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Abstract
In radiology, natural language processing (NLP) allows the extraction of valuable information from radiology reports. It 
can be used for various downstream tasks such as quality improvement, epidemiological research, and monitoring guideline 
adherence. Class imbalance, variation in dataset size, variation in report complexity, and algorithm type all influence NLP 
performance but have not yet been systematically and interrelatedly evaluated. In this study, we investigate these factors on 
the performance of four types [a fully connected neural network (Dense), a long short-term memory recurrent neural network 
(LSTM), a convolutional neural network (CNN), and a Bidirectional Encoder Representations from Transformers (BERT)] 
of deep learning-based NLP. Two datasets consisting of radiologist-annotated reports of both trauma radiographs (n = 2469) 
and chest radiographs and computer tomography (CT) studies (n = 2255) were split into training sets (80%) and testing sets 
(20%). The training data was used as a source to train all four model types in 84 experiments (Fracture-data) and 45 experi-
ments (Chest-data) with variation in size and prevalence. The performance was evaluated on sensitivity, specificity, positive 
predictive value, negative predictive value, area under the curve, and F score. After the NLP of radiology reports, all four 
model-architectures demonstrated high performance with metrics up to > 0.90. CNN, LSTM, and Dense were outperformed 
by the BERT algorithm because of its stable results despite variation in training size and prevalence. Awareness of variation 
in prevalence is warranted because it impacts sensitivity and specificity in opposite directions.
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Introduction

A radiology report is the primary communication method 
from radiologists to referring physicians [1, 2]. Radiology 
reports are valuable for individual patient care [3, 4] as well 
as the quality improvement of healthcare systems [5, 6]. At 
an aggregated level, anonymized radiology reports can be 
used to assess diagnostic yield, evaluate guideline adher-
ence, perform epidemiological research, and be used for 
peer feedback and referral clinician feedback [7–11]. These 
applications are not widely implemented, however, because 
the manual classification of free-text radiology reports is 
cumbersome [12].

Automated processing of text is the domain of natural lan-
guage processing (NLP) and has an increasing role in health-
care [13]. NLP has been applied in various applications in 
radiology to annotate texts or extract information [14–16]. 
Natural language processing has evolved from handcrafted 
rule-based algorithms to machine learning-based approaches 
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and deep learning-based methods [17–24]. Deep learning is 
a subset of machine learning where features of the data are 
learned from the data by the application of multilayer neural 
networks [25, 26].

In machine learning, variation in size of the different 
classes in a dataset is called class imbalance. Together with 
dataset size, class imbalance potentially impacts results [27]. 
The impact of sample size and class imbalance is a recog-
nized problem in machine learning in radiology but has not 
been fully explored [28, 29]. For NLP in medical texts, the 
impact of prevalence on model performance is also recog-
nized [30]. In healthcare, the equivalent for class imbalance is 
called prevalence and is defined as the total number of cases 
of a disease at a specific point in time or during a period of 
time. Because the prevalence varies among different diseases 
and populations, class imbalance is inherent to radiological 
datasets. The prevalence also determines how many cases of 
a particular type of pathology are available for analysis in a 
particular population or a specific timeframe. Therefore, a pre-
requisite of the application of deep learning-based NLP into 
medical systems in clinical practice is the knowledge of the 
impact of prevalence and other particular characteristics of the 
radiology report dataset on algorithm performance. Different 
types of radiological examinations, different types of pathol-
ogy, and different reporting styles among radiologists lead to 
variation in report length and complexity from a linguistic 
perspective. Questions that arise in the context of radiology 
and NLP include the following: Does variation in prevalence 
or variation in report complexity limit the application of NLP 
in radiology? What is the recommended dataset size before 
applying NLP in radiology? Which is the recommended algo-
rithm to use? This study will elucidate these questions.

Objectives

1.	 Build a pipeline with four different algorithm types of 
deep learning NLP to assess the impact of dataset size 
and prevalence on model performance.

