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Abstract: To assess the impact of chemicals on an aquatic environment, toxicological data for three
trophic levels are needed to address the chronic and acute toxicities. The use of non-testing methods,
such as predictive computational models, was proposed to avoid or reduce the need for animal
models and speed up the process when there are many substances to be tested. We developed
predictive models for Raphidocelis subcapitata, Daphnia magna, and fish for acute and chronic toxicities.
The random forest machine learning approach gave the best results. The models gave good statistical
quality for all endpoints. These models are freely available for use as individual models in the VEGA
platform and for prioritization in JANUS software.

Keywords: quantitative structure-activity relationship (QSAR); applicability domain; Raphidocelis subcapitata;
Daphnia magna; fish; biological databases; random forest

1. Introduction

About 300 million tonnes of chemicals that are used in consumer and industrial
products are discharged into wastewaters and find their way into natural waters every year.
Additional pollution comes from diffuse sources in agriculture, where it is estimated that
about 140 million tonnes of fertilizers and several million tonnes of pesticides are applied
annually [1]. Therefore, aquatic communities are exposed to many chemicals that can be
toxic for them and humans [2,3], even in low concentrations. The management of pollution
from the release of synthetic chemicals has become a cause for concern for the scientific
community, regulators, and the public [4].

Risk assessment of chemicals is necessary to prevent and control pollution due to
anthropogenic chemicals [5]. Information on aquatic toxicity is needed to assess the hazards
and risks of chemicals to freshwater organisms. Ideally, all aquatic organisms should be
tested, and the most sensitive species should be selected for assessment to protect all
aquatic organisms. However, since it is impossible to test the toxicity of chemicals on
all aquatic organisms one by one, only representative aquatic organisms are selected.
Algae, crustaceans, and fish belong to different trophic levels, i.e., primary producers
and primary and secondary consumers, and are considered relevant for the protection of
aquatic ecosystems [6].

Besides hazard and risk assessments, toxicity data from these representative organisms
are used for the prioritization of chemicals, which are accepted by regulatory authorities,
for instance, to screen persistent, bioaccumulative, and toxic chemicals [4].
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Within regulatory contexts, standard test methods for representative species that were
established decades ago and continuously updated are required. Based on these protocols,
the effect of a chemical can be expressed for short- and/or long-term exposure.

According to the Registration, Evaluation, Authorization, and Restriction of Chemi-
cals (REACH) Regulation [5], ecotoxicological information is required for substances in
relation to the annual amounts that are manufactured or imported in the EU. This in-
cludes short- and long-term toxicity testing on crustaceans (the preferred species is Daphnia
magna), algae, and fish species [6]. Ecotoxicological information on these three trophic
levels serves to identify the concentration of the substance below which no effects are
expected in the environmental sphere of concern. This is the predicted no effect concen-
tration (PNEC). Based on the available information, the PNEC for each environmental
compartment is established. The PNEC can be calculated by applying an appropriate
assessment factor to the short- and long-term toxicity data. An assessment factor is applied
because only a limited number of representative species is used to extrapolate the PNEC for
aquatic ecosystems.

In general, the more data there are and the longer the duration of the tests, the smaller
is the degree of uncertainty and the assessment factor. An assessment factor of 1000 is
typically applied to the lowest of three short-term toxicity values for species representing
the different trophic levels, and a factor of 10 to the lowest of three long-term toxicity values
for species representing these levels. The PNEC is then used for risk characterization [5].

The regulation for classification, labeling, and packaging (CLP) [7] recognizes that
the intrinsic hazard to aquatic organisms is due to the superposition of acute and chronic
hazards of a substance. The classification system uses the lowest available toxicity values
between and within the different trophic levels (algae, crustaceans, and fish) to establish
the suitable hazard category. The classification system for aquatic toxicity has one acute
hazard classification category and three separate chronic hazard classification categories.
If there is no chronic aquatic toxicity data, acute aquatic toxicity data are combined with
environmental fate data, such as degradability and bioconcentration factors, to assess the
chronic hazard of a substance. To ensure a protective hazard assessment, there is also a
‘safety net’ category for substances that have no data that are useful for classification in the
other categories, but there are nevertheless some grounds for concern [7].

