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a b s t r a c t 

Background: Human coronaviruses are one of the leading causes for respiratory tract infections and for frequent 

primary care consultation. The human coronavirus NL63 (HCoV ‑NL63) is one representative of the seasonal 

coronaviruses and capable of infecting the upper and lower respiratory tract and causative agent for croup in 

children. 

Objectives: For fast detection of HCoV-NL63, we developed an isothermal reverse transcription recombinase 

polymerase amplification (RT-RPA) assay. 

Study design: The analytical sensitivities of the RT-RPA assay were identified for in vitro transcribed ribonucleic 

acid (RNA) and for genomic viral RNA from cell culture supernatant. Moreover, specificity was tested with nucleic 

acids from other human coronaviruses and a variety of clinically relevant respiratory viruses. Finally, a clinical 

nasopharyngeal swab sample with spiked genomic viral HCoV-NL63 RNA was analyzed. 

Results: Our HCoV-NL63 RT-RPA assay is highly specific and has an analytical sensitivity of 13 RNA 

molecules/reaction for in vitro transcribed RNA. For genomic viral RNA from cell culture supernatant spiked 

into a clinical nasopharyngeal swab sample the assay’s analytical sensitivity is 170 RNA molecules/reaction. The 

assay shows amplification of the lowest detectable target copy number after 8 minutes and 7 minutes, respec- 

tively. 

Conclusions: We were able to design a sensitive and specific RT-RPA assay for the detection of HCoV-NL63. 

Additionally, the assay is characterized by short duration, isothermal amplification, and simple instrumentation. 
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. Introduction 

Respiratory viruses have an immense impact on our healthcare sys-
ems as they are a frequent cause for diseases in humans and for medical
onsultation in primary care [1–4] . Among respiratory viruses such as
hino- or influenza viruses, the different human coronaviruses (HCoV)
orrespond to a large group [ 5 , 6 ]. The seasonal representatives of the
amily of Coronaviridae and relevant to humans are: HCoV-229E, HCoV-
L63, HCoV-OC43 und HCoV-HKU1 [7] . They mainly cause upper res-
iratory tract infections with rather mild symptoms but are also capable
Abbreviations: HCoV-NL63, human coronavirus NL63; RT-RPA, reverse transcrip  

mplification; N-gene, nucleocapsid gene; exo-IQ, internally quenched exo probe. 
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tion recombinase polymerase amplification; LAMP, loop-mediated isothermal

f seriously infecting the lower respiratory tract, especially in immuno-
ompromised people [1] . The large ribonucleic acid (RNA) genome of
oronaviruses is prone to homologous and non-homologous recombina-
ion [ 8 , 9 ]. Recombination events together with point mutations enable
he viruses to form new variants and allow species crossing. This has
ed to severe epidemics (SARS-CoV-1 und MERS-CoV) and even an on-
oing pandemic (SARS-CoV-2) [ 7 , 10 ]. In 2004, the human coronavirus
CoV-NL63 was first identified in eight individuals suffering from up-
er or lower respiratory tract illness in the Netherlands [11] . Subsequent
tudies showed symptoms in children, senior citizen and immunocom-
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Table 1 

Oligonucleotide primers and probes sequences and modifications for HCoV- 

NL63 RT-RPA and RT- PCR assays. Post-synthetic modification of the RT-RPA 

exo-IQ probes and for RT-PCR according to [26] for real-time detection. BMN- 

Q535 as quencher, dT-FAM deoxythymidine nucleoside derivatized with 6- 

flourescein in exchange for thymidine, dSpacer as abasic site in exchange for 

adenine and C3-spacer as alkyl chain with three Carbon atoms. 

