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Pili are thought  to effect  or  affect a t tachment  o f  gonococci (Gc) ~ to mucosal 
cells and thereby  mediate or  influence impor tant  initial interactions between 
these bacteria and their  human  host. Previous studies (1, 2) have established 
structural  and antigenic diversity o f  pili among  Gc f rom different  strains. Re- 
cently, two groups (3-5)  have no ted  different  pilus subunits for  Gc variants 
within individual strains; those differences in pilus subunit  size appeared  to 
correlate  with differences in the Gc variants' colony opaci ty/prote in  II pheno- 
type. In strain P9 variants, four  different  pilus subunit  sizes were found,  and 
each o f  these pilus types exhibi ted distinctive adherence  avidities in their  attach- 
ment  to various eucaryotic  cells in vitro (6). T h e  present  study was done  to 
examine the diversity of  pilus subunit  size forms that exist among  intrastrain 
variants of  Gc and to reexamine  the pu rpo r t ed  relationship between pilus subunit  
size and colony opaci ty /prote in  II phenotypes.  

Mate r i a l s  a n d  M e t h o d s  
Gc. Gc of strains JS1, JS3, and JS5 (7) as well as R10 and MS11 (3) were examined 

during this study; most observations were on strain JS3. The colonial piliation phenotype 
(P÷, P÷+, or P-) was assessed microscopically as described (7); examples of P+ and P+÷ are 
shown in Fig. 1 and will be described later. Protein II/colonial opacity phenotypes were 
established as noted in an earlier study (8). 

Two slightly different media were used during this study. The first was formulated as 
previously described and contained Thiotone peptone (Baltimore Biological Laboratories, 
Cockeysville, MD) (7). The second contained meat peptone (40-2304; Baltimore Biological 
Laboratories) in place of Thiotone peptone, which is no longer available. These media 
seemed roughly equivalent. Although some strains grew better on one medium than on 
the other, they all formed colonies for which piliation and opacity phenotypes were readily 
defined on both media. All organisms were propagated by passage of single selected 
colonies and were grown for 20-22 h at 36°C in 5% CO2. 

Visualization ofPilus Subunits. Two methods were used for estimating and comparing 
pilus subunit sizes. In the first, Gc cultures from a single colony passage were swabbed 
from solid medium if they were acceptably homogeneous (>95% the desired phenotype) 
and were radioiodinated by the Iodogen method. These radioiodinated Gc were solubi- 
lized and their components resolved by sodium dodecyl sulfate-polyacrylamide gel elec- 

l Abbreviatio,s used in this paper: Gc, gonococci; P-, nonpiliated; P+, piliated; P. I, If, and III, outer 
membrane proteins 1, II, and III; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electropho- 
resis; 2-ME, 2-mercaptoethanol. 
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trophoresis (SDS-PAGE) in 15% gels. Autoradiography of the dried slab gel allowed 
characterization of the protein I I constitution of the organisms and permitted visualization 
of their pilus subunits. The details of iodination, autoradiography, etc., are contained in 
recent reports from this lab (8, 9). 

The second method used single Gc colonies that were selected through a stereo 
microscope, lifted from the solid medium on a small fragment of filter paper, and 
immersed in 20 ul solubilizing solution (containing 4% SDS and 8% 2-mercaptoethanol). 
After heating in a boiling water bath for 10 rain, 10 ~1 of each lysate was applied to the 
slot of an SDS-PAGE slab gel. After electrophoresis, the SDS-PAGE-separated compo- 
nents were electrophoretically transferred to a sheet of nitrocellulose which, after blocking 
with a solution containing bovine serum albumin, was incubated with rabbit antipilus 
antiserum diluted 1:500 in the same solution. Details of the immunoblotting procedure 
are contained in two recent reports (9, 10). The antipilus rabbit serum was obtained from 
Dr. Gary Schoolnik, Stanford University. It was raised by repeated immunization of a 
rabbit with pili purified from strain MS 11 (transparent colony phenotype) as described by 
Schoolnik et al. (11). 