2.	 Test this pipeline on two datasets of radiology reports 
with low and high complexity.

3.	 Formulate a best practice for deep learning NLP in radi-
ology concerning the optimal dataset size, prevalence, 
and model type.

Methods

Study design

In this retrospective study, we developed a pipeline using 
Python to perform experiments to investigate the impact 
of data characteristics and NLP model type on binary text 

classification performance. The pipeline created subsets of 
data with variable size and prevalence and subsequently used 
this data to train and test four different model types. The 
code for the pipeline is available in the supplementary mate-
rial, including a list of all used packages and their version 
numbers. To ensure the reproducibility of this research, we 
organized this paper according to the Checklist for Artificial 
Intelligence in Medicine (CLAIM) [31].

Data

Two anonymized datasets of radiology reports were retrieved 
from the PACS of a general hospital (Treant Healthcare group, 
the Netherlands). The first dataset (Fracture-data) consisted of 
the reports (n = 2469) of all radiographs between January 2018 
and September 2019 requested by general practitioners during 
the evening, night, and weekend shifts for patients with minor 
injuries to their extremities. The second dataset (Chest-data) 
consisted of the reports (n = 2255) of all chest radiographs (CR) 
and chest computed tomography (CT) studies from the first two 
weeks of March 2020 and the first two weeks of April 2020.

The datasets contained only the report text and annota-
tions. No personal information about patients was included. 
The institutional review board confirmed that informed con-
sent was not needed.

Ground truth

The annotation was performed in Excel. The Fracture-data 
was annotated by one radiologist for the presence or absence 
of a fracture or other type of pathology needing referral to 
the emergency department. The annotations were checked 
for consistency by one of two other radiologists. Discrep-
ancies (3%) were solved in consensus. The Chest-data was 
annotated by a single radiologist for the presence or absence 
of pulmonary infiltrates. For both datasets, different Dutch 
words (or word combinations) were attributed as positive 
cases. The rationale for choosing radiologists for annotation 
was their experience in creating radiology reports and exten-
sive knowledge of the nuances used in radiology reporting.

Post-hoc intra-rater agreement was assessed on random 
sample of 15% of both datasets over one year after the initial 
annotation. This resulted in a Cohen’s kappa value of 0.98 
for the Fracture-data and of 0.92 for the Chest-data. Appen-
dix A1 provides examples of the annotation.

Data partitions

Both datasets were split into separate sets of positive and 
negative cases. All four sets were randomized and split 
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into training (80%) and testing (20%). The positive and 
negative cases of the training sets were kept separate. For 
both the Fracture-data and Chest-data testing sets, the 
positive and negative testing cases were combined.

For the Fracture-data, the training set had 1976 cases (720 
positives, 1256 negatives) and the testing set had 494 cases. For 
the Chest-data, the training set contained 1803 cases (283 posi-
tives, 1520 negatives) and the testing set included 452 cases.

The positive and negative cases were kept separate for use 
as sources for artificially constructed training sets with vari-
able sizes and variable numbers of positive and negative cases. 
Based on the size of the datasets for both the Fracture-data and 
Chest-data, a list was created with all combinations of positive 
and negative cases using increments of 100, starting with 100 
positive and 100 negative cases. For the positive cases of the 
Chest-data, besides 100 and 200, the largest positive number, 
283, was used. These lists were used during training to create 
temporary training sets of a specific size. Figure 1 demonstrates 
the data and processing workflow.

Models

The four models used in this study were a fully connected 
neural network (Dense), a bidirectional long short-term 
memory recurrent neural network (LSTM), a convolutional 
neural network (CNN), and a Bidirectional Encoder Repre-
sentations from Transformers network (BERT) (Table 1).

The Dense, LSTM, and CNN models were created using 
the Keras framework on top of TensorFlow 2.1.