Oligonucleotide Sequence (5’ → 3’) 

RT-RPA 

Forward primer TCAGAATGGTGTTGATGCCAAAGGTTTT 

Probe CAGGCTGCGTTATTCTTTGATAGTGAGGT[-dT- 

FAM-][-dSpacer-] 

G[-BMN-Q535-]CACTGATGAAGTGGGTGA[-C3- 

spacer] 

Reverse primer ACAAGCATTTTGTAGGTGTAGGTAATCT 

RT-PCR 

Forward primer TGGAATGTTCAAGAGCGTTGGCGT 

Probe [6-FAM-]TGCGCAGG[-BMN-Q535- 

]GGGCAACGTGTTGATTTGC[-BMN-Q535] 

Reverse primer GCAACCCAAACAACACCATCAGAACG 
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romised people ranging from rhinorrhea, cough, fever to bronchiolitis
12–15] . Extra respiratory tract symptoms included digestive problems,
titis, and conjunctivitis [16] . Data show varying incidences of HCoV-
L63 infections in children and adults with respiratory tract symptoms
etween 0.5 – 3 % [17–19] . Infections with endemic coronaviruses are
ot subject to routine testing, resulting in underestimated numbers [20] .
oreover, mild symptoms caused by more pathogenic coronaviruses

uch as SARS-CoV-2 are similar to HCoV-NL63 symptoms, hence clini-
al differentiation is difficult. On the other hand, lower tract respiratory
nfection with HCoV-NL63 in younger children is associated with croup
ndicating the pathogenic potential of HCoV-NL63 [12] . To differenti-
te respiratory pathogens and to rapidly distinguish between the human
oronaviruses fast and reliable assays are urgently required. 

Currently, nucleic acid amplification techniques for the detection
f HCoV-NL63 are either based on polymerase chain reaction (PCR)
 20 , 21 ] or on loop-mediated isothermal amplification (LAMP) [22] .
oth assays need specialized instrumentation and the time-to-diagnosis
akes more than one hour [ 22 , 23 ]. Recombinase polymerase amplifi-
ation (RPA) is a nucleic acid amplification technique that combines
imple reaction conditions and short amplification times. In contrast to
AMP and similar to PCR, RPA requires only two primers and one probe
or amplification of target RNA. Different studies show that RPA tech-
ology has a high analytical sensitivity and specificity which is in many
ases comparable to PCR as benchmark method [24] . Due to isothermal
mplification at 42 °C and enzymatic processes for all steps of nucleic
cid amplification the RPA assays are completed within 10 – 20 min.
y labeling the target regions with a fluorescence probe, amplification

s made visible in real-time [ 24 , 25 ]. A reverse transcription (RT) step
llows the amplification of RNA as shown for the SARS-CoV-2 RT-RPA
ssay [26] . RPA assays were successfully employed for the point-of-care-
esting of Ebola virus [27] , avian influenza A (H7N9) virus [28] and
engue virus [29] as well as for the coronaviruses MERS-CoV, SARS-
oV-2 and bovine coronavirus [ 26 , 30 , 31 ]. 

Here we present a newly developed RT-RPA assay based on the
apid detection of the nucleocapsid gene (N-gene) of human coronavirus
CoV-NL63 RNA suitable for point-of-care-testing. Sensitive amplifica-

ion is demonstrated for in vitro transcribed RNA as well as for the ge-
omic viral RNA from cell culture supernatant spiked into nasopharyn-
eal swab samples. Furthermore, our assay is highly specific: It neither
etected other human coronavirus RNA including SARS-CoV-2 nor DNA
r RNA from 27 different respiratory viruses. 

. Material and methods 

.1. Primer and probes, RPA settings and in silico analyses 

RPA primers and internally quenched exo probes (exo-IQ)
 26 , 32 ] for the detection of HCoV-NL63 N-gene (GenBank RefSeq:
C_005831.2) were designed with PrimedRPA software [33] in accor-
ance with the recommendations given in the TwistDx assay design
anual [34] . All oligonucleotides were evaluated in silico regarding sec-

ndary structure formation (Mfold program from UNAFold Web Server)
nd dimer formation (Multiple Primer Analyzer, Thermo Fisher). More-
ver, each sequence was aligned with NCBI blast tool to check specificity
owards the selected target sequence. Additionally, the RPA amplicon
ithin the reference sequence (RefSeq NC_005831.2) was aligned to 136
ene sequences (NCBI GenBank search and alignment) of the nucleocap-
id protein of circulating HCoV-NL63 strains (Supplemental figure 1) to
heck for sequence variations. 