Resul ts  

General Comments on Study Design and Results. Previous studies suggested 
correlations between colony opacity phenotype and pilus subunit size (3, 4), so 
pilus subunits of  the six different  protein II/opacity variants in strain JS3 (8) 
were examined in detail. For each protein II/opacity phenotype (e.g., II-,  IIa +, 
etc.), two distinct, different  small colony forms containing piliated Gc can be 
found; these are called P+ and P++ and are shown for strain JS3 opacity variants 
in Fig. 1. Analogous P+ and P++ variants have been found in strains JS1, JS5, 
R10, and MS11. Repeated observations on these strains' opacity and "piliation" 
variants provided the following conclusions about interrelationships among Gc 
colonial phenotypes: 

Piliation phenotype transitions 
m 

Protein II phenotype transitzons 

~II~ 

IIa + IIb ~ 

%Slab +~ 
Transitions of both piliation and protein II phenotypes: 

= P + + I I -  P+II-: 

pk[ I a + 

P + I I a + ~  -~P I I a  
These colony phenotype changes were examined to see which, if any, corre- 



SWANSON AND BARRERA 1461 

FIGURE 1. P÷ and P+÷ colonial phenotypes in strainJS3 Gc: Six distinct protein II phenotypes 
are recognized in this strain, as follows: II-, lla*, l l b  +, IIc +, l id  +, and l ie  +. For each of these 
protein I1 phenotypes, a P++ colony was selected and passaged; parent-like P++ and variant P+ 
progeny colonies are seen in these micrographs taken with two lighting arrangements.  With a 
substage diffusing reflector (left panel, each pair), colony edges are well-visualized. With a 
substage polished mirror  (right panel, each pair), colony opacity is appreciated. Within each 
protein II phenotype, P++ colonies are differentiated from P+ by virtue of the sharper edges 
on the former (P++). Little or no difference in colonial opacity is found between II-  and lIa + 
phenotypes. Distinct, enhanced opacity is found for I lb +, Itc +, Ild +, and IIe + Gc, and each 
protein II imports a unique degree of opacity as described before (8). The  opacity variants (*) 
shown for I lb + and l id  + phenotypes are P++IIbx ÷ and P++Ildx +, respectively (fix ---- protein II 
species whose exact identity is not established but whose presence is clear from the enhanced 
colony opacity; IIdx + = presence of both l id  and llx). For the protein II]opacity phenotypes 
associated with marked opacity (such as IIc + and IIe+), P+ and P++ phenotypes may be difficult 
to distinguish, but their differentiation is possible by noting the P+ or P++ character of l l -  
variants that arise, since P+II + ~ P+II- and P++II + ---, P++II-, and P++II- versus P+II- are easily 
distinguished. 
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lated with shifts in apparent subunit sizes of Gc pill. In a typical experiment, a 
single P+II- colony was passaged and, from its progeny, Gc with the following 
colonial phenotypes were selected: P+II- (parental phenotype), P++II- (change 
from P+ to P++), P+IIc + (change from II- to IIc+), other protein II variants with 
P+ phenotype (such as Wild+), and P-I I -  variants. When radioiodination was to 
be used, the Gc population was expanded by one passage of selected variant 
colonies and the resultant cultures were used, but the majority of experiments 
were done with individual parental and variant phenotype colonies whose pili 
were visualized by immunoblotting. With these general approaches, the parental- 
type and variant progeny of several hundred  Gc colonies of diverse phenotype 
were examined, and representative findings are presented in Figs. 2-9. The  
results are described below and show the following: (a) among variants or 
derivatives of any single strain of Gc, many different pilus subunit sizes are 
found; (b) change in pilus subunit size accompanies transition in colony piliation 
phenotype; (c) no change in pilus subunit size accompanies protein II gain or loss 
(or change in colonial opacity phenotype); (d) many different pilus subunit sizes 
can occur among "sister" P+ colonies arising as variants from a common P- 
parent colony; and (e) no specific pilus subunit size is characteristic of a particular 
colony piliation a n d / o r  opacity phenotype. 

Visualization of Gc Pilus Subunits. Gc pilus subunits are relatively hard to 
visualize in SDS-PAGE gels either by Coomassie blue staining or by lactoperox- 
idase-catalyzed radioiodination and autoradiography ~. Swanson, unpublished 
observations). Pilus subunits can be identified after Iodogen-catalyzed radioio- 
dination of Gc, SDS-PAGE, and autoradiography, as shown in Fig. 2. P+ and P++ 
derivatives of each protein II phenotype have bands (18,000-22,000 D range) 