The first layer for these three models was an embedding 
layer. For the Dense network, this was followed by a layer 
that flattened the input matrix and four fully connected 
layers. The LSTM network consisted of two bidirectional 
LSTM layers followed by two fully connected layers. The 
CNN network consisted of a convolutional layer, an aver-
age pooling layer, a convolutional layer, a global average 
pooling layer, and two fully connected layers. An overview 
of the three networks is provided in Appendix A2.

The number of layers and the number of epochs was 
empirically determined on a single training set with the 
original distribution of positive and negative cases for both 
the Fracture-data and Chest-data.

The BERT network was built using the simple trans-
formers library in Python. BERT makes use of transfer 
learning, where models are pre-trained on a large text 
corpus in a particular language that can be fine-tuned for 
specific tasks [32]. In this project, the pre-trained Dutch 
language model 'wietsedv/bert-base-dutch-cased' was used 
from the Huggingface repository [33, 34]. Table 2 presents 
the model hyperparameters and the hardware used.

Training

The training was performed in four steps using the following 
combinations of data and models:

1.	 Fracture-data, Dense/LSTM/CNN
2.	 Fracture-data, BERT
3.	 Chest-data, Dense/LSTM/CNN
4.	 Chest-data, BERT

For each step, the models were trained multiple times 
using the above-mentioned temporary training sets with 
different sizes and prevalence. The number of epochs was 
empirically determined by a test run, resulting in 12 epochs 
for the Dense/LSTM/CNN models and four epochs for the 
BERT model. For the Fracture-data, 84 experiments for each 
model were performed; for the Chest-data, 45 experiments 
were performed for each model.

Evaluation

The class imbalance for the training sets was indicated by 
the imbalance ratio, defined as the size ratio of the majority 
and minority classes.

Model performance was evaluated by assessing sensitiv-
ity, specificity, negative predictive value (npv), positive pre-
dictive value (ppv), area under the curve (auc), and F score 
on the fixed holdout test set from the Fracture-data (preva-
lence 0.36) and Chest-data (prevalence 0.16). No testing on 
an external dataset was performed.

The performance metrics were compared for each model 
using the t-test. The value p < 0.05 was considered to be 
statistically significant. Pearson correlation coefficients were 
calculated for training size, training prevalence, and all per-
formance metrics for the Fracture-data and Chest-data sets.

Results

Data

Figure 2 demonstrates the distribution of report word 
count for both Fracture-data and Chest-data. The Chest-
data is more complex because of the larger variation in 
report size and lower prevalence of positive cases. The 
prevalence varies for the training sets of the Fracture-
data from 0.08–0.88; for the Chest-data, from 0.06–0.74. 
The imbalance ratios of the Fracture-data and the Chest-
data training sets range from 7.3–11.5 and from 2.9–15.7, 
respectively.
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Fig. 1   Flowchart of data processing, training, and testing. + and – 
refer to cases of the positive and negative classes. The input for the 
variable training sets are all combinations from positive and negative 
cases with a step size of 100. For the Fracture-data, the positive cases 

ranged from 100–700 and the negative cases from 100–1200. For the 
Chest-data, the positive cases ranged from 100–283 and the negative 
cases from 100–1500
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Table 1   Model characteristics

Architecture Unique characteristics and motivation References NLP in Radiology

ANN / Dense • Artificial neural network
• No specific context awareness
• Baseline model for comparative purposes

[23]

CNN • Convolutional neural network
• Well known from image classification
• A sliding window (or filter or kernel) assesses the context of data. This window 

can be 1D (for sequential data like text), 2D (for images), of 3D (for 3D datasets 
or video).