Annex XIII of the REACH Regulations [5] sets criteria for substances that are persistent,
bioaccumulative, and toxic (PBT) or very persistent and very bioaccumulative (vPvB). The
PBT/vPvB assessment is required for all substances that are manufactured or imported
in amounts of 10 tonnes or more per year. The PBT assessment is one of the criteria that
are used in REACH for the prioritization of chemicals [5]. Substances that persist for long
periods in the environment and have a high potential to accumulate in biota are of specific
concern because exposure to these substances is very hard to predict. Their persistence
means that these substances may not degrade near emission sources, and they may be
gradually transported into remote areas (long-range transport) and may exert their toxic
effect for a long time, even if emissions are stopped [8]. The chronic toxicity of chemicals
toward aquatic organisms is used to assess the fulfillment of the toxicity criterion. In the
phase of screening for PBT, the short-term toxicity toward aquatic organisms from the
three trophic levels is also considered. Thus, in many regulatory contexts, both the acute
short-term and long-term toxicity data of aquatic organisms are necessary.

Even though there are established protocols for aquatic toxicity tests, acute short-term
and chronic aquatic toxicity data for many chemicals are still scarce [9] because generating
in vivo data is time-consuming and expensive. However, the REACH Regulation encour-
ages the use of quantitative structure-activity relationships (QSARs) to provide information
about the hazards that are associated with chemicals, also within a weight of evidence
approach, since computational methods are considered a rapid and low-cost option and
might be also useful to reduce the number of chemicals to be tested in vivo [10].

Many local and global QSAR models were developed to predict the toxicity of chem-
icals toward algae, the crustacean Daphnia magna, and fish species. The local models
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performed well for a limited chemical domain but were not useful to assess a diverse
set of chemical structures [11]. Most of the QSAR models focus on acute aquatic toxic-
ity [12–21] and only a few relate to chronic aquatic toxicity. Claeys et al. [22] and Austin
and Eadsforth [23] developed models for chronic narcosis toxicity and chronic non-polar
narcosis toxicity in fish, respectively. Fan et al. [24] developed a local model that was
based on 48 substituted benzenes to predict the chronic toxicity of chemicals toward
Daphnia magna. Ding and colleagues [4] developed classification models to predict the
chronic toxicity of chemicals toward Daphnia magna and the green algae
Pseudokirchneriella subcapitata. ECOSAR software contains chronic toxicity models for
algae, daphnids, and fish [25]. Several QSAR models, such as those included in ECOSAR,
were used to predict the toxicity of chemicals, but they yielded poor correlations and still
need improvement [6]. QSARCHE contains non-polar and polar narcosis QSAR models
for chronic toxicity in fish [26]. However, given the current state of development of chronic
aquatic toxicity models, considerably more work is still needed [27].

The objective of the present work was to develop QSAR models to predict the acute
and chronic toxicity of various chemicals toward algae (Raphidocelis subcapitata, previously
known as Pseudokirchneriella subcapitata), Daphnia magna, and fish (several species) based
on OECD Good Laboratory Practice (GLP) data [28]. It is expected that these models will
help to fill gaps in the information on the acute and chronic toxicity of several chemicals
for all the trophic levels of freshwater ecosystems.

This work is a part of a project called JANUS (Joining Environmental, Ecotoxicological,
and Toxicological Assessment of Chemical Substances with Non-Testing Methods within
a Unified Screening), funded by the Bundesministerium für Umwelt, Naturschutz und
nukleare Sicherheit (BMU), that aims for the implementation of a new strategy for the
prioritization of chemicals according to PBT; endocrine disruption; and carcinogenic,
mutagenic, and toxic-to-reproduction (CMR) properties.

The QSAR models described here are used to assess the ecotoxicity of chemicals
within the toxicity criterion of the JANUS prioritization scheme. They advance the work
done in a previous project, called PROMETHEUS [29], which was based on calculations
of the acute-to-chronic ratio (ACR) to check the fulfillment of the toxicity criterion for
PBT assessment.