FIGURE 2. Autoradiograph of SDS-PAGE gel of 1*51-labeled Gc of strain JS3. For each of 
strain JS3's six P.II phenotypes (II-, lla+-IIe+), nonpiliated (P-) and both piliation forms (P+ 
and P++) were radioiodinated, subjected to SDS-PAGE, and visualized by autoradiography. 
Note that P.II (0, IIa; O, IIb; ~, IIc; Q, lid; and Q, lie) have the same apparent molecular 
weight for P-, P+, and P++ variants of each set. Pilus subunits (1,) are visualized in P+ and P++ 
Gc but not in P- preparations. In some P+ and P++ organisms with the same P.II phenotype 
(such as P+Ild + and P++IId+), pilus subunits seem to have the same size. With other P.II 
phenotypes (II-, l la +, l ib +, IIc +, and lie*), there are slight differences in the apparent sizes of 
pilus subunits between P+ and P++ preparations. The apparent sizes of protein I (I) and protein 
I II (Ill) subunits are identical for all preparations of this one strain (JS3). (Positions of molecular 
weight markers in this and subsequent figures are noted as follows: 30 K, carbonic anhydrase; 
21 K, soybean trypsin inhibitor; 14.3 K, egg-white lysozyme, which is shown only in Fig. 4-6.) 
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FIGURE 3. Comparison between autoradiography of ~25I-labeled Gc and of immunoblotting 
with antipilus antiserum for visualization of pilus subunits: influence of 2-ME on apparent 
pilus subunit size. From a single P+II- colony's progeny (strain JS3), suspensions of Gc were 
radioiodinated (1251-Gc) and were soluhilized in the presence (+2-ME) and absence (-2-ME) 
of 2-ME before SDS-PAGE. Single P+II- colonies in the progeny population were also selected 
and subjected to SDS-PAGE followed by immunoblotting with antipilus antiserum. Both 
protein III (lII) and pili exhibit increases in their apparent subunit sizes in the +2-ME versus 
-2-ME specimens of radioiodinated, autoradiographically visualized organisms and in the 
immunoblotted single colony preparations; in both kinds of preparations pilus subunits have 
identical apparent sizes. 

FIGURE 4. Immunoblotting of P-, P+, and P++ colonies (strain JS3) with antipilus serum. P-, 
P+, and P++ colonies with protein If- phenotypes were selected and solubilized as single 
colonies for SDS-PAGE. With the 1:500 dilution of antipilus rabbit serum used, no bands, 
except pilus subunits, emit discernible autoradiographic signals. Pilus subunit bands of different 
apparent size are found in these P+ versus P++ preparations; no pilus subunits are visualized in 
the P- Gc. 
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that are not seen in the P- colony phenotypes. Pilus subunit size differences are 
found among some of these JS3 variants, but the pilus bands are not very sharp 
and subtle size differences are probably not distinguishable. Visualization of pilus 
subunits by immunoblotting with antipilus antiserum plus ~251-1abeled protein A 
is more satisfactory, as shown in Fig. 3. These pilus subunits have different 
electrophoretic mobilities depending on whether 2-mercaptoethanol is present 
(+2-ME) or absent (-2-ME) during solubilization before SDS-PAGE. Analogous 
changes in electrophoretic mobilities of  pilus subunits in +2-ME versus -2-ME 
duplicate specimens of individual P+ or P++ colonies were found for only some 
strain JS3 variants that were examined (data not shown). Both the +2-ME and 
-2-ME pilus subunit bands bind antipilus antibodies and give bands with equiv- 
alent autoradiographic intensities. 

The rabbit antiserum used for all immunoblotting was raised against pill 
prepared from strain MS 11, but it reacted with pili of  Gc from strains JS 1, JS3, 
JS5, R10, and MS11. This reaction was not equally intense for all pili in a given 
strain, as can be seen for strain JS3 in nearly every figure to follow. The antipilus 
serum was seemingly monospecific for pili at the dilution used (1:500) since it 
was bound to a visible extent only by pilus subunits, as shown in Fig. 4. At much 
lower dilution (such as 1:10), reactivities for several outer membrane proteins 
could be seen with this antiserum and immunobiotting (data not shown). When 
P-, P+, and P++ Gc are compared, pilus subunits are visualized in P+ and P÷+ 
colonies and are not seen in the P- preparations (Fig. 4). In these preparations, 
P+ organisms have pili of  subunit size different from that of  P÷+ variants; both 
P+ and P++ colonies were selected from among progeny of a single P++ colony 
and both parent and progeny colonies had nonopaque, presumably protein II- 
phenotypes. 