PCR primers and probes were designed (Primer3 software) and
ynthesized accordingly. All HCoV-NL63 N-gene specific primers and
robes (listed in Table 1) were provided by biomers.net (biomers.net
mbH). Low volume single tube RT-RPA, was performed in the ESE-
uant isothermal fluorescence reader (Qiagen) using the TwistAmp exo
it (TwistDx) at 42 °C as described elsewhere [ 26 , 32 ]. RT-PCR was per-
ormed with the LightCycler 480 II instrument (Roche Diagnostics) using
2 
ne-Step RT-PCR Mix (New England Biolabs) according to NEB protocol
35] . 

.2. Statistical methods 

For fluorescence data analysis from RT-RPA, the first value detected
fter mixing is subtracted from itself and from all other values after
ixing for background correction. Additionally, a fluorescence thresh-

ld needed to be set for defining a sample as positively or negatively
etected. To do so, fluorescence values of eight no template control
NTC) runs were averaged, and the standard deviation was calculated.
or each data point, the triple of the standard deviation was added
o the average value and the highest value was set as threshold [26] .
he threshold times were defined as the point of intersection between
he sigmoidal regression curve from amplification, generated using five-
arameter logistic regression of qpcR package with R language [36] , and
he calculated fluorescence threshold. For RT-PCR, C t values were calcu-
ated with LightCycler 480 software (Roche Diagnostics). Probit analysis
as used to estimate lower limit of detection (analytical sensitivity) for
oth amplification methods and was performed with Analyse-it software
Analyse-it Software, Ltd.) [37] . 

.3. In vitro transcribed RNA 

RNA was synthesized from plasmid DNA (Invitrogen) by in vitro tran-
cription (HiScribe T7 High Yield RNA Synthesis Kit, NEB), followed by
igestion of the DNA template (DNAse I, NEB), purification (RNA Clean-
p Kit, Norgen Biotek) and quantification of the RNA (RiboGreen assay,

nvitrogen). Finally, a dilution series from 10 7 to 10 0 RNA copies/μl was
roduced. 

.4. Virus culture 

Subconfluent LLC-MK2 cells (CCL-7 TM , ATCC American Type Cul-
ure Collection) were infected with HCoV-NL63, Amsterdam I isolate,
purchased from National Collection of Pathogenic Viruses operated by
ublic Health England, catalog number: 2008102v) with a multiplicity
f infection of 0.01. Prior to infection, cells were grown in 175 cm 

2 tis-
ue culture flasks using Dulbecco’s Modified Eagle’s Medium (DMEM),
upplemented with 4 mM Glutamine, 1 mM sodium pyruvate (every-
hing purchased from Biowest) and 10 % fetal calf serum (c.c.pro) at
7 °C in a 5 % CO 2 atmosphere. Virus supernatant was harvested seven
ays post infection. Viral RNA from cell culture supernatant was puri-
ed (QIAamp Viral RNA Mini Kit, Qiagen), eluted in 50 μl PCR-grade
ater (Roth) and quantified by RT-PCR. A dilution series from 10 7 to
0 0 RNA copies/μl was produced. 
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Fig. 1. Real-time RT-RPA sensitivity assay with synthetic HCoV-NL63 RNA. A) Fluorescence over time was measured in an RT-RPA running at 42 °C for 20 min. 

