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Abstract: Idiopathic normal pressure hydrocephalus (iNPH) is a potentially reversible neurological
disease, causing motor and cognitive dysfunction and dementia. iNPH and Alzheimer’s disease
(AD) share similar molecular characteristics, including amyloid deposition, t-tau and p-tau dys-
regulation; however, the disease is under-diagnosed and under-treated. The aim was to identify
a panel of sphingolipids and proteins in CSF to diagnose iNPH at onset compared to aged sub-
jects with cognitive integrity (C) and AD patients by adopting multiple reaction monitoring mass
spectrometry (MRM-MS) for sphingolipid quantitative assessment and advanced high-resolution
liquid chromatography–tandem mass spectrometry (LC–MS/MS) for proteomic analysis. The results
indicated that iNPH are characterized by an increase in very long chains Cer C22:0, Cer C24:0 and
Cer C24:1 and of acute-phase proteins, immunoglobulins and complement component fragments.
Proteins involved in synaptic signaling, axogenesis, including BACE1, APP, SEZ6L and SEZ6L2;
secretory proteins (CHGA, SCG3 and VGF); glycosylation proteins (POMGNT1 and DAG1); and pro-
teins involved in lipid metabolism (APOH and LCAT) were statistically lower in iNPH. In conclusion,
at the disease onset, several factors contribute to maintaining cell homeostasis, and the protective
role of very long chains sphingolipids counteract overexpression of amyloidogenic and neurotoxic
proteins. Monitoring specific very long chain Cers will improve the early diagnosis and can promote
patient follow-up.

Keywords: idiopathic normal pressure hydrocephalus; sphingolipids; proteome; csf; mass spectrometry

1. Introduction

Despite differences in the disease etiology, idiopathic normal pressure hydrocephalus
(iNPH) and Alzheimer’s disease (AD) share cognitive dysfunction as common clinical
manifestations [1]. These two disorders have multiple causes, heterogeneous presentations
and a different impact on patients. The classic presentation for iNPH is the triad of gait
or motor disturbance, cognitive impairment and incontinence [2–4]. It is remarkable that
AD and iNPH patients present similar molecular characteristics [5], including amyloid
deposition [6–8] and t-tau and p-tau dysregulation [9]. However, quantitative results of
t-tau and p-tau on both iNPH and AD patients alone are not sufficient to monitor different
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aspects of the neurological damage. In iNPH, symptoms can be partially reversed by
cerebrospinal fluid (CSF) clearance, whereas there are not consolidated treatments for other
types of dementia. However, despite the improvement of symptoms by shunt surgery,
iNPH is under-diagnosed and under-treated. A recent study by Jeppsson A. et al. [10]
indicates that a combination of levels T-tau aβ40, APP and MCP-1 can separate iNPH from
cognitive and movement disorders with good diagnostic sensitivity and specificity. An
enlargement of the panel of molecules targeting different areas such as amyloid β (aβ)
production and aggregation, cortical neuronal damage, tau pathology, axonal damage,
astrocyte activation and lipid raft would define iNPH patients more precisely.

Sphingolipids are bioactive lipids and represent the major components of the plasma
membrane and act as a modulator of cell to cell interactions. The changes in sphingolipids
composition may impact not only the structure of the plasma membrane but may also
translate signals inducing quali/quantitative changes in protein composition [11]. It is
known that the maintenance of sphingolipid homeostasis is essential to prevent cell death
and neurodegeneration [12].

Having hypothesized that a different sphingolipid and protein composition of CSF
may characterize neurological and neurodegenerative disorders, with the present study, we
would like to monitor for the first time the CSF profile of sphingolipids and proteins in aged
iNPH and AD patients compared to aged subjects with cognitive integrity (C) by multiple
reaction monitoring mass spectrometry (MRM/MS) and liquid chromatography–tandem
mass spectrometry (LC–MS/MS). The aim was to find a possible relationship between
sphingolipid variation and CSF protein composition to select molecules specific for iNPH
diagnosis to implement the panel of biomarkers recently described [10].

In our previous pioneering study [13], based on matrix-assisted laser desorption/
ionization (MALDI) profiling of low abundant CSF proteins, the top-down MS approach
did not reveal differences at protein level between iNPH and C. Concerning sphingolipids,
our previous study [14] was based on untargeted approaches, adopting primuline staining
for serum samples and MALDI profiling and LC–MS/MS for CSF samples of AD and
iNPH patients. Chains of Cers, SMs and S1P were at variance in AD and iNPH.

In this study, sphingolipid-specific chains were analyzed in parallel on C and patients
enrolled for the proteomic study and results indicated changes in lipid raft and proteins,
providing not only hints to understand the pathophysiology of this disorder but also a
panel of sphingolipids and proteins as putative markers in iNPH and neurodegeneration.

2. Results
2.1. Subjects’ General Characteristics and Clinical Parameters Assessment

The participants’ age and median levels of CSF Aβ, tau and p-tau proteins were
summarized in Table 1. Gender composition was homogeneous across groups whereas
the age range was slightly different, being iNPH patients older compared to aged subjects
with cognitive integrity (C) and AD patients (ANOVA on ranks p-value < 0.001; Dunn’s
p-value < 0.05 for iNPH vs. C comparison and iNPH vs. AD comparison). Concerning
Aβ levels, in iNPH levels were only slightly decreased compared to C; conversely, lower
values were observed in AD patients (one-way ANOVA p-value < 0.001; Bonferroni’s
t-test p-value < 0.001 for all comparisons) in agreement with previously reported data [15].
Tau and p-tau statistically increased in AD compared to C and iNPH (ANOVA on ranks
p-value < 0.001; Dunn’s p-value < 0.05 for AD vs. C comparison and AD vs. iNPH compar-
ison).
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Table 1. Participants’ characteristics.