2. Results

We checked a large number of substances with experimental values on organisms
representing the three trophic levels, as required by the European regulation [5], for acute
and chronic values. This collection of values is large compared with other collections,
particularly on chronic toxicity. Chronic toxicity is the most important value according to
the European regulation [5], and the acute value has to be calculated only if information
regarding the chronic value is missing. We applied a quality check regarding the chemical
structures and the consistency of property values when more than one value was found.
The presence of multiple values offers an advantage, increasing the reliability of the experi-
mental value. However, when there are significant differences between the experimental
values, this increases the uncertainty and may indicate the presence of errors or difficulties
with a certain substance. For this reason, we adopted the procedure described to prune the
dataset, excluding substances with uncertain experimental values.

Then, we developed QSAR random forest models (the tree ensemble method) for
three trophic levels—Raphidocelis subcapitata, Daphnia magna, and fish—for both acute and
chronic toxicities. We made the distribution of the endpoint data uniform and split the
dataset to get a training and a validation set. We calculated the descriptors and pruned
them using a genetic algorithm (gaselect) or variable selection using random forest (VSURF)
approaches. For each model, we checked different parameters to identify ideal thresholds
for the applicability domain (AD) and examined them in every possible combination. We
assessed the performance by including and excluding high leverage compounds. A total of
thirty-two possible AD combinations were evaluated; then, the best one was selected based
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on the best compromise in terms of coverage and performance in 10-fold cross-validation.
Each model was validated on an external set of data.

Table 1 summarizes the statistics for the training and the external validation sets, with
the variable selection method chosen for each model, the number of descriptors, and details
of the parameters used to define the AD. For each endpoint and trophic level, the table also
shows the statistics with and without the AD. E(L)C50 represents the acute toxicity, i.e., the
concentration necessary to produce the effect (death) in half of the exposed population,
whereas the no observed effect concentration (NOEC) represents the chronic effect.

Table 1. The statistical parameters of the QSAR models on aquatic toxicity. Box-Cox transformation of millimoles per liter
was used in place of the logarithm of millimoles per liter.

R. subcapitata Daphnia magna Fish

EC50
a NOEC b EC50

a NOEC b LC50
a NOEC b

Training set
R2 c 0.96 0.95 0.94 0.95 0.95 0.96

MAE d 0.41 0.56 0.49 0.42 0.27 0.54
RMSE e 0.52 0.74 0.64 0.56 0.37 0.68

Validation set
without AD f

R2 c 0.59 0.58 0.56 0.74 0.65 0.74
MAE d 0.96 1.36 0.99 0.83 0.68 1.75
RMSE e 1.25 1.73 1.31 1.13 0.87 2.45

Validation set
with AD f

R2 c 0.6 0.63 0.69 0.78 0.65 0.76
MAE d 0.97 1.29 0.84 0.8 0.64 1.79
RMSE e 1.26 1.66 1.09 1.07 0.83 2.54

Coverage 0.89 0.93 0.84 0.81 0.81 0.89

Details of the
model

Feature
selection VSURF GASELECT GASELECT VSURF VSURF GASELECT

No. of
descriptors 13 40 12 17 13 12

Distance
mode Euclidean-5 Euclidean-5 Euclidean-1 Euclidean-1 Euclidean-5 Euclidean-5

Distance
threshold 0.9 0.975 0.9 0.975 0.9 0.975

Error
percentile 0.9 1 0.75 0.75 1 1

a E(L)C50 is the concentration that causes the effect (death) in 50% of the exposed population. b NOEC is the no observed effect concentration.
c R2 is the determination coefficient. d MAE is the mean absolute error. e RMSE is the root mean squared error. f AD is the applicability
domain of the model.

The statistics were evaluated using the determination coefficient (R2), the mean abso-
lute error (MAE), and the root-mean-squared error (RMSE). All models gave high statistics
for the training set. This was expected since the random forest approach was adopted. The
most interesting values were those related to the validation set, which contained substances
that were never used to build up the model (about 20% of the total number of substances
available). These values provided a good assessment of the expected predictivity of
the models.

