

Cu (mg kg-1) 0.20 ± 0.04 0.12 ± 0.09 0.11 ± 0.8

Fe (mg kg-1) 3.31 ± 0.87 8.55 ± 3.56 6.70 ± 3.98

Zn (mg kg-1) 0.90 ± 0.34 0.57 ± 0.24 1.19 ± 0.68

doi:10.1371/journal.pone.0156201.t002
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Significant differences in formal characteristics of ChlF rise were found: FO, was significantly
lower in interm populations, FK and FJand its values increased from young to old populations.

The fluorescence rise at the OJ phase was light dependent and provided the information
about antenna size and connectivity of PSII reaction centers [48]. The significant peak on the
double-normalized fluorescence curve was observed at J (VJ) in young populations(Table 3). It
was more pronounced when the course of the Fl rise was expressed as a difference between the

Fig 1. Brachypodium pinnatum leaf anatomy from fluorescence microscopy. Transverse cross section of leaf blade of individuals from old
(A, C) and young (B, D) populations. Notice the differences in number and size of bulliform cells occurred on the adaxial side of leaf blade.
Transverse section in the midrib at median level (A, B). The differences in (i) thickness and shape of the leaf blades in zone of the central rib, width
of the central rib of tiller leaf, (ii) surface, height and width of the central vascular bundle and(iii) number of the sclerenchyma strands on abaxial
side of leaf and (iv) distribution of are visible. Detailed leaf measurements were presented in the Results. A, B—20× magnification, C, D—10×
magnification. Bars on each of the pictures indicate 100 μm.

doi:10.1371/journal.pone.0156201.g001
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analyzed curves. As a referent curve, the normalized fluorescence transient for plants from old
populations was accepted as it was assumed that it as an end-point on the expansion gradient
(Fig 3).

This indicated a slight limitation of electron transport from QA to QB as indicated by the
values 1-VJ, a probability of trapped PSII electron transfer from reduced QA to QB [41]. The
double normalizations of fluorescence curves enabled us also to reveal the less pronounced
positive L (VL) and K (VK) bands of fluorescence rise in young and interm populations as com-
pared to old ones (Table 3, Fig 4). If the curves were normalized at O and I points (Fig 4) the
main two bands appeared in “young–old” curve reflecting the well pronounced J band and well
expressed K peak. For the “interm–old” differential curve the K peak at 0.3 ms became domi-
nant. Separately, the effect of the population age on L—and K-bands could be better expressed
in the differential curves at double normalization at time intervals “0.02–0.3 ms” and “0.02–2.0
ms”, respectively (see Fig 4).

Increasing positive peaks in these time regions in plants from interm and from young popu-
lations as compare to old population reflected more ungrouped PSII units in photosynthetic
membranes and less activity of PSII oxygen evolving complex (OEC). The J–P rise of the prompt
ChlF curve was attributed to the thermal phase of the fluorescence transient. It reflected a reduc-
tion in the electron transport chain [49,50] and, represented the electron transport from QA

beyond PSI. The VI values increased significantly with age of populations (Table 3).
The average values of maximum quantum efficiency of PSII φPo for all the populations

under study was lower than typical for healthy plants in all populations (ca 0.83)[51] and ran-
ged from 0.73 to 0.77 and were slightly, but significantly reduced in the young populations
(Table 3; Fig 2; Fig 3). Moreover, the maximum fluorescence value FM, and the variable part of
the ChlF, Fv were highest in old populations (Table 3; Fig 2; Fig 3). The parameters, reflecting
the size of electron acceptor pools available on the reducing side of Photosystem II (SM)and at
PSI acceptors (N) were lowest in the old populations. Moreover, the significant decrease in the
standardized area (SM) was observed with age of population (Table 3; Fig 2; Fig 3).

The value of RC/CS0 (reflecting the relative density of active PSII reaction centers) was sig-
nificantly lower (of about 40%) in plants from young as compare to old populations. In con-
trast of this, all parameters presenting the energy fluxes in one active reaction center (ABS/RC,
TR0/RC, ET0/RC, RE0/RC and DI/RC) were visibly increased in the young populations. This
increase was especially expressed for parameters correlation with the electron transfer site
within PSI–from PQH2 to PSI end acceptors: RE0/RC, φRo and δRo (Fig 3; Table 3). The most
sensitive to the population age parameter was the total Performance Index (PItotal), which com-
bines the efficiency of energy conversion both in PSII and PSI, significantly decreased with age
of populations.