Each standard concentration containing synthetic HCoV-NL63 RNA (10 7 RNA molecules/reaction represented by dark blue line; 10 6 , yellow; 10 5 , purple; 10 4 , black; 

10 3 , light blue; 10 2 , magenta; 10 1 , orange) as well as PCR-grade water as no template-control (NTC; grey line) was assessed in 8 replicates (n = 8). Normalized data 

are shown, and threshold is indicated as dotted black line. B) Calibration line for the detection of HCoV-NL63 RNA in a real-time RT-RPA assay. Shown is the linear 

correlation of threshold times over the decadic logarithm of the RNA molecules/reaction. C) Probit regression for synthetic HCOV-NL63 RNA in PCR-grade water 

revealing a 95 % detection probability (analytical sensitivity) of 13 RNA copies/reaction (dotted red line). 
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.5. Specificity testing 

For specificity testing, viral RNA of the human coronaviruses HCoV-
C43, HCoV-229E, SARS-CoV, MERS-CoV and SARS-CoV-2 (European
irus Archive global) were analyzed in HCoV-NL63 RT-RPA. Further-
ore, 27 nucleic acid samples from a variety of respiratory viruses

Friedrich Loeffler institute, Germany and Quality Control for Molecular
iagnostics (QCMD), UK) were also analyzed (list of used viral nucleic
cids for specificity analysis see Supplemental table 1). 

.6. Clinical samples 

50 nasopharyngeal swab samples, collected for the purpose of rou-
ine screening for SARS-CoV-2, were analyzed with HCoV-NL63 RT-
PA assay (Labor Staber, Kassel, Germany and Kliniklabor Neuruppin,
ermany). Viral RNA was extracted with QIAamp Viral RNA Mini Kit

Qiagen) or QuickExtract DNA Extraction Solution (Lucigen). Quality
f samples was assessed by detecting the human RNAse P with RT-
CR according to CDC protocol yielding C t values between 25 to 34
 38 , 39 ]. 

. Results 

Analytical assay sensitivity (lower limit of detection) of the newly
stablished HCoV-NL63 RT-RPA were assessed and compared to HCoV-
L63 RT-PCR using eight concentrations of the synthetic HCoV-
3 
L63 RNA (10 7 – 10 0 RNA molecules/reaction; n = 8) ( Figure 1 A).
 100 % detection rate was achieved in concentrations down to
0 2 RNA molecules/reaction for both RPA and PCR. For 10 1 RNA
olecules/reaction a 50 % detection rate was observed (4/8 positive)

or the RPA and for 10 0 RNA molecules/reaction no amplification could
e detected (0/8 positive) ( Figure 1 A). A linear correlation of thresh-
ld times and amount of RNA was observed for 10 2 to 10 7 RNA target
opies ( Figure 1 B) and a threshold time of 8 min for 10 2 RNA molecules.
sing Probit regression, the analytical sensitivity was determined to be
3 RNA molecules/reaction ( Figure 1 C) for the RPA assay. This was in
he same order of magnitude when compared to HCoV-NL63 RT-PCR
hich was 5 RNA molecules/reaction (Supplemental figure 2A and B).
irst detection of 10 1 synthetic RNA molecules/reaction occurred at a
 t -value of 33 which corresponds to 33 min according PCR run times
NEB protocol [35] ; Supplemental figure 2A). 

In a specificity experiment, it was assessed if this newly designed
eal-time RT-RPA detects HCoV-NL63 RNA only. Three respiratory virus
NAs and 29 different respiratory virus RNAs (Supplemental table 1)

ncluding RNA from SARS-CoV-1, SARS-CoV-2, MERS-CoV, HCoV-OC43
nd HCoV-229E were used as template for the RT-RPA reaction. The RT-
PA assay neither detected any of the other human coronavirus RNAs
or the other respiratory virus DNAs or RNAs indicating that the assay
s highly specific for HCoV-NL63 RNA (data not shown). 