The model for Raphidocelis subcapitata acute toxicity (EC50) gave an R2 of 0.60 for the
validation set. Though this does indicate uncertainty in the prediction, it is still acceptable
for this kind of endpoint. The use of the information on AD did not substantially improve
the predictions. The models for Raphidocelis subcapitata gave the worst results. However,
the results were worse toward acute toxicity.

The model for Daphnia magna acute toxicity (EC50) gave an R2 of 0.69 for the validation
set. Although this indicates uncertainty in the prediction, it is still acceptable for this kind
of endpoint. Information on the AD did not substantially improve the predictions. In the
case of models for NOEC, the R2 in the validation sets was even better at 0.78, and this is
useful, also because this endpoint is much less studied than acute toxicity.
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The results for fish were comparable to those for Daphnia magna, with a small reduction
in the statistical quality. Furthermore, in fish, there was an improvement in performance
regarding chronic toxicity. This is a good result too.

3. Discussion

We developed a battery of models for three trophic levels that are important for
aquatic toxicity: Raphidocelis subcapitata, Daphnia magna, and fish for both acute and chronic
toxicities. The statistical parameters were good, and similar or better than those that were
previously published.

For the algal acute toxicity, too few models are available, and the majority are for
specific classes of chemicals [30,31]. This can explain the better statistics compared to ours.

The models for chronic toxicity toward Raphidocelis subcapitata and algae in general
are very limited. Ding et al. [4] developed classification models, which are quite different
from the regression models that predict continuous values. However, they obtained worse
models than the classification models toward Daphnia magna, and this confirmed the greater
difficulty in predicting this endpoint.

Considering the low number of available models for algal toxicity (acute and chronic),
it is clear that more efforts are needed to develop new models and have a sufficient number
of models to better assess these endpoints. We explained how using more than one model
for the same endpoint may help the user in the assessment [32].

While many models were published for fish and Daphnia magna acute toxicities, the
number of studies for chronic effects is much scarcer.

Recent studies on Daphnia magna acute toxicity had similar difficulties to those reported
above and achieved R2 values of about 0.60–0.68 for the validation set [33,34]. However,
Khan and colleagues used 175 [33] and 133 [34] compounds; therefore, our model used a
much larger set of compounds: 428. Thus, it is quite probable that the present model is
more robust and has a larger AD than the previous ones. We also noticed that the model by
Khan et al. [34] is specific for biocides, and this might explain the lower R2, and the other
model [33] is for pharmaceuticals. If we consider older models, their performance was less
satisfactory [35].

Few models about the chronic toxicity for Daphnia magna have been published. The
model developed by Fan et al. [24] is a multilinear regression model with five descriptors
and gave an R2 for the test set of 0.736. However, this model is quite different from
the one we developed because this is only for substituted benzenes and is validated on
ten substances.

Many models have been published for acute fish toxicity. Older models gave worse
performances [36]. More recent models achieved similar or even better results. For instance,
the models by Khan et al. [33] achieved an R2 of 0.8 for the validation set.

Very few models have been published about fish chronic toxicity. Claeys et al. [22]
developed a model for nonpolar narcosis based on 49 substances for the training set and
20 for the test set. LogP was the key parameter. Even fewer substances were available
for polar narcosis (13). The R2 for the training and test sets for nonpolar narcosis were
0.76 and 0.73, respectively, which were quite similar to the R2 of 0.74 of the ECOSAR
model for neutral organics [37]. However, these values refer only to nonpolar substances
without a specific mode of action or reactivity. As we said, the model for polar narcosis
had only a very small number of compounds, and the user needs a previous tool to see
whether the substance of interest follows the narcosis mechanism; for the other cases, the
substances were outside the AD of the system. Both the ECOSAR and the QSARCHE (the
software developed by Claeys et al. [22]) were criticized later by Austin and Eadsforth [23]
for the use of some inaccurate data in these models. They proposed another model for
NOEC for nonpolar narcotics, which achieved an R2 of 0.89 for the test set [23]. There were
10 substances in the test set and 19 in the training set. Thus, for this model too, there are
the general limitations of the small number of substances at the basis of the model and the
need to know or predict whether the target substance is a nonpolar narcotic.
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In general, there is the need for further studies addressing aquatic toxicity for the three
trophic levels for both acute and chronic toxicities. This study represents a contribution in
this direction.