Pilus Subunit Size Heterogeneity Among Intrastrain Variants. Pilus subunit size 
diversity was regularly seen among colonial phenotype variants of  a given strain; 
examples of the diversity in strain JS3 Gc are shown in Figs. 2, 4-9, and the 
range of these differences is seen best in Figs. 5 and 6. Technical problems make 
small differences among pilus subunit sizes difficult to appreciate, and the present 
methods are not so reproducible as to give a reliable estimate of the total number 
of subunit size forms that might be found within a single strain. But, even with 
the crude tools used here, at least a dozen different pilus subunit sizes have been 
recognized among the variants within strain JS3 as compared by immunoblotting 
as shown; they ranged from 18,500 to 23,000 D in apparent size. 

Lack of Correlation Between Pilus Subunit Size and Colonial Phenotype. No corre- 
lation was found between a particular pilus subunit size and a particular colony 
phenotype, as seen well in Figs. 5 and 6. When multiple P+ variants were selected 
from P- parents of  differing protein II phenotypes, several pilus subunit sizes 
were sometimes found among sister P+ colonies of identical phenotype (Fig. 5, 
lanes 2-5, 6-9, 14-17, 19-21). The same subunit sizes were found for pili 
among Gc with differing opacity phenotypes (lanes 4, 6, 10-14). This was also 
demonstrated by selecting identical P++II- colonies (Fig. 6, lanes 1-9) from 
among progeny of parental colonies of several different phenotypes (P++IIb +, 
P++IIc +, P++IId +, P- IF ,  and P÷II-); each parent spawned P++II- variants with a 
pilus subunit size different from those of P++II- colonies from other parents. 
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FIGURE 5. Pilus subunit size diversity in P+ colonies of strain JS3. P+ colonies with differing 
P.II phenotypes were selected among progeny of parental colonies whose phenotypes are 
shown (lanes 2-5  are P+ progeny of P - IF ,  etc.). Each P+ colony had the same apparent opacity 
phenotype (and, presumably, the same P.II constitution) as the P- parent. All the P+ colonies 
of the P-IIb + parent have the same apparent  pilus subunit size; but in all other instances, 
multiple P+ progeny of each individual P- colony (P-IF,  P-lIa +, P-IIc +, P- l ie  +) differed from 
one another  in pilus subunit size. In several of these single colony preparations (*, lanes 8, 9, 
17, and 20), two distinct, different pilus subunits are visualized. Lanes 1 and 22 represent 
P+II- colonies derived from parental colonies of the same P+II- phenotype. 

FIGURE 6. Pilus subunit size diversity among strain JS3 Gc of identical colonial phenotypes. 
This experiment was designed to define whether pilus subunits were the same or different for 
Gc that have identical colony piliation and opacity phenotypes but are derived from parent 
colonies each of which has a differing phenotype. P++II- colonies (lanes 1-9) were selected as 
variants among the progeny of five colonies of differing phenotypes (shown below figure: 
P++Ilb +, P++llc +, P++lld +, P-II-,  and P+II-); one or two P++I1- variants were selected from 
each parent (lanes 1 and 2 from P++llb +, lane 9 from P+II-, etc.). When two variants from the 
same parent were selected (lanes 1 and 2, 3 and 4, 5 and 6, 7 and 8), both had identical pilus 
subunit size, but P++II- colonies from different parents had different pilus subunit sizes. The  
P++II- colonies of lanes 1, 3, 5, and 7 were subcultured before being solubilized for SDS- 
PAGE; in their progeny the next day, variants having P+II- phenotypes were selected. These 
are shown in lanes 10-13; P+II- variants from a P-If-  parent are shown in lanes 14 and 15. 
Aside from offspring of the same colony (lanes 14 and 15), all these P+II- Gc have different 
pilus subunit sizes except those in lanes 10 and 12, which seem the same. 
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FIGURE 7. Pilus subunit size changes coincident with change in colony piliation phenotype 
(P÷* ~ P÷) in strain JS3. A single P÷÷lld ÷ colony was passaged; the resultant culture contained 
colonies of  parental phenotype (P÷*lld ÷) as well as variants differing either in piliation 
phenotype (P+Ild ÷) or in opacity/protein II phenotype (P÷+II-). All P÷÷Ild ÷ colonies have 
identical pilus subunit sizes; the same subunit size is found in P+÷II- variants (after opacity/ 
protein II change). The pilus subunits of Wild  ÷ colonies are slightly different from one 
another and also from their P÷÷lld ÷ sister colonies (parental phenotype); this demonstrates 
that changes in pilus subunits coincide with P+÷ --~ P÷ colony phenotype transitions. 