The newly designed HCoV-NL63 assay was then used to analyze 50
asopharyngeal swab samples from patients originally tested for SARS-
oV-2 infection. RT-PCR revealed that all 50 samples were negative for
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Fig. 2. Real-time RT-RPA sensitivity assay with genomic viral HCoV-NL63 RNA in human nasopharyngeal background. A) Fluorescence over time was measured in 

an RT-RPA running at 42 °C for 20 min. Each standard concentration containing viral HCoV-NL63 RNA from cell culture and human RNA from swab sample material 

(5 × 10 6 RNA molecules/reaction represented by dark blue line; 5 × 10 5 , yellow; 5 × 10 4 , purple; 5 × 10 3 , black; 5 × 10 2 , light blue; 5 × 10 1 , magenta; 5 × 10 0 , 

orange) as well as PCR-grade water as no template-control (NTC; grey line) was assessed in 8 replicates (n = 8) and 2 replicates (n = 2) containing 5 × 10 2 synthetic 

RNA molecules/reaction as positive control (dotted light blue line). Normalized data are shown, and threshold is indicated as dotted black line. B) Calibration line for 

the detection of viral HCoV-NL63 RNA in a real-time RT-RPA assay. Shown is the linear correlation of threshold times over the decadic logarithm of the RNA target 

concentration. C) Probit regression for viral HCoV-NL63 RNA from cell culture and human RNA from swab sample material revealing a 95 % detection probability 

(analytical sensitivity) of 170 RNA molecules/reaction. 
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CoV-NL63. Similarly, HCoV-NL63 RT-RPA analysis of 48 swab sam-
les showed no amplification at all, and in 2 samples fluorescence sig-
als appeared marginally above calculated threshold but did not show
xponential amplification and were thus interpreted as negative (data
ot shown). 

In a next step, extracted RNA from one of the collected nasopha-
yngeal swab samples was spiked with genomic viral HCoV-NL63 RNA
xtracted from cell culture supernatant. Therefore, eight standard con-
entrations of viral HCoV-NL63 RNA (10 7 – 10 0 HCoV-NL63 RNA
olecules/reaction) were mixed in the same ratio with extracted hu-
an RNA from the swab sample. Thus, concentrations used for RT-
PA measurement ranged from 5 × 10 6 – 5 × 10 0 HCoV-NL63 RNA
olecules/reaction which were analyzed in eight replicate measure-
ents. A 100 % detection rate could be shown for concentrations down

o 5 × 10 2 RNA molecules/reaction, 25 % detection rate for 5 × 10 1 RNA
olecules/reaction (2/8 positive) and 12.5 % detection rate for 5 × 10 0 

NA molecules/reaction (1/8 positive) ( Figure 2 A). A linear correla-
ion of threshold time and RNA amount was observed in the range from
 × 10 3 to 5 × 10 6 RNA molecules/reaction ( Figure 2 B). A threshold
ime of 7 min was observed for 5 × 10 2 RNA molecules ( Figure 2 B) and
he analytical sensitivity for RT-RPA is at 170 RNA molecules/reaction
 Figure 2 C) determined by Probit regression. For the RT-PCR assay the
nalytical sensitivity is at 25 RNA molecules/reaction and first detec-
4 
ion of 5 × 10 1 RNA molecules/reaction isolated from viral particles
ccurred at a C t -value of 32 (corresponding to 32 min; Supplemental
gure 2C and D). 

. Discussion 

HCoV-NL63 is a human coronavirus which usually causes mild in-
ections in humans. However, it is also able to cause more severe dis-
ase, e.g. in younger children where it is associated with croup [12] .
oreover, symptoms caused by HCoV-NL63 are often not very specific

nd similar to symptoms caused by other respiratory pathogens. HCoV-
L63 in clinical samples is usually detected by real-time RT-PCR, which

equires sophisticated instrumentation in a laboratory environment. In
his work a reliable and simple isothermal amplification method for
he detection of human coronavirus NL63 was developed. The ana-
ytical sensitivity was determined to be 13 RNA molecules/reaction
sing in vitro transcribed HCoV-NL63 N-gene derived synthetic RNA.
his is comparable to values obtained with MERS-CoV and SARS-CoV-
 RT-RPA assays, being at 21 RNA molecules/reaction and 8 RNA
opies/reaction, respectively [ 30 , 26 ]. The analytical sensitivity of our
CoV-NL63 RT-RPA assay for RNA isolated from nasopharyngeal swab

amples and spiked with genomic viral RNA was determined to be 170
NA molecules/reaction and was therefore somewhat less sensitive in
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omparison to RT-PCR (25 RNA molecules/reaction). Nevertheless, this
ewly designed HCoV-NL63 RT-RPA assay should be sensitive enough
or the detection of HCoV-NL63 in clinical samples since Van der Hoek
t al. showed that samples from children with HCoV-NL63 infection had
 median viral load of 2.1 × 10 6 copies/ml [12] . 