The models we describe can be applied for the assessment of chemical substances in a
facilitated way because they were implemented within the VEGAHUB tools [38]. One is
VEGA, which is a freely available platform that contains dozens of models. The availability
within the same system of the QSAR models, of the software assessing the applicability
domain for each substance, and a tool to visualize the six most similar substances for
read-across offers great improvements compared to the past situation. This provides a
way to evaluate the confidence of the prediction for the specific chemical. The other tool is
JANUS, which is freely available software that was designed to assess and prioritize the
chemicals according to their PBT properties.

4. Materials and Methods
4.1. The Datasets

We collected the experimental toxicity values from short- and long-term aquatic
toxicity tests of chemicals that were conducted by the Japanese Ministry of Environment
on several organisms; these have been publicly available on the official website [39] since
March 2016.

The aquatic toxicity tests were done according to the OECD GLP standards [28] and
the OECD official guidelines for several species and endpoints [40–44]. In view of the
purposes and the context of the JANUS project, we selected the following representative
organisms of the three trophic levels of freshwater ecosystems:

• Algae (Raphidocelis subcapitata, previously known as Pseudokirchneriella subcapitata):
EC50 72 h (growth rate);

• Algae (Raphidocelis subcapitata, previously known as Pseudokirchneriella subcapitata):
NOEC 72 h (growth rate);

• Daphnids (Daphnia magna): EC50 48 h, acute effect (immobilization);
• Daphnids (Daphnia magna): NOEC 21 d, chronic effect (reproduction);
• Fish (Oryzias latipes): LC50 96 h, acute effect (mortality);
• Fish (Oryzias latipes): NOEC, chronic effect, as in the early-life stage toxicity test [43].

We generated the chemical structures of the compounds as SMILES notations [45]
from the chemical name and CAS RN using ChemCell [46] and Marvin View 17.12, 2012017,
ChemAxon [47]. We manually checked the correctness and consistency of the chemical
structures, chemical names, and CAS RN using several databases, including ChemIDplus
Advanced [48], PubChem [49], ChemSpider [50], and DSSTox [51]. We added the structures
that were not automatically generated using these databases.

Then we pruned the initial datasets. This was done mostly because classical QSAR
approaches, particularly for the calculation of molecular descriptors, cannot deal with
certain types of structures (inorganic, disconnected structures like salts, etc.). We excluded
metal complexes, inorganics, mixtures of structural isomers, ambiguous structures, non-
ionic surfactants, mixtures, complex disconnected structures, chemicals whose names
and CAS RN did not correspond, and “substances of unknown or variable composition,
complex reaction products, or biological materials” (UVCBs). We also neutralized the salts.

As the next step, we selected continuous experimental values, excluding those re-
ported as a range, as above or below a certain numerical threshold, or only approximate.
We kept the toxicity values from experimental conditions of the assays as they are defined in
the OECD guidelines [40–44]. For instance, we excluded toxicity values from 0–48 h assays
on Raphidocelis subcapitata and LC50 for fish after 120 h of exposure. We also eliminated
pH-adjusted toxicity values for fish and Daphnia magna. We calculated the molecular weight
of each chemical structure to convert the experimental toxicity value from milligrams per
liter to millimoles per liter.

We checked the multiple values for the same species and endpoint for each substance:
the difference between the largest and the smallest values had to be within a factor of
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10, i.e., one log unit, when the experimental conditions and the reliability of the studies
were the same, as reported in [52]. When possible, we looked for the outlier(s); if not
found, we eliminated the data and the substance was not used. We also checked whether
the experimental toxicity values were higher than the water solubility. If it was so, we
eliminated this chemical.