Aged Subjects with
Cognitive Integrity,

n = 18

iNPH Patients,
n = 24

AD Patients,
n = 18

Age, years, median
Age, years, min-max
Age, years standard

deviation (s.d.)

73
60–84
±7.6

86
73–91
±5.6

76
70–82
±3.5

Gender, (M) 9 12 9

Aβ, pg/mL,median
Aβ, pg/mL, min-max

Aβ, pg/mL, s.d.

1223.5
457–1515
±298

777.5
266–1248
±232

433.5
226–654
±117.5

Tau, pg/mL,median
Tau, pg/mL, min-max

Tau, pg/mL s.d.

153.5
54–420
±98.6

157.5
46–676
±150

627.5
110–2952
±671.3

p-Tau, pg/mL, median
p-Tau, pg/mL, min-max

p-Tau, pg/mL, s.d.

35
7–61
±13.8

31
15–73
±13.7

79
22–475
±99

2.2. Sphingolipid Profile

Ceramides (Cers), hexosylceramides (HexCers), sphingomyelins (SMs) and dihy-
drosphingomyelins (DhSMs) CSF levels were investigated by targeted mass spectrometry.
Levels of total Cers, Cer C16:1, C20:0, C20:1, C22:0, C24:1 were higher in iNPH patients
compared to C and AD patients. Cers C18:0 and C18:1 were significantly higher in INPH
compared to C, only (Figure 1). HexCers C24:1 and C24:2 were higher in iNPH compared
to C and AD patients, whereas total HexCers and HexCers C24:0 were higher in iNPH
compared to AD patients, only (Figure 2).
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Figure 1. Box plots of CSF ceramide (Cer) species changed in iNPH and AD patients compared to
C subjects. (A) Total Cers, (B) Cer C16:1, (C) Cer C18:0, (D) Cer C18:1, (E) Cer C20:0, (F) Cer C20:1,
(G) Cer C22:0, (H) Cer C24:0, (I) Cer C24:1. Each measurement was run in triplicate. Data were
analyzed using Kruskal–Wallis ANOVA, followed by Dunn’s post hoc test for multiple comparisons.
** p-value < 0.01, *** p-value < 0.001.
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Figure 2. Box plots of CSF hexosylceramide (HexCer) species changed in iNPH and AD patients
compared to C subjects. (A) Total HexCers, (B) HexCer C24:0, (C) HexCer C24:1, (D) HexCer C24:2.
Each measurement was run in triplicate. Data were analyzed using Kruskal–Wallis ANOVA, followed
by Dunn’s post hoc test for multiple comparisons. * p-value < 0.05, ** p-value < 0.01.

Regarding SMs, CSF from iNPH and AD patients showed higher levels of SM C24:1
and lower levels of SM C24:2 compared to C (Figure 3). For all sphingolipids, ROC curves
and AUC values were calculated (Table 2).

Table 2. AUC values for Cers, HexCers and SMs species.

Name AUC iNPH-C AUC AD-C AUC AD-iNPH

SM (d18:1/24:2) 1 0.99383 0.58449
Cer (d18:1/20:1) 0.99769 0.61728 0.89815
Cer (d18:1/16:1) 0.96528 0.60802 0.94444
Cer (d18:1/20:0) 0.90509 0.62346 0.90278
Cer (d18:1/24:0) 0.90046 0.50309 0.97685
SM (d18:1/24:1) 0.875 1 0.5787
Cer (d18:1/24:1) 0.84722 0.62963 0.91204
Cer (d18:1/22:0) 0.80787 0.51235 0.86574
Cer (d18:1/18:0) 0.77546 0.62037 0.65741
Cer (d18:1/18:1) 0.75 0.60802 0.72222

HexCer (d18:1/24:2) 0.72917 0.50617 0.7338
HexCer (d18:1/24:1) 0.72685 0.53086 0.7662

SM (d18:1/18:0) 0.71412 0.54321 0.62731
HexCer (d18:1/24:0) 0.69907 0.66049 0.81019
HexCer (d18:1/16:0) 0.65278 0.53395 0.6875

Cer (d18:1/16:0) 0.64352 0.58642 0.72222
HexCer (d18:1/22:0) 0.64352 0.5 0.67593

SM (d18:1/20:0) 0.6412 0.64352 0.52199
HexCer (d18:1/20:0) 0.63194 0.55247 0.6713
HexCer (d18:1/18:0) 0.61111 0.53395 0.68056

SM (d18:1/14:0) 0.58449 0.50617 0.60532
SM (d18:1/22:1) 0.53819 0.60494 0.53704
SM (d18:1/18:1) 0.53588 0.55093 0.58912
SM (d18:1/20:1) 0.53241 0.54784 0.50347
SM (d18:1/22:0) 0.51273 0.60648 0.55671
SM (d18:1/24:0) 0.51273 0.60802 0.55787
SM (d18:1/16:1) 0.50116 0.50926 0.54745
SM (d18:1/16:0) 0.5 0.5 0.5625
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Figure 3. Box plots of (A) SM C24:1 and (B) SM C24:2 levels in CSF from iNPH and AD patients
compared to C subjects. Each measurement was run in triplicate. Data were analyzed using Kruskal–
Wallis ANOVA, followed by Dunn’s post hoc test for multiple comparisons. *** p-value < 0.001.