[35, 39]

LSTM •  Long short-term memory
• Recurrent neural network (RCN)
• Designed for sequence data like text
• Feedback connections transfer information from the context

[20, 24, 37, 42]

BERT • Bidirectional Encoder Representations from Transformers
• Pre-trained on massive text datasets.
• Fine-tuning for specific tasks
• Attention mechanism lets words focus on each other

[21, 22, 37, 38]

Table 2   Model hyperparameters 
for the ANN/Dense, CNN and 
LSTM models implemented 
with sequential layers in Keras 
(a) and for the BERT model 
implemented with simple 
transformers (b), and the 
hardware used for training (c)

a. ANN/Dense, CNN, LSTM

Parameter Value or comment
Vocabulary size 2500
Embedding dimension 32
Input length 150 (Fracture-data), 250 (Chest-data)
Batch size Default (32)
Loss function Binary cross entropy
Weigths for the loss None
Weight regularization None
Dropout No dropout layers were applied in the final model
Optimizer Adam, default parameters

- learning rate 0.01
- no learning rate schedule

Epochs 12
b. BERT
Parameter Value or comment
Learning_rate 4e-5
Model_type bert
Model_name wietsedv/bert-base-dutch-cased
Num_train_epochs 4
Sliding_window False
Train_batch_size 8
Use_cuda False
Use_early_stopping False
Weight None
All other parameters (also) default
c. Hardware used for training
Processor Intel Core i7, 2.20 GHz
RAM 16 GB
GPU NVIDIA Geforce GTX 1050, 4 GB
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Fig. 2   Stacked histogram demonstrating report size and binary distribution of (a) Fracture-data (1 = fracture present, 0 = fracture absent) and (b) 
Chest-data (1 = infiltrate present, 0 = infiltrate absent)
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Model performance

Figures 3 and 4 demonstrate scatterplots for model perfor-
mance metrics and training dataset size and prevalence, 
respectively. Model performance metrics on the test set 
ranged from 0.56–1.00 for the Fracture-data and from 
0.04–1.00 for the Chest-data. Table 3 demonstrates the Pear-
son correlation coefficients between the performance met-
rics and training set size and prevalence, respectively. For 
both datasets, there is a strong negative correlation between 
prevalence and specificity and positive predictive value. The 
positive correlation between prevalence and sensitivity and 
the negative predictive value was strong in the Fracture-data 
set and moderate to strong in the Chest-data set. Size had 
only a strong positive correlation with specificity and PPV 
in the Chest-data set.

In Fig.  5, performance metrics are summarized in 
boxplots.

In Table 4 (Fracture-data) and Table 5 (Chest-data), all 
pairs of models are compared for all performance metrics. 
For the Fracture-data, the BERT model outperforms the 
other models on most metrics, except the sensitivity and 
negative predicted value compared with LSTM and CNN. 
For the Chest-data, BERT outperforms the other models 
for sensitivity, npv, AUC, and F score. Specificity and ppv 
demonstrated no significant differences among the models. 
Table 6 highlights the most important findings.

Discussion

In this study, we systematically evaluated the impact of 
training dataset size and prevalence, model type, and data 
complexity on the performance of four deep learning NLP 
models applied to radiology reports. The semi-automated 
pipeline allowed us to construct training sets of different 
sizes and different levels of class imbalance. This setup was 
chosen to discover the lower limit of usable dataset size 
and prevalence, as well as the limit above which adding 
more data had no added value. The results demonstrated 
that report complexity has a major impact on performance, 
illustrated by the substantially lower performance using the 
more complex dataset. For both datasets, the impact of train-
ing size and training prevalence demonstrated an identical 
pattern. Specificity and positive predictive value increased 
until there were about 800–1000 training samples; the values 
plateaued after that. Sensitivity and negative predictive value 
did not benefit substantially from an increase in the amount 
of training data. Prevalence correlated with sensitivity and 
positive predictive value and negatively correlated with 
specificity and negative predictive value. This aligns with 
the theoretically expected direction of effect, as explained 
in Appendix A3: In the case of class imbalance, the model 

tends to predict the majority class, and the positive and nega-
tive predicted values decrease by a reduction in false positive 
and false negative predictions, respectively.

The BERT model was the most stable algorithm in this 
study and demonstrated a limited impact of variation in 
data complexity, prevalence, and dataset size. BERT out-
performed the other models on most metrics. The drawback 
of using BERT was the substantially longer training time of 
30–60 min compared with less than 1 min for the other three 
algorithm types.