Once the dataset was pruned, we obtained the number of chemicals for the different
trophic levels and endpoints that are reported in Table 2.

Table 2. Number of chemicals for each trophic level from acute short-term and chronic toxicity tests
available in the Japanese Ministry of Environment’s database after pruning of chemical structures
and experimental values. The numbers of substances before pruning are given in parentheses.

Acute Toxicity Test Chronic Toxicity Test

Number of chemicals for Raphidocelis subcapitata 315 (372) 408 (577)
Number of chemicals for Daphnia magna 428 (509) 306 (372)

Number of chemicals for fish 331 (393) 35 (37)

Since after the pruning, the Japanese Ministry of Environment dataset contained
only 35 chemicals for chronic fish toxicity, we searched other sources of experimental
data for this endpoint. We retrieved many experimental data from the ECOTOX Aquire
database [53], which was updated in July 2017, and pruned this dataset according to
several criteria:

• Taxonomic: animals, fish, and standard test species.
• Test results: endpoint (NOEC) and effect measurement (mortality).
• Test conditions: test location (laboratory), exposure media (freshwater), and exposure

types (flow-through, renewal).
• Chemical analysis: measured.
• Purity > 80% and “not reported”; if the purity was “not reported,” we checked the

chemical grade (eliminated: experimental, practical, and technical grades).
• Organism life stage: egg(s), embryo(s), blastula, eyed egg or stage, and eyed embryo.
• Organism age: Pimephales promelas by 5 d, Danio rerio by 5 d, and Oncorhynchus mykiss

by 35 d.
• Number of doses: 4 or more.
• Duration: 28 d post-hatch (Pimephales promelas), 30 d post-hatch (Danio rerio), and 60 d

post-hatch (Oncorhynchus mykiss).
• Inorganics were eliminated.

A further source of data was the PROMETHEUS dataset on chronic fish toxicity [29],
which included experimental data from eChemPortal [54] and several datasets that were
extracted from OECD QSAR Toolbox 3.2 [55].

We used the same criteria as above to check the data from these two additional
sources. We merged all the datasets on chronic fish toxicity from various sources [39,53–55],
checking multiple values and duplicates. The final chronic fish toxicity dataset contained
94 chemicals.

We calculated the median and the arithmetic and geometric means of the multiple
values in millimoles per liter to check whether there were differences between them to
integrate the multiple values. We found a very good correlation (R2 ≈ 1) and we chose the
geometric mean, as recommended by [52]. We calculated the logarithm of the geometric
mean to normalize the data. We also tried a Box–Cox transformation [56], optimizing the
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± 3 SD (standard deviation).

For each dataset, we normalized the SMILES using istMolBase 1.0.3 [57]. We neu-
tralized the normalized SMILES of the compounds in the datasets of acute and chronic
toxicity endpoints for Daphnia magna and fish. We used ionized normalized SMILES in
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the case of EC50 72 h and NOEC 72 h datasets for Raphidocelis subcapitata since pH is a
critical issue in algae [41]. According to the OECD guideline [41], two growth media
can be used: one at pH 7.5 and another at pH 8.1. The two growth media can give dif-
ferent results, depending on the pH, especially for ionizing substances [41]. We had no
information on what medium was used to perform the assays; therefore, we calculated
the main microspecies at pH 7.5 and 8.1 for all the SMILES using JChem [58] and elimi-
nated compounds with SMILES that changed depending on pH. The dataset containing
the CAS RN, the SMILES, and the experimental values of each model are included as
Supplementary Material (FinalDataset.xls).

4.2. The QSAR Models

To build up the models, we divided the datasets into training and test sets in a ratio of
80:20. To obtain a uniform distribution of the endpoint values between the two subsets,
we applied an activity and descriptors sampling method. First, principal component
analysis (PCA) was done on all the 2D descriptors that were calculated using the Dragon
7.0 Extension for KNIME [57,59]; the first two principal components were selected. Five
random compounds were selected. Then, we chose the most dissimilar compound from
the sample pool according to the first two principal components and the response using
several combinations of distance metrics and scoring functions. Then, this compound was
added to the pool and the operation was repeated until the desired number of compounds
for the training set was reached (80% of the substances).