The Principal Component Analysis (PCA, Fig 5; Table 4, S2 Table) was used in order to
reduce the multivariate fluorescence data into the few principal components and to find the
pattern of changes in fluorescence parameters during the expansion of Brachypodium. The
classification of the ChlF parameters with the k-means method, based on the Calinski-Hara-
basz criterion, revealed n = 3 optimal number of groups, which were separated by the first and
second PCA axes (Fig 5). The three first PCA axes explained 91.35% of variation in the dataset.
The first axis explained 54.45% variation and clearly separated three of four young populations
from the interm and old population with higher value of relative fluorescence at point I (VI).
The PCA confirmed that the young populations were characterized by higher values of ChlF
related to the plastoquinone (PQ) size pool (SM), higher electron transport rate and overall
PSII performance (TR0/RC, ET0/RC,PIABS, PItotal), a higher number of QA turnover (N) and
higher probability with which an electron from the intersystem carriers moves to reduce end
electron acceptors at the PSI acceptor side (RE0/RC).
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Fig 2. The chlorophyll fluorescence (ChlF) transients from dark-adapted leaves of expansive grass
Brachypodium pinnatum from young (30–50 years), intermediate age (ca. 100 years) and old (>300 years)
calcareous grasslands. The results were plotted on logarithmic scale from FO(50 μs) to 1 s. A. The fluorescence
curves for all 12 populations under study divided into age classes. The time points important for the calculation of
JIP test were marked: O–fluorescence intensity recorded at FO (50 μs), L–at 150 μs, K–at 300 μs J–2 ms, I–at 30
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They also characterized with increase values of parameter related to the probability of
grouping of PSII reaction centers (PG, Table 3; Fig 5). The second axis, which explained 22.73%
variation in the data, separated the group of parameters related to the ChlF rise (VK) and quan-
tum yield (at t = 0) of energy dissipation (φDo), from the group of parameters related to fluores-
cence intensity FM, and maximum quantum efficiency of PSII (φPo). The third PCA axis,
which explained 14.16% of variation, separated the old populations with higher FO, FM and
RC/CS0values, from interm age populations (Fig 5).

Redundancy Analysis (RDA, Figs 6–7, and Tables 4 and 5) is a two-table method in which
the gradient found in the fluorescence data, observed in PCA, could be directly related to the
external variables. The first three RDA axes explained 66.5% variance in the fluorescence data
(Table 4). The main gradient of variability along the first RDA axis, which explained 28.9% var-
iation, could be related, as in PCA, to differences among young and other populations (Fig 6).
The ChlF parameters recorded for young populations: lower activity of PSII oxygen evolving
complex (OEC), lower values of maximum quantum efficiency of PSII (φPo) and significantly
reduced value RC/CS0, reflecting the relative density of active reaction centers, higher size of
electron acceptor pools available on the reducing side of PSII (SM), between the both

ms, P–maximum fluorescence intensity (FM) at ca. 1 s. B. The curves of average ChlF values for each age
classes.

doi:10.1371/journal.pone.0156201.g002

Fig 3. Variation in parameters reflecting morphological, chemical and photosynthetic conversions in
PSII in leaves of Brachypodium plants from population with different age. The values of each parameter
are normalized to values corresponding parameter from old-age population.

doi:10.1371/journal.pone.0156201.g003
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photosystems and at PSI acceptors (Area and N) and higher energy fluxes per one active reac-
tion center are highly positively correlated to the value of the Pareto (beta) index high

Fig 4. The chlorophyll fluorescence transients from dark-adapted leaves of expansive grassBrachypodium pinnatum. A. ChlF curves
represent the increase of the relative variable fluorescence in young and intermediate age population relative to old ones (treated as control)
between points FO and FK; ΔWOK = (Ft-FO)/(FK-FO); L–band. B. ChlF curves represent the increase of the relative variable fluorescence in young
and intermediate age population relative to old (control) ones between points FO and FJ (ΔWOJ = (Ft-FO)/(FJ-FO); K-band, C. The curves represent
the increase of the relative variable fluorescence in young and intermediate age population relative to old (control) ones between points FO and FI