The conventional fully connected neural network (Dense) 
demonstrated the worst performance. The major differ-
ence between it and BERT, CNN, and LSTM was that the 
relationship between individual words was not taken into 
account. It is therefore not surprising that the nuances that 
radiologists embed in their reports are better extracted by the 
more advanced algorithm types.

To our knowledge, this is the first systematic, multifacto-
rial comparative analysis of deep learning NLP in the field 
of radiology reporting. While no other study includes all 
the factors we investigated in ours, several authors describe 
one or more factors in their studies on natural language 
processing.

Comparison of CNN and traditional NLP

Weikert et al. [35] compared two conventional NLP meth-
ods and a deep learning NLP (CNN) model and analyzed 
the impact of the amount of training data. The CNN out-
performed the other models. Even though the authors also 
investigated chest radiology reports, the main difference 
was that they used only the impression section of the CT 
pulmonary angiography, which resulted in a more focused 
classification task. This could also explain the difference in 
the number of training reports needed to reach a plateau in 
performance (500 in their study compared to 800–1000 in 
our study).

Krsnik et al. [36] compared several traditional NLP meth-
ods with CNN when classifying knee MRI reports. The 
CNN outperformed the other techniques and had high per-
formance (F1 score was 0.89–0.96) for the most represented 
conditions with a prevalence of 0.57–0.63. Conditions with 
lower prevalence were better detected with the conventional 
NLP methods. This illustrates the relationship between NLP 
model performance and prevalence and model type. Con-
trary to our study, no variation in prevalence was used.

Barash et al. [24] compared five different NLP algo-
rithms, including four LSTM deep learning-based methods, 
and applied them to classify Hebrew language radiology 
reports in a general task (normal vs. abnormal, prevalence 
46%) and a specific task (hemorrhage present or absent, 
prevalence 7%). The results were in the same range as our 
study, including lower sensitivity (66%–79%) and ppv (70%) 
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and higher specificity and npv in the low-prevalence task, 
compared with the equal sensitivity/specificity (88%) and 
ppv/npv (90%) in the high-prevalence task.

Comparison of LSTM and BERT

Datta et al. [37] applied several deep learning NLP methods 
to chest radiology reports where BERT outperformed LSTM. 
Instead of annotations at the report level (as in our study), they 
used annotations at the sentence level with words or a combina-
tion of words, not only to indicate diagnoses but also the spatial 
relation between any finding and its associated location. Because 
of this difference, the results are not directly comparable. The 
authors used under-sampling to deal with the substantial class 
imbalance at the sentence level in their data. In under-sampling, 
cases from the over-represented class are ignored in the training 
dataset. In fact, this is a variation of our approach with variation 
in the fraction of positive and negative cases to optimize model 
performance. At the level within the sentences, the authors 
described a higher performance for the words (5–6 times more 
frequent) with spatial information (F score 91.9–96.4) com-
pared with less frequent words describing diagnoses (F score 
75.2–82.8). Our study supports these results with a greater 
imbalance ratio and a greater performance difference.

Comparison of different BERT models

Bressem et al. [38] compared four different BERT models, 
including RAD-BERT, that were specifically pre-trained on a 
large corpus of radiology texts. One of their other models was a 
pre-trained native language (German) model, just as we used a 
pre-trained Dutch model. Their analysis on the impact of vari-
ation in training set size for fine-tuning on model performance 
demonstrate a curve with a steep increase between 200–1000 
cases, a gradual increase between 1000–2000, and a plateau in 
the 3000–4000 range. This is confirmed in our study. The differ-
ent investigated items in the radiology reports had differences in 
prevalence and also different model performance metrics. This 
suggests a relation between performance and prevalence, but the 
authors did not vary the prevalence within the dataset, as we did 
in our study. The best-performing model demonstrated a best 
pooled auc of 0.98, compared with a best auc of 0.94 (Chest-
data) and 0.96 (Fracture-data) in our study for the BERT model.