100 % specificity was shown by analyzing 32 nucleic acid samples
rom a variety of respiratory viruses including the other coronaviruses
n RT-RPA. HCoV-HKU1 was not included in the specificity panel due
o its problematic cultivation performance in cell culture [40] . When
erforming a Basic Local Alignment Search Tool (BLAST) alignment be-
ween HCoV-NL63 (RefSeq: NC_005831.2) and HCoV-HKU1 (RefSeq:
C_006577.2) N-genes, no relevant sequence homology was shown. 

In terms of assay run times, the RT-RPA shows fast amplifica-
ion with the first positive signal at 8 min for 10 2 synthetic RNA
olecules/reaction and at 7 min for 5 × 10 2 genomic viral RNA
olecules/reaction. Therefore, the RT-RPA is considerably faster than

he RT-PCR which requires approximately 30 min for detection of the
rst positive signal for both, 10 1 synthetic RNA molecules/reaction and
 × 10 1 genomic viral RNA molecules/reaction. 

Moreover, the combination of the RT-RPA with a simple and quick
NA extraction protocol is essential and was shown in this study to func-

ion with both, QIAamp (Qiagen) or QuickExtract (Lucigen) extraction
ethods. While the QIAmp protocol still requires a laboratory setting,

he QuickExtract protocol is a suitable method for quick nucleic acid ex-
raction at the point-of-care. In combination with such a simple nucleic
cid extraction method, the RT-RPA could represent a rapid diagnostics
lternative compared to other methods such as PCR or LAMP [ 22 , 24 ]. 

A limitation of this study is, however, that no clinical samples posi-
ive for HCoV-NL63 were analyzed. This is due to a reduced transmission
f respiratory viruses, including the seasonal coronaviruses, within the
ast two years during Covid-19 pandemic [ 41 , 42 ]. This, together with
 lack of routine testing for HCoV-NL63, made acquisition of positive
linical samples very difficult. Future studies should contain patient re-
ruiting and parallel sample testing with this RT-RPA assay. 

Due to the length of their RNA-genome, coronaviruses are prone to
he emergence of mutations. Therefore, we aligned the reference se-
uence which was used for primer design to 136 HCoV-NL63 N-gene
equences found in NCBI GenBank. We detected two point mutations
hich might affect our HCoV-NL63 RPA, one located in the probe (45
f 136 sequences), and the other in the reverse primer (47 of 136 se-
uences, for details refer to supplemental figure 1). Interestingly, these
wo mutations are mutually exclusive, i.e. they cannot be found together
n one HCoV-NL63 isolate. Since different studies have shown that RPA
olerates a small number of mismatches within the primers and probes
43–45] we do not expect a major impact on amplification performance
f one of these two mismatches is present. For future studies, we plan to
est if mixtures of degenerated reverse primers and probes can improve
he detection of different HCoV-NL63 strains. Similar approaches were
lready used successfully for virus detection by RPA [ 46 , 47 ]. 

Altogether, our work demonstrates the successful use of RPA tech-
ology for the rapid detection of HCoV-NL63 with high analytical sensi-
ivity and specificity. In the future, we plan to implement our RPA-based
CoV-NL63 assay in microfluidic devices similar to the already estab-

ished assays for the detection of Clostridioides difficile [48] , multidrug
esistance Gram negative (MRGN) Klebsiella pneumoniae [49] or avian
nfluenza virus [ 28 , 50 ]. The combination of RPA and microfluidics sim-
lifies pathogen detection to a level where centralized laboratories and
rained personnel are no longer required and thus allows the develop-
ent of rapid and simple but yet sensitive and specific methods for the
oint-of-care-testing of pathogens. 
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