(ΔWOI = (Ft-FO)/(FI-FO).

doi:10.1371/journal.pone.0156201.g004
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Fig 5. Principal Component (PCA) ordination diagram displaying the relationships between the Chl a
fluorescencemeasurements and parameters. The classification of Chl a fluorescence parameters were
performed with k-means clustering. The optimal number of groups (3) was estimated based on Caliński-
Harabasz criterion. The result of classification was superimposed onto the ordination diagram. The ellipses
represent 95% confidence intervals for the groups

doi:10.1371/journal.pone.0156201.g005
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population genotypic diversity (G) and, weekly—percentage polymorphic (PPL) loci and Chl
a/b ratio, (Table 5). This could be explained by populations of Brachypodium colonizing the
new habitats, consisting of high numbers of equal size genotypes, characterized, on average, by
high efficiency of PSII and high connectivity among PSII units. In the course of expansion
some clones started to dominate others. They differed in structural traits expressed by higher
Chltot content in leaves (Fig 6, Tables 4 and 5).

The second RDA axes, which explained 24.8% variation in the data, differentiated
groups of parameters related to the fluorescence rise from those related to maximal
efficiency of PSII (φPo). On the other hand, the third RDA axis, which explained 12.8%,
separated the interm and old populations with similar efficiency of PSII but different FO,
FM and RC/CS0 values

Table 4. The results of Principal Component Analysis (PCA) and Redundancy Analysis (RDA). The
correlations of variables with the first three principal components (PC1-PC3, RDA1-RDA3) and cannonical
correlations of leaf chlorophyll content and genetic diversity with Chl a fluorescence parameters were shown.
Values ca. 0.7 are marked in bold.

Parameters/Axes PC1 PC2 PC3

Eigenvalues 9.802 4.092 2.55

Variation explained (%) 54.45 22.73 14.16

Cumulative proportion (%) 54.45 77.19 91.35

Fo ~ F50 μs -0.083 -0.597 -0.773

VI -0.959 0.047 -0.148

VK -0.193 -0.879 0.179

FM -0.222 0.123 -0.915

N 0.902 -0.219 0.220

SM 0.695 -0.015 0.464

PItotal 0.962 -0.189 0.035

PIABS 0.829 0.352 -0.373

TR0/RC 0.971 0.175 -0.128

DI0/RC -0.825 -0.527 0.082

ET0/RC 0.925 0.015 -0.296

RE0/RC 0.964 -0.224 0.045

RC/CS0 -0.656 -0.020 -0.586

ψo 0.758 0.492 -0.333

φPo -0.223 0.921 0.058

φDo 0.177 -0.963 -0.032

γRC 0.688 -0.598 -0.249

PG 0.956 -0.054 -0.149

Canonical axes RDA1 RDA2 RDA3

Eigenvalue 5.020 4.679 2.582

Variance explained (%) 28.90 24.80 12.792

Cumulative variance (%) 28.90 53.70 66.49

G 0.814 -0.209 0.521

PPL 0.347 -0.363 0.342

Pareto (beta) index 0.843 -0.488 0.218

Chltot -0.714 -0.302 0.246

Chl a/b ratio 0.485 0.019 -0.309

Residual variance 0.335

doi:10.1371/journal.pone.0156201.t004
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Fig 6. Redundancy Analysis (RDA) ordination diagram displaying the relationships between the (i) Chl a
fluorescence measurements and parameters and (ii) genetic, genotypic diversity and chlorophyll content in
leaves. The first two RDA axes explained of 28.9 and 24.8% of variation in the data respectively. The
classification of Chl a fluorescence parameters were performed with k-means clustering. The optimal number
of groups (3) was estimated based on Caliński-Harabasz criterion. The result of classification was
superimposed onto the ordination diagram. The ellipses represent 95% confidence intervals for the groups.

doi:10.1371/journal.pone.0156201.g006
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Fig 7. The optimal number of groups based on Calinski-Harabasz index. A. differences in Calinski-
Harabasz index. B. The peak in 3b panel point 3 as a optimal number of groups.