Our study and the referenced literature demonstrate the 
surprisingly high performance of deep learning NLP in radi-
ology reporting. Information from both simple and more 
complex unstructured radiology reports can be extracted and 

used for downstream tasks such as epidemiological research, 
identification of incidental findings, assessment of diag-
nostic yield and imaging appropriateness, and labeling of 
images for training of computer vision algorithms [39–42].

Limitations

The absence of inter-rater agreement assessment of the 
ground-truth annotations is a limitation. However, an 
unblinded assessment of the consistency of the annotations 
of the the Fracture-dataset by two radiologists and a blinded 
intra-rater agreement assessment of both datasets demon-
strated excellent results.

Even though we constructed training sets with consider-
able variation in size and prevalence, the possible combina-
tions were dependent on the original datasets' characteristics. 
The impact of variation in size and prevalence beyond these 
limits should be explored in further research.

Another limitation is that we investigated two report 
complexity levels but did not consider variation in report 
size within the datasets. Further research should elucidate to 
what extend NLP model performance depends on the size of 
radiology reports both in the training sets and the test sets. 
This is relevant because for clinical texts considerable larger 
than our current dataset research demonstrated a reduced 
performance of BERT compared with simpler architectures 
[43].

The results of our study are not directly generalizable to 
radiology reports from other institutions or other languages. 
External validation of the models should be performed to 
assess whether the results are generalizable to radiology 
reports from other institutions. Because BERT models are 
pre-trained on large datasets, and because our BERT model 
proved to deliver more stable results than the other models 
in our study, we expect a superior performance of BERT in 
the case of external validation.

Fig. 3   Scatterplot of model performance metrics (vertical axis) and 
training dataset size (horizontal axis) for (a) Fracture-data and (b) 
Chest-data. The size of the dots corresponds to the training dataset 
prevalence

◂

Table 3   Pearson correlation 
coefficients for training set 
size; prevalence and model 
performance metrics

Fracture Size Prevalence

Sensitivity 0,04 0,74
Specificity 0,36 -0,75
PPV 0,39 -0,80
NPV 0,05 0,74
AUC​ 0,36 0,16
F1_score 0,42 -0,02
Chest Size Prevalence
Sensitivity -0,27 0,61
Specificity 0,60 -0,88
PPV 0,75 -0,88
NPV -0,23 0,59
AUC​ 0,05 0,20
F1_score 0,28 -0,11
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Fig. 4   Scatterplot of model performance metrics (vertical axis) and 
prevalence (horizontal axis) for (a) Fracture-data and (b) Chest-data. 
The size of the dots corresponds to the training dataset size

◂

Table 4   Comparison and t-test statistics of all performance metrics 
for all combinations of models trained on Fracture-data. The bold and 
underlined models have significantly better performance in the par-
ticular comparisons

Metrics Model 1 Model 2 tstat p-value

Sensitivity BERT Dense 4.375 0.000
Sensitivity BERT LSTM 0.991 0.323
Sensitivity BERT CNN 0.553 0.581
Sensitivity Dense LSTM -3.258 0.001
Sensitivity Dense CNN -3.511 0.001
Sensitivity LSTM CNN -0.358 0.721
Specificity BERT Dense 4.488 0.000
Specificity BERT LSTM 4.113 0.000
Specificity BERT CNN 3.447 0.001
Specificity Dense LSTM -1.978 0.050
Specificity Dense CNN -1.828 0.069
Specificity LSTM CNN 0.048 0.962
PPV BERT Dense 5.155 0.000
PPV BERT LSTM 4.465 0.000
PPV BERT CNN 3.552 0.000
PPV Dense LSTM -1.936 0.055
PPV Dense CNN -2.022 0.045
PPV LSTM CNN -0.258 0.797
NPV BERT Dense 4.795 0.000
NPV BERT LSTM 1.138 0.257
NPV BERT CNN 0.620 0.536
NPV Dense LSTM -3.513 0.001
NPV Dense CNN -3.846 0.000
NPV LSTM CNN -0.435 0.664
AUC​ BERT Dense 10.730 0.000
AUC​ BERT LSTM 4.541 0.000
AUC​ BERT CNN 3.618 0.000
AUC​ Dense LSTM -6.329 0.000
AUC​ Dense CNN -6.294 0.000
AUC​ LSTM CNN -0.385 0.701
F1_score BERT Dense 11.362 0.000
F1_score BERT LSTM 5.608 0.000
F1_score BERT CNN 4.387 0.000
F1_score Dense LSTM -6.205 0.000
F1_score Dense CNN -6.171 0.000
F1_score LSTM CNN -0.427 0.670