As explained before, the Dragon 7.0 Extension for KNIME was used to calculate 2D
descriptors, excluding compounds whose Ghose-Crippen octanol-water partition coeffi-
cient [60] (ALOGP) could not be calculated (because this descriptor was the one that was
most closely correlated to the response). Dragon 7.0 can calculate 3839 2D descriptors.
A large part of this number of descriptors is likely to be redundant or not informative;
therefore, one must apply methods to reduce the variables to train the model (pruning).
The procedure adopted was divided into three phases:

1. All the descriptors with constant values (var(X) = 0) were eliminated;
2. All the descriptors that correlated higher than 0.95 (Pearson) with at least one other

descriptor were eliminated;
3. A genetic algorithm (gaselect) or variable selection using random forest (VSURF)

was applied.

For each dataset, we had two pools of variables, one selected with gaselect and
the other with VSURF. Both datasets were imported into a KNIME workflow to derive
the models.

Among the several algorithms used, a random forest (RF) called tree ensemble gave
the best results in terms of performance. This algorithm builds a series of regression trees
with different rows and different variables (according to certain parameters) and then
the results are aggregated as an ensemble of models. The parameters for the variables of
each tree and the number of compounds are selected on the basis of the performance of
several models (hyperparameter-tuning research) using R2 as a metric of the bootstrap
(100 iterations) cross-validation on the training set.

Two approaches were applied to define the applicability domain (AD) of the models:
1. The first approach explored the structural domain of the model. This was done by

recording the degree of structural similarity of a given compound to those in the training
set. A distance matrix containing distances for each pair of compounds in the training
set was calculated; then, for each compound in the training set, we calculated the mean
distance to its first k neighbors. The training set chemicals were then sorted on the basis
of these distances and the value corresponding to a given percentile of the distribution of
distances was used as a threshold (TD), beyond which, chemicals were excluded from the
AD. For the external validations, the procedure was repeated, calculating the distance of
each validation set chemical from their neighbors in the training set; then, TD was used
to identify the compounds outside the AD. For the present work, we used the Euclidean
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and Manhattan distance metrics; values assigned to k were 1 and 5; values assigned to TD
were those corresponding to the 100th, 97.5th, 95th, and 90th percentiles of the training set
distance distribution.

2. The second approach was based on the derivation of a so-called “error model”,
which predicts the uncertainty of the predictions from an “activity model”. An activity
model is a classical model that is based on chemical descriptors as independent variables
and an endpoint (e.g., a biological activity) as the dependent variable. An error model is
derived from the same training set as the associated activity model; the differences from
the cross-validated absolute errors (previously generated by the activity model) are the
dependent variables, while the independent variables are a series of AD metrics that reflect
the accuracy of the predictions that are made by the activity model. Six AD metrics were
used as “descriptors”: wRMS1 is the weighted root-mean-squared difference between
the predicted activity of the target and the observed activity of its five neighbors in the
training set; wRMS2 is the weighted root-mean-squared difference between the predicted
activity of the five neighbors of the target and the observed activity of the same neighbors;
SIMILARITYNEAREST1 and SIMILARITYNEAREST5 are the Euclidean distance of the
target from one and five neighbors in the training set, respectively; TREE_SD is the standard
deviation of the prediction of the target among the RF trees; and PREDICTED is the
prediction for the target. The RF algorithm was used for the error model. Training set
chemicals were sorted based on errors in the predictions that were estimated by the
error model; then, the value corresponding to a given percentile of the distribution of
predicted errors was used as a threshold (TE), beyond which, chemicals were excluded
from the AD. The same TE was applied to the predicted errors that were calculated for
the validation set chemicals. For the present work, the values that were assigned to TE
were those corresponding to the 100th, 90th, 75th, and 65th percentiles of the training set
error distribution.

Supplementary Materials: The following are available online. Excel S1: FinalDataset.xls.
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