doi:10.1371/journal.pone.0156201.g007
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Discussion
Understanding of the processes related to establishment and expansion of species in the novel
habitats is crucial to nature conservation, for example for development of management plans
in order to protect the biodiversity of species-rich grasslands or preventing the colonization
and spreading of invasive species. There is ample evidence that the probability of successful
establishment in novel environment increases with the number of individuals in founder
groups which come from different sources and with the number of repeated introductions [52–
55]. However, many theoretical and empirical studies seem to indicate that founder effects and
bottlenecks as a scenario of many colonizations, due to geographical separation of populations
It have resulted in genetically uniform populations of many expansive species [54,56–59]. As
confirmed previously by genetic (AFLP) analyses [15], the colonization of Brachypodium pin-
natum follows the first model. It started from seeds from multiple locations and during the
first 30–50 years it often produced monodominant stands especially on former fallow lands or
on abandoned (i.e. not grazed or mowed) calcareous grasslands. At this stage, the grass formed
stands consisted of many genotypes. On the intermediate and old grasslands (from 100 up to
>300 years old), a strong decrease in the number of genotypes (G) and slight decrease in the
percentage of polymorphic loci was observed (PPL)[6,15]. Although the data on (mostly neu-
tral) genetic variability could be important for distinguishing 'individuals' of Brachypodium in
the field conditions, there is the need for additional ecological or physiological data for the
assessment of probability maintenance its viability or further expansion [55, 60]After establish-
ment, individuals face a series of environmental stresses (high light, drought, high or low tem-
perature and nutrient deficiency), inter- and intraspecific competition, introduced predators
and novel or changed diseases [57]. The performed researches have revealed that the inter–and
intraclonal competition and environmental conditions result in strong changes in the ecologi-
cal properties of Brachypodium individuals and populations: increase in stem density per 1m2,
clone diameter, lateral vegetative spread, mean number of leaves per ramet and strong decrease
in seed production [15]. Moreover, during expansion, an increase in leaf length, leaf width, LA
and overall leaf area are also observed. These changes are reflected in the leaf anatomy and
showed a plastic acclimatization of Brachypodiumto possibly high-light in young populations
and high-light competition in old ones. The leaves of Brachypodium from young populations
possesses traits typical for scleromorphic, sun leaves with big chloroplasts, distributed uni-
formly across mesophyll, while the other ones from old grasslands, additionally to strongly

Table 5. Results of Redundancy Analysis (RDA) that relates selected genetic diversity (G—number of
AFLP genotypes, Pareto beta index) and leaf chlorophyll content with chlorophyll fluorescence
parameters. Pareto beta is index measuring the spatial distribution of genotypes and could be related to
inter- and intraclonal competition. The highest value of betawere recorded in population with many equall-
sized genotypes while the lowest with population dominated with few large clones. The results of Monte Carlo
permutation test (with 999 permutations) of the variables is presented: Var—variance explained, F—pseudo-
F, and significance level

Variable Df Var F Pr(>F)

G 1 4.0038 2.87 0.03 *

PPL 1 0.5681 0.408 0.68 ns

Pareto (beta) 1 5.990 2.35 0.04 *

Chltot 1 7.221 2.88 0.014 *

Chl a/b ratio 1 1.537 1.22 0.065 ns

Residual 3

* denotes statistically significant and ns—not significant results

doi:10.1371/journal.pone.0156201.t005
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marked scleromorphism, display the optimal distribution of chloroplasts typical for leaves
grown in dense stands [61]. The big chloroplasts are distributed close to the lower and upper
epidermis.

Apart from changes in population, genotypic diversity and ecological traits during Brachy-
podium expansions, leaf structural changes and in ChlF parameters related to various aspects
of PSII functioning were also visible. Our results confirmed the increase in Chla, Chlb, total
Chl content, and leaf greenness index (SPAD)with population age (Table 3). The values of Chl
a/b ratio recorded in young populations were close to 3:1, often assumed as optimal to C3
plant [62], while slightly lowered in interm and old populations (2.84–2.88). Our results con-
firm those obtained by Fabell et all [63], Stroch et all [64] and Živčák et al [41], who observed
relatively low differences in Chl a/b ratio in plants growing in high light and shade conditions.
The changes in fast Chl a fluorescence kinetics could be related to photosynthesis performance
since a light saturation point was found at ~ 1000μmol photons m–2 s–2 in young populations
and ~ 1200 μmol photons m–2 s–2 in old ones (unpublished data—not shown). On the other
hand, the increase in total Chl content in old populations is a typical reaction of shade leaves.
Pattanayak et al [65] related this phenomenon to an increase in stand density, overall leaf area
and possibly due to self-shadowing of leaves within Brachypodium stands. However, Murchie
and Horton [66] and Murchie and Lawson [67] had found that in shade-grown plants there
was no change in the Chl a/b ratio, while the Chl content decreased. Thus, the decrease in Chl
a/b ratio in low light conditions does not seem to be a universal phenomenon, and the level of
its dependence on light intensity strongly depends on plant species [41].