2.3. Differentially Expressed CSF Proteins in iNPH and in AD Patients Compared to Aged
Subjects with Cognitive Integrity

CSF proteome was analyzed by label-free MS to detect statistically changed proteins
in the liquor of iNPH or AD patients compared to C.

Label-free LC–MS/MS analyses identified 205 changed CSF proteins in iNPH com-
pared to C and 204 changed proteins in AD compared to C (84 show an opposite trend
between iNPH and AD compared to C, whereas 121 show the same trend in iNPH and AD
vs. C).

2.3.1. Protein Levels with Opposite Trend in iNPH and AD

With it being our focus the search of new markers to extend the panel of molecules
for early diagnosis and follow up of iNPH, we first addressed our attention on proteins
with opposite trend between iNPH and AD compared to C (Figure 4 and Supplementary
Table S1).
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Figure 4. Differentially expressed CSF proteins in iNPH (black bars) and in AD (striped bars) patients compared to
healthy cognitive subjects. Histograms of proteins with opposite trend levels in iNPH and AD (LFQ intensity% variation,
* p-value < 0.05). Proteins were divided into panels according to their function. (A) acute phase response proteins. Alpha-
1B-glycoprotein (A1BG), alpha-1-acid glycoprotein 1 (ORM1), alpha-1-antichymotrypsin (SERPINA3), hyaluronan binding
protein 2 (HABP2), fibrinogen gamma chain (FGG), lysozyme (LYZ) and hemopexin (HPX) complement component C6
and complement factor I (CFI), heavy constant alpha 1 (IGHA1), immunoglobulin heavy constant gamma 4 (IGHG4),
immunoglobulin kappa constant (IGKC), immunoglobulin kappa variable 3D-11 (IGKV3D-11) and Fc fragment of IgG
binding protein (FCGBP) were increased in iNPH. A1BG, ORM1, SERPINA3, HABP2, C6 levels, as well as alpha-1-acid
glycoprotein 2 (ORM2), alpha-1-antitrypsin (SERPINA1), ceruloplasmin (CP), Leucine-rich alpha-2-glycoprotein (LRG1),
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Inter-alpha-trypsin inhibitor heavy chain H1 (ITIH1), Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), fibrinogen
alpha chain (FGA), fibrinogen beta chain (FGB), complement component C8 gamma chain (C8G), complement factor
D (CFD), Ig gamma-1 chain C region (IGHG1) and Immunoglobulin heavy variable 3/OR16-9 (IGHV3OR16-9) were
significantly lower in AD than in C. (B) synapse functioning proteins. L1-like protein (CHL1), cell adhesion molecule 2
(CADM2), cell adhesion molecule 3 (CADM3), cerebellin 3 precursor (CBLN3), contactin 1 (CNTN1), neogenin 1 (NEO1),
vasorin (VASN), FAT atypical cadherin 2 (FAT2), neurexin-1 (NRXN1), neurexin-3 (NRXN3), ciliary neurotrophic factor
receptor subunit alpha (CNTFR), cartilage acidic protein 1 (CRTAC1), lymphocyte antigen 6H (LY6H), leucine-rich repeat
containing 4B (LRRC4B), calsyntenin 3 (CLSTN3), testican 1 (SPOCK1), reelin (RELN), SLIT and NTRK Like Family
Member 1 (SLITRK1), neuronal pentraxin 1 (NPTX1), neuroserpin (SERPINI1) were decreased in iNPH. Conversely, in AD,
levels of NRCAM, CHL1, CADM3, NRXN1 and NRXN3 were upregulated, and increased levels were also observed for
protocadherin-1 (PCDH1), cell growth regulator with EF-hand domain protein 1 (CGREF1), neuronal growth regulator 1
(NEGR1), opioid-binding protein/cell adhesion molecule (OPCML) and neurexin-2 (NRXN2). Calsyntenin-1 (CLSTN1),
tyrosine-protein phosphatase non-receptor type substrate 1 (SIRPA), prosaposin receptor (GPR37L1), peptidyl-glycine alpha-
amidating monooxygenase (PAM), Dickkopf-related protein 3 (DKK3), phosphoinositide-3-kinase-interacting protein 1
(PIK3IP1), calreticulin (CALR), multiple epidermal growth factor-like domains protein 8 (MEGF8), protein kinase C-binding
protein (NELL2). (C) protein glycosylation, lipid metabolism, vitamin metabolism proteins. Protein O-linked-mannose
beta-1,2-N-acetylglucosaminyltransferase 1 (POMGNT1) and Dystroglycan 1 (DAG1) decreased in iNPH. (D) other proteins.

The CSF of iNPH patients was characterized by increased levels of seven proteins of
acute-phase response as indicated in the legend of Figure 4A. Moreover, the complement
component C6, complement factor I (CFI) and immunoglobulins were increased.

Conversely, proteins belonging to the same class were down-regulated in AD com-
pared to C (Figure 4A).