Table 5   Comparison and t-test statistics of all performance metrics 
for all combinations of models trained on Chest-data. The bold and 
underlined models have significantly better performance in the par-
ticular comparisons

Metrics Model 1 Model 2 t-stat p-value

Sensitivity BERT CNN 3.559 0.001
Sensitivity BERT LSTM 4.493 0.000
Sensitivity BERT Dense 8.416 0.000
Sensitivity CNN LSTM 0.901 0.370
Sensitivity CNN Dense 5.151 0.000
Sensitivity LSTM Dense 4.333 0.000
Specificity BERT CNN 0.054 0.957
Specificity BERT LSTM 0.174 0.862
Specificity BERT Dense 0.138 0.890
Specificity CNN LSTM 0.088 0.930
Specificity CNN Dense 0.082 0.935
Specificity LSTM Dense 0.015 0.988
PPV BERT CNN 0.051 0.959
PPV BERT LSTM 1.401 0.165
PPV BERT Dense 1.046 0.299
PPV CNN LSTM 1.329 0.187
PPV CNN Dense 0.990 0.325
PPV LSTM Dense -0.156 0.876
NPV BERT CNN 3.516 0.001
NPV BERT LSTM 4.821 0.000
NPV BERT Dense 9.064 0.000
NPV CNN LSTM 1.135 0.259
NPV CNN Dense 5.536 0.000
NPV LSTM Dense 4.561 0.000
AUC​ BERT CNN 4.269 0.000
AUC​ BERT LSTM 5.580 0.000
AUC​ BERT Dense 11.571 0.000
AUC​ CNN LSTM 1.243 0.217
AUC​ CNN Dense 7.349 0.000
AUC​ LSTM Dense 6.202 0.000
F1_score BERT CNN 3.485 0.001
F1_score BERT LSTM 4.690 0.000
F1_score BERT Dense 9.497 0.000
F1_score CNN LSTM 1.692 0.094
F1_score CNN Dense 7.140 0.000
F1_score LSTM Dense 5.334 0.000
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Fig. 5   Boxplot of performance metrics per model for (a) Fracture-data and (b) Chest-data

91   Page 12 of 16 Journal of Medical Systems (2021) 45: 91



1 3

Table 6   Results summary of model performance

Model Highlights

All • All models perform better on the shorter radiology reports of the Fracture-data than the more complex reports of the Chest-
data.

• Negative predictive value depends less on model type, training dataset size and prevalence than the positive predictive value
Dense • Baseline model Dense performs well on the Fracture-data but depends more on variation in training dataset size and preva-

lence
LSTM / CNN • The LSTM and CNN models demonstrate equal performance
BERT • The BERT model has stable results despite a variation in training dataset size and prevalence.

• The BERT model outperforms all other models, especially for the more complex reports of the Chest-data

Conclusion

For NLP of radiology reports, all four model-architectures 
demonstrated high performance.

CNN, LSTM, and Dense were outperformed by the BERT 
algorithm because of its stable results, despite variation in 
training size and prevalence.

Awareness for variation in prevalence is warranted because 
this impacts sensitivity and specificity in opposite directions.