The size of the PSII antenna per active reaction center (ABS/RC) was also larger in young
populations and these differences are preserved after correction for connectivity [41].The rela-
tive density of active PSII reaction centers (RC/CS0) is significantly lower (of about 40%) in
plants from young populations compared to old ones. Hence, both pigment composition and
prompt ChlF induction analysis indicate that Brachypodium pinnatum belongs to a group of
plants with changeable antenna size [68]. Moreover, in this study, signs of reorganization of
PSII units with population age were observed. The O-J part of prompt fluorescence kinetic
curve is used to estimate the connectivity parameter among PSII units [23,26,69–71]. The cal-
culated parameters associated with connectivity: probability of connectivity among PSII units–
p [36], were 150% and 40% higher in leaves from young populations compared to the interm
and old ones. The other connectivity parameters (PG) were also slightly higher in young popu-
lations (Table 3). The value of p parameter ranged between 0.53 to 0.67, which confirmed that
the antenna organization of all populations studied followed the “connected unit”model, since
the connectivity parameter p obtained ranged between 0 and 1 [69]. This means that the excita-
tion energy of closed RCs can be transferred to a number of nearby open RCs [41].

Biotic stress affects plant growth through reduction of photosynthesis [72]. The initial slope
of variable fluorescence M0, within rapid ChlF kinetics, indicates more rapid initial accumula-
tion of closed RCs in leaves from young populations as compared to the interm and old ones.
Moreover, the higher values of ChlF at the J and the I steps, and hence higher VJ and VI values
in the plants from old populations point to limited number of electron carriers on the PSII
acceptor side [26,73]. Detailed analysis, based on the selected parameters (Sm, N), suggests a
decreased size of the pool of PSII and PSI electron carriers (from QA to ferredoxin), as well as,
a decrease in the number of QA turnovers between FO and FM. PSII is one of the most suscepti-
ble components of the photosynthetic machinery. Abiotic stresses, such as drought or high
light, results in an over-reduction of the electron transport chain (ETC) [74–77]. The specific
energy fluxes in one active reaction centers (ABS/RC, TR0/RC, ET0/RC, RE0/RC and DI0/RC)
are visibly decreased with population age. This decrease is especially expressed for parameters
correlation with the electron transfer site within PSI–from PQH2 to PSI end acceptors: RE0/
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RC, φRo and δRo. These could be mechanisms by which the PSII of plants from old populations
reduce the rate of electron transport chain by converting the excess of absorbed light into ther-
mal energy. [26,78,79]. The diminished efficiency of each RC (PIABS and PItotal) is compensated
by an increased RC/CS0 (reflecting active reaction center density) per leaf area as well as by
higher total Chl concentration in photosynthesizing tissue of plants from old populations.

The above mentioned results demonstrate the very plastic response of Brachypodium to
changeable environmental conditions, reflected in reduction of the maximum quantum yield
of PSII (φPo) in the early stages of expansion while increasing the quantum yield and probabil-
ity for electron transport from QA- to PQ (φEo; ψO). In addition, the γRc decrease in old and
interm populations, caused a reduction in the amount of light harvesting complexes in PSII.

Among the ChlF parameters used in this study, the performance index (PI) provides the
information on the general state of plants and their vitality [51]. It combines the information
about the concentration of the fully active reaction center per chlorophyll, primary photo-
chemistry and electron transport (Strasser et al. 2004). PABS is related to energy conservation of
the photons absorbed by PSII in the form of reduced intersystem electron acceptors, and PItotal
in the form of reduced acceptors of PS I. Changes in PI susceptible to changes in antenna prop-
erties, electron trapping efficiency and transport beyond QA [51]. Živčák et al [80] pointed out
PI as very sensitive index to prolonged drought stress in winter wheat. In this study, signifi-
cantly higher values of performance indices were found: higher by 50% for PIABS, and 300% for
PItotal, in young populations.