FIGURE 8. Colony opacity and piliation phenotype changes in strainsJSl andJS3 correlated 
with pilus subunit sizes. Results obtained with two strains examined in similar experiments are 
presented. A colony (P+II- in JS1, P+IIa + in JS3) was passaged (note arrows above figure) and 
among its progeny, variant phenotypes were selected. After one passage, the cultures from 
these variant and parental phenotypes were radioiodinated, subjected to SDS-PAGE, and 
autoradiographs prepared. For JS1, transition in phenotypes from P+II- to P+Ila + shows no 
change in pilus subunits; note the acquisition of protein IIa (~). Comparison of two different 
P+*II- variants and their P+II- parents reveals a change (decrease) in pilus subunit size; the 
subsequent occurrence of a P++IIa + variant from one of these P÷+II- preparations is not 
accompanied by a change in pilus subunit size. For strain JS3, the initial colony selected for 

+ + 4 +  + variant selection was P IIa ; the variants included P IIa with changed piliation phenotype 
as well as P+llac + with changed protein II/opacity phenotype. A slight increase in apparent 
pilus subunit size is found after change in piliation phenotype, but no change in size is seen 
with a change in opacity/protein lI. Another change in opacity/protein II phenotype is also 
shown (JS3, P++Ila* to P++IIac÷), and no change in pilus subunit size is present. 
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FIGURE 9. Pilus subunits exhibit marked heterogeneity among P+ progeny of P- parent 
colonies (strain JS3). A P+ colony (this and all others shown are protein I1-) was chosen and 
among its progeny both parental-type (P+) and variant (P-) colonies were selected. After 
passage of the P- colonies once or twice, as shown, P+ variants and one P++ colony were 
selected. The original parental phenotype was also maintained during four serial passages after 
which P+ colonies were again examined. The results seen here include the following: (a) P+ ---, 
P- --, P+ changes accompany generation of several different pilus subunit sizes, as compared 
with original P+ colony; (b) P+ --, P+ leads to no change in pilus subunit size; and (c) two 
colonies (*) have two different size pilus subunits. 

Comparable results (also in Fig. 6) were obtained when P+II- colonies were 
derived from five different parent colonies, four of which were P++II- colonies 
with seemingly identical colony phenotypes; five different pilus subunits were 
found in these P+II- colonies. These results demonstrate the lack of correlation 
between Gc pilus subunit size and colony phenotype. 

Pilus Subunit Size Changes with Colonial Phenotype Transitions. Transitions in 
colonial phenotype occur so frequently among most strains of Gc on solid medium 
that opacity and piliation variants regularly appear among a single colony's 
progeny in strain JS3. This high frequency permits study of changes in both 
opacity or piliation phenotype in relationship to pilus subunit size. Numerous 
observations on strain JS3 (Figs. 6-8), strain JS 1 (Fig. 8), and several others (not 
shown) suggest the following: (a) changes in colonial opacity/protein II pheno- 
type are not accompanied by changes in pilus subunit size (Figs. 7-9), and (b) 
changes in colonial piliation phenotype are accompanied by changes in pilus 
subunit size (Figs. 7-9). 

The pilus subunit size changes seen coincident with P+ ~ P÷+ transitions (such 
as those found in Figs. 7 and 8) are usually small (~200-500 D differences are 
typical). Seemingly larger differences in pilus subunit sizes appeared among 
piliated variants arising as progeny of P- parent colonies, as previously shown in 
Fig. 5. This is seen clearly in Fig. 9: in this experiment, the P+ colonies arising 
directly from passage of a P÷ parent (one and four times) are compared with P+ 
variants arising from a P- parent colony (derived from original P+ ancestor 
colony). P+ colonies emanating from a P- parent have a wide variety of pilus 
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subunit sizes, but P+ colonies resultant from continual P+ colony passage are 
similar or identical in their subunit sizes. 