The proteins active at the synaptic terminals were also at variance, being down-
regulated in iNPH compared to C and upregulated in AD compared to C. The substrates of
beta-secretase 1 (BACE1), amyloid precursor protein (APP), seizure 6-like protein (SEZ6L)
and seizure-related 6 homolog-like 2 (SEZ6L2) were statistically lower in iNPH than in C.
Conversely, in AD, APP and SEZ6L levels were statistically upregulated, as amyloid-like
protein 1 (APLP1) and amyloid-like protein 2 (APLP2). The same trend was detected
for synapse adhesion molecules, for proteins involved in axonogenesis and in signal
transduction, and for neuroendocrine secretory proteins as chromogranin-A (CHGA),
secretogranin-3 (SCG3) and neurosecretory protein VGF (Figure 4B).

O-glycosylation related proteins were downregulated in iNPH, whereas POMGNT1
was increased in AD liquor (Figure 4C)

Among lipid metabolism, Apolipoprotein E (APOE) increased in AD, whereas apolipo-
protein H (APOH) was decreased in iNPH. Lecithin-cholesterol acyltransferase (LCAT)
was increased in AD and decreased in iNPH (Figure 4C).

Afamin (AFM) increased in iNPH, whereas it decreased in AD, and biotinidase (BTD)
decreased in iNPH and increased in AD (Figure 4C). Other proteins involved in Golgi
membrane remodeling and in metabolism increased in AD as Golgi membrane protein 1
(GOLM1), Protein NOV homolog (NOV) and Fructose-bisphosphate aldolase A (ALDOA).
Metalloproteinase inhibitor 1 (TIMP1) increased in iNPH, whereas neuropeptide-like
protein C4orf48, iduronate 2-sulfatase (IDS), glutaminyl-peptide cyclotransferase (QPCT),
follistatin-related protein 4 (FSTL4) were all statistically decreased in iNPH (Figure 4D).
For all these proteins, ROC curves and AUC values were calculated (Table 3).
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Table 3. AUC values for proteins with an opposite trend in iNPH and AD.

T: Gene Names AUC iNPH-C AUC AD-C AUC iNPH-AD

A1BG NA 0.86574 0.91667
AFM 0.72222 1 0.95312

ALDOA 0.52431 0.50463 0.5
APLP1 0.90278 0.5787 0.80729
APLP2 0.625 1 0.92708
APOE 0.66319 0.67593 0.54167
APOH 0.87847 0.65278 0.79167

APP 0.79167 0.94444 0.84896
BTD 0.79514 0.73611 0.61979

C16orf89 0.89236 0.54167 0.92708
C6 0.99653 0.88426 0.56771

C8G 0.61806 0.625 0.52604
CADM2 0.8125 0.91667 0.69792
CADM3 0.93403 0.87037 0.76562
CALR 0.82986 1 0.69792
CBLN3 0.95833 0.99074 0.60938

CFD 0.59722 1 0.94271
CFI 0.93056 0.81944 0.77083

CGREF1 0.91146 0.96296 0.54167
CHGA 0.98611 0.78241 0.90104
CHL1 0.82292 0.90278 0.96354

CLSTN1 0.9375 0.99074 0.67188
CLSTN3 0.78125 1 0.97396
CNTFR 0.84028 0.72222 0.55208
CNTN1 0.72569 1 1

CP 0.78125 0.95833 0.6901
CRTAC1 0.61111 0.91204 0.85417

DAG1 0.68403 0.72222 0.50521
DKK3 0.72222 0.99537 0.93229
FAT2 0.74306 0.5463 0.70312

FCGBP 0.84028 1 0.56771
FGA 0.59028 0.94907 0.94792
FGB 0.84722 0.96296 1
FGG 0.65104 0.9537 0.76562

FSTL4 0.71875 0.95833 0.8776
GOLM1 0.80903 0.79167 0.66667

GPR37L1 0.625 0.56944 0.54688
HABP2 0.65104 0.75 0.64062

HPX 0.59028 0.84259 0.80729
IDS 0.90278 0.79167 0.92188

IGHA1 0.94097 0.63889 0.94792
IGHG1 0.78472 1 0.88542
IGHG4 0.52431 0.64352 0.57812

IGHV3OR16-9 0.79514 0.97222 0.86979
IGKC 0.74653 0.74537 0.79167

IGKV3D-11 0.86458 0.98611 1
ITIH1 0.98264 1 0.51562
ITIH4 0.78125 1 0.99479
LCAT 0.71875 0.95833 0.8776
LRG1 0.8125 1 0.77083

LRRC4B 0.98264 1 0.66927
LY6H 0.70139 0.59259 0.52083
LYZ 0.65625 1 0.78125

MEGF8 0.58333 1 1
NEGR1 0.83681 0.97685 0.79688
NELL2 0.55903 0.83796 0.89062
NEO1 0.55903 1 1
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Table 3. Cont.

T: Gene Names AUC iNPH-C AUC AD-C AUC iNPH-AD
NOV 0.78472 0.77778 0.65104

NPTX1 0.87326 1 0.59375
NRCAM 0.84722 0.51852 0.84896
NRXN1 0.62153 0.78241 0.51042
NRXN2 0.94097 1 0.83333
NRXN3 0.74306 0.98611 1
OPCML 0.9213 0.75
ORM1 0.85417 0.88426 0.51042
ORM2 0.71528 0.73611 1
PAM 0.78472 0.5463 0.78646

PCDH1 0.59722 0.74537 0.79167
PIK3IP1 1 1 0.5

POMGNT1 0.56076 0.90509 0.9401
QPCT 0.80208 0.98611 0.63021
RELN 0.71875 1 0.85417
SCG3 0.77431 1 1

SERPINA1 0.75347 0.57407 0.8125
SERPINA3 0.94444 0.68056 0.77083
SERPINI1 0.53472 1 1

SEZ6L 0.71875 0.91667 0.83854
SEZ6L2 0.71528 0.9213 0.76042

SIRPA;SIRPB1 0.67014 0.76389 0.60417
SLITRK1 0.62153 0.77315 0.67448
SPOCK1 0.73611 0.79167 0.89062
TIMP1 0.71875 0.93519 0.95312
VASN 0.58333 0.97685 0.97396
VGF 0.88194 0.89352 0.97917

2.3.2. Proteins Levels with the Same Trend in iNPH and AD

This paragraph examines proteins that follow the same trend in iNPH and AD
compared to C with different levels in the two pathologies (difference of average log2
values > 0.5; Figure 5 and Supplementary Table S2).