Conclusions
The results presented above confirm that the strong decrease of genotypes as a result of envi-
ronmental stress occurs at the early and intermediate stages of Brachypodiumexpansion and is
clearly reflected in changes in ChlF parameters. The old stands are dominated by a few geno-
types which seem to be the best acclimatized to the self-shading/competition by lowering their
photosynthetic performance during light-phase of photosynthesis. On the other hand the
'high-speed' photosynthetic observed in the young populations can be seen as acclimatization
to very adverse conditions (probably combination of high light, high temperature, low nutrient
water) in which the plants try to catch the sunflecks in the 'windows of opportunity' i.e. early
morning or on cloudy days. The high capacity of Brachypodium for plastic morphological and
physiological adjustment to changeable habitat light environment refers to its original forest-
steppe coenological affinity [8]. Thus, the species has its physiological optimum in half-shade
conditions of open forest from which it spreads on fallows or clearings.

The population genetic and ecological analyses are often costly, destructive to vegetation
and time-consuming. The presented results clearly confirm that ChlF is a powerful method for
inferring physiological mechanisms of expansion of tor grass. The PCA/RDA analyses followed
with k-means classification based on the Calinski-Harabasz criterion allowed to distinguish
groups of distinct ChlF parameters and allowed them to be related to the changes along stress-
competition gradient, occurred during different stages of Brachypodium expansion.
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inter-quartile range, IQR) and whiskers, defined as 1.5�IQR, are presented. The points are the
values beyond the norm (outliers).
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S2 Fig. Box and whiskers plots of average 'clumps of shoots' (see the Materials and Meth-
ods) density of Brachypodium pinnatum/1m2. The recordings were performed on 20 1m2

plots within each Brachypodium populations. The values are averaged over three years: 2013–
2015. On the charts, the median (line inside the box), box (inter-quartile range, IQR) and whis-
kers (defined as 1.5�IQR) are presented. The points are the values beyond the norm (outliers).
(PDF)

S3 Fig. Box and whiskers plots of average number of leaves in 'clumps of shoots' of Brachy-
podium pinnatum/1m2. The shoots were recorded on 20 1m2 plots within each Brachypodium
populations. The values are averaged over three years: 2013–2015. On the charts, the median
(line inside the box), box (inter-quartile range, IQR) and whiskers (defined as 1.5�IQR) are pre-
sented. The points are the values beyond the norm (outliers).
(PDF)

S4 Fig. Box and whiskers plots of average rhizome dry biomass of Brachypodium pinna-
tum/1m2. in 2014, on each Brachypodium population 10 soil samples 20 x 20 x 20 cm were
collected randomly within stands, and rhizomes were washed out.On the charts the median
(line inside the box), box (inter-quartile range, IQR) and whiskers (defined as 1.5�IQR) are pre-
sented. The points are the values beyond the norm (outliers).
(PDF)

S5 Fig. Box and whiskers plots of average root dry biomass of Brachypodium pinnatum/
1m2. In 2014 on each Brachypodium population 10 soil samples 20 x 20 x 20 cm were collected
randomly within stands, and roots were washed out. On the charts, the median (line inside the
box), box (inter-quartile range, IQR) and whiskers (defined as 1.5�IQR) are presented. The
points are the values beyond the norm (outliers).
(PDF)

S6 Fig. Box and whiskers plots of average generative shoot density of Brachypodium pinna-
tum/1m2. The shoots were recorded on each Brachypodium populations on 20 1m2 plots. The
values are averaged over three years: 2013–2015. On the charts the median (line inside the
box), box (inter-quartile range, IQR) and whiskers (defined as 1.5�IQR) are presented. The
points are the values beyond the norm (outliers).
(PDF)

S1 Table. Monthly precipitation [mm] and mean air temperature[°C] in the year of the
study. The values are averaged within age classes.
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S2 Table. The results of Principal Component Analysis (PCA) and Redundancy Analysis
(RDA). The percentage contributions of Chl of fluorescence parameters to the first three prin-
cipal components (PC1-PC3) are shown.
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