Appendices

A1 Annotation examples

a. Fracture-dataset

Annotation purpose: identify reports with fractures or 
other traumatic abnormalities that require referral to the 
emergency department.

Positive example Negative example

• Fracture • No fracture
• Suspicion for a fracture • Fracture unlikely
• Possible fracture • No traumatic abnormalities
• Epiphysiolysis • Normal findings
• Positive fat pad sign elbow
• Luxation

b. Chest-dataset

Annotation purpose: identify reports with pulmonary 
infiltrates

Positive examples Negative examples

Consolidation No infiltrate
Infiltrate No suspicion of an infiltrate

Positive examples Negative examples

Possible infiltrate Infiltrate unlikely
Maybe a small infiltrate Normal findings
Suspicion of infiltrative abnormalitie

A2 Model architecture

Model: "Dense"

Layer (type) Output Shape Param #

Embedding (Embedding) (None, 250, 32) 80000
flatten (Flatten) (None, 8000) 0
Dense1 (Dense) (None, 32) 256032
Dense-2 (Dense) (None, 16) 528
Dense-3 (Dense) (None, 8) 136
Dense-4 (Dense) (None, 1) 9
Total params: 336,705
Trainable params: 336,705
Non-trainable params: 0

Model: "LSTM"

Layer (type) Output Shape Param #

Embedding (Embedding) (None, 250, 32) 80000
LSTM-1 (Bidirectional) (None, 250, 64) 16640
LSTM-2 (Bidirectional) (None, 64) 24832
Dense-1 (Dense) (None, 24) 1560
Dense-2 (Dense) (None, 1) 25
Total params: 123,057
Trainable params: 123,057
Non-trainable params: 0

Model: "CNN"

Layer (type) Output Shape Param #

Embedding (Embedding) (None, 250, 32) 80000
Conv-1D-1 (Conv1D) (None, 246, 64) 10304
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Layer (type) Output Shape Param #

Pooling-1 (AveragePooling1D) (None, 123, 64) 0
Conv-1D-2 (Conv1D) (None, 119, 64) 20544
Pooling-2 (GlobalAveragePool) (None, 64) 0
Dense-1 (Dense) (None, 24) 1560
Dense-2 (Dense) (None, 1) 25
Total params: 112,433
Trainable params: 112,433
Non-trainable params: 0 

A3: Simulation of model training with neutral, 
positive, and negative class imbalance

True positive (TP), false negative (FN), false positive 
(FP), and true negative (TN) are presented in three sce-
narios to illustrate the impact of a change in sensitivity 
and specificity on the positive and negative predicted val-
ues. Compared to the baseline model (Scenario 1), the 
TP/FN/FP/TN values are manually changed to create an 
increase in sensitivity (Scenario 2) or an increase in speci-
ficity (Scenario 3) when applied to a test set with constant 
prevalence.

PPV = positive predictive value = TP / ( TP + FP)
NPV = negative predictive value = TN / ( TN + FN)
sens = sensitivity = TP / ( TP + FN)
spec = specificity = TN / ( TN + FP)

Scenario 1: Normal training prevalence 
with an equal number of positive and negative 
cases. The result is equal sensitivity and specificity

True

Predicted  +  - PPV 0.50

 +  TP 80 FP 80 160 NPV 0.94

- FN 20 TN 320 340 sens 0.80
100 400 spec 0.80

Scenario 2: With a high training prevalence, 
the model tends to predict a positive majority class. 
The result is high sensitivity and low specificity

True

Predicted  +  - PPV 0.41

 +  TP 99 FP 140 239 NPV 1.00

- FN 1 TN 260 261 sens 0.99
100 400 spec 0.65

Scenario 3: With low training prevalence, the model 
tends to predict a negative majority class. The result 
is low sensitivity and high specificity

True

Predicted  +  - PPV 0.98

 +  TP 65 FP 1 66 NPV 0.92

- FN 35 TN 399 434 sens 0.65
100 400 spec 1.00
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