Among acute phase proteins, the CSF of iNPH patients showed the highest levels of
fetuin-B (FETUB), complement component C8 beta chain (C8B), complement component
C9, Ig mu chain C region (IGHM), immunoglobulin heavy variable 5-51 (IGHV5-51) and
immunoglobulin heavy variable 3-74 (IGHV3-74), whereas scavenger receptor cysteine-rich
type 1 protein M130 (CD136) is higher in AD than in iNPH. Moreover, AD showed the
lowest levels of corticosteroid-binding globulin (SERPINA6), thyroxine-binding globulin
(SERPINA7), lipopolysaccharide-binding protein (LBP), complement C5, Ig lambda-6 chain
C region (IGLC6), Ig gamma-2 chain C region (IGHG2; Figure 5A).

The levels of some synaptic proteins in iNPH patients were close to C levels, and they
strongly increased in AD, whereas L1 cell adhesion molecule (L1CAM), CD99 antigen-like
protein 2 (CD99L2), Thy-1 membrane glycoprotein (THY1), neuronal pentraxin receptor
(NPTXR), 14-3-3 protein zeta/delta (YWHAZ), reticulon-4 receptor (RTN4R), secretogranin-
2 (SCG2) were more abundant in iNPH than in AD (Figure 5B).
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tioning (C) extracellular matrix proteins (D) metabolic proteins (E) protein glycosylation, lipid transport (F) other proteins.
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Extracellular matrix proteins and glycoproteins were upregulated mostly in AD. iNPH
showed a statistical increase in extracellular matrix proteins (osteopontin (SPP1), extracellu-
lar matrix protein 1 (ECM1) and SPARC-like protein 1 (SPARCL1), but not of glycoproteins
as neurocan core protein (NCAN) or brevican core protein (BCAN; Figure 5C).

Metabolic proteins as fructose-bisphosphate aldolase C (ALDOC), L-lactate dehydro-
genase B chain (LDHB), malate dehydrogenase (MDH1) and superoxide dismutase (SOD1)
were downregulated in iNPH. In AD, a statistical decrease was seen only for ALDOC,
whereas upregulated levels of triosephosphate isomerase (TPI1), pyruvate kinase (PKM)
and aspartate aminotransferase (GOT1) were detected (Figure 5D).

Enzymes involved in glycosylation as beta-1,4-glucuronyltransferase 1 (B4GAT1) and
Alpha-mannosidase (MAN2A2) were downregulated in iNPH.

Lipid transport proteins as apolipoprotein A2 (APOA2) and phospholipid transfer
protein (PLTP) were downregulated both in iNPH and in AD, with the lowest levels in AD
(Figure 5E).

The changes detected in other proteins were more pronounced in AD, except for
transmembrane protein 132A (TMEM132A) that was downregulated in iNPH, whereas its
levels in AD were comparable to C (Figure 5F).

2.4. IPA Pathway Analysis

The pathway analysis conducted by IPA software indicated that the most signifi-
cant canonical pathway activated in iNPH was acute phase response signaling (p-value
1.08 × 10−22; z-score 2.138), not activated in AD (z-score −0.535). The next two significant
canonical pathways were complement system (p-value 3.41 × 10−22; z-score 0.832 both for
iNPH and AD) and LXR/RXR that links lipids and metabolism (p-value 1.44 × 10−18; z-
score 1.528 for iNPH and 1.091 for AD; Figure 6A and Supplementary Table S3). The results
were filtered by a significant z-score (>2 if the pathway is activated or <2 if the pathway is
inhibited), highlighted that the inhibition of gluconeogenesis is more marked in iNPH than
in AD (z-scores −2.236 and −1.342, respectively; Figure 6B). The gene heatmap shown in
Figure 6C,D showed upregulated and down-regulated proteins in gluconeogenesis and
acute phase response pathways.

Two high-scoring networks were generated by IPA: the first (1) grouped 35 proteins
mainly involved in neurological disease, scoring 56; the second (2) grouped 35 proteins
involved in metabolic disease, scoring 56 (Supplementary Figure S1).
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Figure 6. Pathway analysis conducted by IPA software. Canonical pathways were displayed following the p-value (A) and
the z-score (B). Shades of purple from dark to light indicate p-value values from more to less significant. Orange and blue
colors indicate pathway activation (orange; z-score > 2) or inhibition (blue; z-score < 2). Dots indicate non-significant z-score.
Gene heatmap of protein expression data in gluconeogenesis pathway (C) and acute phase response pathway (D) was
displayed. In the first pathway, fructose-bisphosphate aldolase C (ALDOC), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), MDH1 and gamma-enolase (ENO2) were decreased both in iNPH and in AD, whereas ALDOA was decreased
in iNPH and increased in AD (Figure 3c). In acute phase response, inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3),
HPX, SERPINA3, ITIH4, SERPINA1, haptoglobin (HP) and CP resulted in being upregulated in iNPH but not in AD
(Figure 3d). Green and red colors indicate a decrease or increase in the protein, respectively. Grey color indicates statistically
not significant changes.

3. Discussion

The goal of the studies on neurological disorders is to deliver highly informative
bodily fluids set of markers that can promote a differential diagnosis in the early stage
of the disease and predict the disease course. In this context, CSF profiling allowed to
detect molecules counter-regulated in iNPH vs. AD compared to C and identified a set of
them to be monitored to prevent the evolution of iNPH toward AD [16]. The study takes
advantage of the adoption of state-of-the-art technologies and the inclusion of C, making
the differential protein and sphingolipids abundance more robust compared to a number
of studies, including our previous works [13,14].

Sphingolipid levels provided a pattern characteristic of iNPH with increased levels
of very long chain Cers, not observed in AD. The studies on animal models indicated
that overexpression of very long chains Cers exerts a protective role by improving insulin
signal transduction, decreasing ER stress and gluconeogenetic markers [17]. Ceramide
synthase 2 null mice that lack Cer C22-24 very long chains displayed defects in the SNC,
insulin resistance and biophysical changes in lipid membranes leading to increased ROS
production, mitochondrial dysfunction and ER stress. Furthermore, it was observed that
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the addition of very long chains Cers (C24:0) or CerS2 overexpression in Hep3B hepatic cells
showed a protective effect on palmitate-induced ER stress while overexpression of CerS6
coding for Cer C16 has a detrimental effect [18]. However, the contribution of structural
changes on membrane properties in patients still requires further studies. Interestingly, in
women, very long chains HexCers levels appear to be lower than in men (Supplementary
Figure S2), suggesting that a gender difference may exist. Therefore, further studies in this
direction can contribute to defining the question of disease prevalence indicated by some
studies and better understand the role of glucosylceramides in brain disorders [19–21].

The CSF proteome also provides a protein pattern characteristic of iNPH. The latter
is characterized by increased acute-phase proteins, immunoglobulins and complement
component fragments, indicating a disruption of the BBB barrier and inflammation as a
consequence of endothelial leakage and inflammatory cell infiltration [22]. In a healthy
brain, the local production of complement regulators is low, whereas complement receptors
are expressed on glia and neurons possibly to respond to local complement activation [23].
In iNPH, C1 is involved in a cascade of sequential events leading to the increment of
C6 and C8, subtracting them to the formation of the C5b67 complex [24]. An interesting
role of C1 was proposed by B. Bode et al. [25], which indicated a relationship between
Cq1 and ceramide transferase with the trafficking of ceramide and apoptosis. In this
study, Cq1 appears to prevent autoimmunity and maintain self-tolerance by supporting the
efficient clearance of apoptotic cells. In AD, the acute phase proteins are counter-regulated
compared to iNPH as a specific fragment of complement and of specific immunoglobulins.

In iNPH, proteins involved in synaptic signaling and axogenesis, including substrates
BACE1, APP, SEZ6L and SEZ6L2, were statistically lower, as were secretory proteins, glyco-
sylation proteins and proteins involved in lipid metabolism (APOH and LCAT). Conversely,
the inhibitor of metalloproteinase (TIMP1) and afamin (AFM) increased. The latter is a
human vitamin E-binding protein that counteracts calcium release and oxidative stress
when increased [26]. Collectively, these data suggest that in iNPH, the neurodegenerative
pattern typical of AD is absent, and this is possibly associated with the increment of very
long chain Cers that may exert a protective role. Thus monitoring very long chain Cers and
specific markers like C6, C8, APP, SEZ6L, SEZ6L2, BACE1, AFM and TIMP1 could easily
differentiate these two disorders.

What about the possible evolution towards AD? IPA pathway analysis indicated that
inflammation is present but not neurodegeneration. However, comparing iNPH and C,
this pattern is slightly increased, suggesting that a persisting inflammation can promote
the evolution toward a neurodegenerative status [27]. The LXR/RXR pathway, which
links metabolism and lipid transport, is also activated. These results indicate that a set of
proteins and very long chains Cers (C22:0, C24:0) can predict the evolution toward AD
becoming targets for its prevention. Furthermore, high levels of complement components
C8 and C9 and of specific immunoglobulins together with a high level of the calcium
phosphate-binding protein fetuin-B are a trait of AD.

From our results, several markers already described in other studies are confirmed,
in particular, APP, which was recently suggested to be included in the panel of markers
confirmatory for iNPH [10]. Although with a number of limitations, the present study
provides hints particularly for monitoring the complement cascade and acute phase pro-
teins and very long chain Cers as diagnostic markers of iNPH. Complement components
C8, C9 and fetuin-B, together with NCAN and BCAN, should be monitored to predict the
evolution toward AD, with these proteins being involved in neurodegeneration. While
the relationship between sphingolipid dysregulation was established in AD, there is still
uncertainty regarding the exact lipid species that are directly involved in neurodegenera-
tion. It was collectively established that accumulation of Cer C16, C18 and C20 is a trait
of AD patients [28–31]; however, the presence of very long chains Cers (C22 and C24)
was observed for the first time in iNPH only and appeared to characterize this disorder.
It is tempting to associate this feature to a protective role of these species toward APP
and BACE1, inflammation, ER stress and ROS generation supported by proteomic data



Int. J. Mol. Sci. 2021, 22, 8034 14 of 18

and from the literature. We can speculate about a relationship between specific protein
differential levels and Cers levels and the protective role of very long chains Cers to coun-
teract ER stress, mitochondrial damage and ROS generation [32]. Furthermore, long chains
sphingolipids can also predict the evolution toward AD since a change in the pattern
distribution of Cers can cause changes in the lipid raft [33] and a loss of the protective role
of very long chain Cers.

4. Materials and Methods
4.1. Patients

This study involved 24 iNPH patients (12 women and 12 men), 18 AD patients
(9 women and 9 men) and 18 aged subjects with cognitive integrity (C) (9 women and
9 men) enrolled at the Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico,
Milan, Italy (Table 1 and Supplementary Table S4). The present study conforms to the
principles of the Helsinki Declaration, and the study protocol received approval from the
Ethical Committee of Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, Milan,
Italy. Informed consent was obtained from either patients or their legal representatives. The
inclusion criteria for the study were: the presence of anamnestic, clinical and neuroimag-
ing criteria suggestive for probable iNPH according to the 2005 International Guidelines
and ineligibility for shunting surgery [34]. All patients underwent a CSF tap evaluation
including Barthel index from which the Barthel Continence Index (BCI), Mini-Mental State
Examination (MMSE), Tinetti scale, and Timed Up-and-Go (TUG) test. Before and after
CSF tap, a brain computed tomography or magnetic resonance was performed to confirm
the ventricular enlargement (i.e., Evan index > 0.31) and no macroscopic obstruction to CSF
flow as described in Rossi et al. [35]. The exclusion criteria were: secondary hydrocephalus,
MMSE score <20/30 or gait disorders secondary to other evident causes [35]. Concerning
controls, they underwent a comprehensive geriatric assessment that includes medical his-
tory, physical and neurological examination, neurocognitive evaluation (MMSE), computed
tomography or MRI scan to exclude the presence of neurological and/or cognitive disor-
ders. Concerning laboratory tests, the assessment of levels of tau, phospho-tau (p-tau) and
amyloid-β (Aβ) proteins by ELISA (Innogenetics SRL, Pomezia, Italy) were performed. The
diagnosis of AD was made according to current recommendations [36]. CSF samples were
drawn in polypropylene tubes after a lumbar puncture at the L4/L5 or L3/L4 interspace,
centrifuged at 4 ◦C and stored at −80 ◦C until analysis.

4.2. Lipid Extraction

Sphingolipids were extracted from CSF according to a previous study, with minor
modification [37]. Briefly, 0.1 mL of CSF was mixed with 0.1 mL of ultrapure water
and 1.5 mL of methanol/chloroform 2:1, and fortified with internal standards 100 pmol:
ceramide (d18:1/12:0), sphingomyelin (d18:1/12:0), and 10 pmol of glucosyl (β)ceramide
(d18:1/12:0). Samples were briefly sonicated and heated at 48 ◦C overnight. Then, 0.15 mL
of potassium hydroxide (KOH) 1 M in methanol was added to every sample, and after 2-h
incubation at 37 ◦C, the solution was neutralized with 0.15 mL of acetic acid 1 M and dried
with Speedvac. Samples were then resuspended in 0.5 mL of methanol and transferred to
a clean Eppendorf tube. Samples were dried, resuspended in 0.15 mL of methanol, and
centrifuged for 3 min at 10,000× g. Liquid phases were collected in UPLC glass vials and
stored at −80 ◦C.

4.3. Multiple Reaction Monitoring MS (MRM-MS)

Ceramides, hexosylceramides, sphingomyelins and dihydrosphingomyelins were
quantified using a Xevo TQ-S micro mass spectrometer (Waters, Milford, MA, USA).
Sphingolipid extracts were injected and separated on a C8 Acquity UPLC BEH 100 mm ×
2.1 mm id, 1.7 µm (Waters, Milford, MA, USA) kept at 30 ◦C, with the following gradient:
0.0 min—80% B; 3 min—90% B; 6 min—90% B; 15 min—99% B; 18 min—99% B; 20 min—
80% B, at 0.3 mL/min flow rate. Phase B consisted of 1 mM ammonium formate in
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methanol, 0.05 mM formic acid, while phase A was 2 mM ammonium formate in H2O,
with 0.05 mM formic acid. An electrospray interface operating in positive ion mode was
employed to obtain MS/MS spectra by acquiring MRM transitions of Cers (cone voltage
46 V, collision energy 26 eV), HexCers (cone voltage 22 V, collision energy 40 eV) and SMs
and DhSMs (cone voltage 54 V, collision energy 28 eV).

The capillary voltage was set at 3.5 kV. The source temperature was set to 150 ◦C. The
desolvation gas flow was set to 1000, and the desolvation temperature was set to 350 ◦C.
The data were acquired by MassLynx™ 4.2 (Waters, Milford, MA, USA) software and
quantified by TargetLynx software (Waters, Milford, MA, USA).

4.4. Sample Preparation for Bottom-Up Proteomics

The CSF were randomly pooled using the same protein amount into 18 sub-pools
(6 sub-pools for iNPH patients, 6 sub-pools for AD patients and 6 sub-pools for healthy
cognitive subjects), homogeneous for biometric parameters and sex-based (3 sub-pools
for women and 3 for men for each condition). The sub-pooling was necessary since, for
ethical reasons, the availability of CSF was minute, and this approach enables a reduction
in the variance among biological groups, thereby increasing the power to detect changes
when few samples are available, and the variance is high [38,39]. One hundred microliters
of CSF were mixed with the same volume of 0.2% RapiGest (Waters, Milford, MA, USA).
Dithiothreitol (DTT) was added to a final concentration of 5 mM for cysteine reduction,
and samples were incubated for 30 min at 60 ◦C. Iodoacetamide (IAA) was added to a final
concentration of 15 mM and incubated for 30 min in the dark. Proteins were digested with
trypsin (Promega Italia SRL, Milano Italy) using an enzyme–protein ratio of 1:50 at 37 ◦C
overnight. The digestion was conducted for 24 h, and RapiGest precipitated by adding
trifluoroacetic acid (TFA) to a final concentration of 0.5% and samples incubated for 45 min
at 37 ◦C. After centrifugation at 13,000 rpm for 10 min, the supernatants were recovered,
and the peptide concentration was determined by Pierce™ Quantitative Colorimetric
Peptide Assay (Thermo Scientific, Waltham, Massachussetts, USA).

4.5. Liquid Chromatography with Tandem Mass Spectrometry (LC–MS/MS)

An LC–ESI–MS/MS analysis was performed on a Dionex UltiMate 3000 HPLC System
with an Easy Spray PepMap RSLC C18 column (150 mm, internal diameter of 75 µm;
Thermo Scientific, Waltham, MA, USA). Gradient: 5% ACN in 0.1% formic acid for 10 min,
5–35% ACN in 0.1% formic acid for 139 min, 35–60% ACN in 0.1% formic for 40 min,
60–100% ACN for 1 min, 100% ACN for 10 min at a flow rate of 0.3 µL/min. The eluate
was electrosprayed into an Orbitrap Tribrid Fusion (Thermo Fisher Scientific, Bremen,
Germany) through a nanoelectrospray ion source (Thermo Fisher Scientific Bremen, Ger-
many,). The LTQ-Orbitrap was operated in positive mode in data-dependent acquisition
mode to automatically alternate between a full scan (350–2000 m/z) in the Orbitrap (at
resolution 60,000, AGC target 1,000,000) and subsequent CID MS/MS in the linear ion trap
of the 20 most intense peaks from full scan (normalized collision energy of 35%, 10 ms
activation). Isolation window: 3 Da, unassigned charge states: rejected, charge state 1:
rejected, charge states 2+, 3+, 4+: not rejected; dynamic exclusion enabled (60 s, exclusion
list size: 200). Mass spectra were analyzed using MaxQuant software (version 1.6.3.3). The
initial maximum allowed mass deviation was set to 6 ppm for monoisotopic precursor ions
and 0.5 Da for MS/MS peaks. Enzyme specificity was set to trypsin/P, and a maximum of
two missed cleavages was allowed. Carbamidomethylation was set as a fixed modification,
while N-terminal acetylation and methionine oxidation were set as variable modifications.
The spectra were searched by the Andromeda search engine against the Homo Sapiens
Uniprot sequence database (release 15.01.2020). Protein identification required at least one
unique or razor peptide per protein group. Quantification in MaxQuant was performed
using the built-in XIC-based label-free quantification (LFQ) algorithm using fast LFQ. The
required false positive rate (FDR) was set to 1% at the peptide, 1% at the protein and 1% at
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the site-modification level, and the minimum required peptide length was set to 7 amino
acids.

4.6. Statistical and Bioinformatic Analysis

Age range and levels of Aβ, tau and p-tau proteins were compared between groups
using a one-way ANOVA with Bonferroni’s correction if data were normally distributed, or
with Dunn’s correction if they were not, using SigmaPlot software version 12.0. A statistical
analysis on sphingolipid data was conducted using Origin 2019 software (Adalta; normality
test, Kruskal–Wallis ANOVA with a post-hoc test), and boxplots were generated by the
same software. Statistical analyses on LFQ data were conducted using one way-ANOVA in
Perseus software (version 1.6.1.3). Only proteins present and quantified in at least 80% of
technical and biological repeats were considered as positively identified in a sample and
used for statistical analyses. A post-hoc test (Permutation-based FDR < 0.05) was carried
out to identify proteins differentially expressed among different conditions. Bioinformatic
analysis was carried out by Ingenuity Pathway Analysis (IPA®; QIAGEN Bioinformatics,
Redwood City, CA, USA). The quantitative protein data were imported into IPA software
to identify protein–protein interactions, canonical pathways, disease and biofunctions most
strongly associated with the protein list [40]. ROC curves and AUC values were calculated
with MetaboAnalyst software 5.0.

5. Limitations

The authors are aware of the limitation of the present study, which is the relatively
small number of available samples. We cannot exclude that our findings might have been
driven by third factors (i.e., specific characteristics of the recruited population, particularly
the age of iNPH), which are not considered in the present analyses. A verification study
in an independent set of samples is currently being carried out, including subjects age-
matched and centenarians to confirm the observed changes in men and women by MRM-
based MS analysis of CSF and serum.

6. Conclusions

The novelty introduced by this study is the identification of specific very long chains
Cers and of a reasonable number of proteins able to implement the set of markers for a
more precise diagnosis of iNPH. Importantly, the results provide a set of molecules to be
monitored to follow up patients who are at risk of evolving toward AD.
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