Discussion 
Diversity among Gc pili was recognized initially as antigenic heterogeneity of 

pili from different Gc strains (1). A recent study concluded that "[t]he pili of  all 
pathogenic neisseriae (gonococci and meningococci) we have examined to date 
(about 60) have each had a different (pilus) serotype" (2). The pilus differences 
among Gc were generally interpreted as being "strain differences"; this view was 
enlarged by recent demonstrations that several different pilus subunit forms 
(differing in apparent size by SDS-PAGE, in density, and in isoelectric point) 
appear among variants in individual strains of  Gc (3-5). More recent studies (4, 
6) show that not only do the intrastrain variant pili differ in these physical 
characteristics, but they also exhibit variations in their attachment avidities when 
incubated with several different kinds of eucaryotic cells. 

The present study attempted definition of the extent of  pilus subunit size 
diversity among variants of strain JS3 Gc. Within this strain (and it seems to be 
typical by virtue of observations on several other, unrelated strains), at least 12 
different sizes of pilus subunit were found, but it is clear that this estimate is 
conservative; the SDS-PAGE method used is relatively insensitive for discrimi- 
nating subtle differences in pilus subunit sizes, and our initial results with 
isoelectric focusing provide evidence of additional diversity among pilus subunits 
of the same apparent sizes (J. Swanson and O. Barrera, unpublished observations). 

Changes in pilus subunit size occur coincident with colony "piliation" pheno- 
type changes (P+ ~ P++). Conversely, pilus subunit size usually remains the same 
in progeny versus parent colonies if there is no change in piliation phenotype, 
whether or not there is a change in colony opacity/protein II phenotype. Marked 
diversity in pilus subunit sizes was observed when multiple piliated variants arose 
from a single P- parental colony. In one instance, four such P+ variants each 
displayed a different pilus subunit size; but in other instances, multiple P+ variants 
from a common parental P- colony all had apparently identical pilus subunits. 
These differing results may depend on whether the piliated variants arose in the 
P- parental colony as daughters of a single P+ variant before passaging the P- 
colony, or whether the P+ variants arose independently among the separated, 
already passaged progeny of the P- colony. 

The pilus subunit size diversity that occurred among piliated variants of  P- 
parent colonies seemed greater than subunit differences found with P+ ~ P++ 
transitions. As shown in Fig. 5, a large collection of different pilus subunit sizes 
can be obtained by selecting piliated progeny from P- colonies that have different 
opacity/protein II phenotypes, but the observed diversity is not directly related 
to colony opacity phenotype differences, per se. The seemingly high degree of 
diversity among pili subunits for P+ or P++ progeny of a P- colony is curious. 
Are P- Gc involved in the pathogenic process whereby Gc establish their initial 
(or later) contacts with host cells? It might be advantageous if P- variants were 
spawned in vivo and if subsequent P÷ (or P+÷) variant progeny exhibited a broad 
variety of different pilus forms; this variety in pill might be useful to Gc if only 
one or a few kinds of pili possess properties that promote Gc adherence to a 
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certain anatomical niche's cell type, etc. 
Antiserum from one rabbit inoculated with strain MS11 pili was used through- 

out this study; by immunoblotting, this antiserum reacted with at least one band 
in the 18,000-23,000 D range for all the P+ and P+÷ colonies examined. This 
suggests that ' the antiserum recognized an antigen common to all Gc pili, but 
one cannot exclude the possibility that more than a single pilus subunit form was 
contained in the purified pili used for immunization. Not all the pilus subunit 
bands gave equivalent intensities by immunoblotting, as can be seen especially 
well in Fig. 5. The differences in intensities of  immunoblotting signals could 
result from variation either in the number of pili on individual Gc or in the 
antigenic reactivities of  different subunit forms of pili from one variant to the 
next. In several instances more than one pilus subunit size is found among Gc of 
indi~ ~dual colonies. It seems most likely that this reflects the level of  detection 
for Gc pilus subunits by immunoblotting (pili on "- 1 X 103 Gc can be visualized 
by this method; data not shown) plus the high frequency at which variants occur 
(as judged by the prevalence of variants after passage of single colonies). But we 
cannot exclude the possibilities that individual pili may be composed of a mixture 
of different pilus subunit sizes or that different pili, each with a distinct subunit, 
coexist on individual Gc. 

At present, it isn't clear how large a repertoire of different pilus subunit forms 
a given Gc strain possesses. Nor is it clear how the observed differences in subunit 
size relate to pilus subunits' chemical structures. Small amounts of both phosphate 
and polysaccharide are usually found in "purified" pilus preparations (19, 20); if 
either is an integral part of  the pilin subunit molecule, posttranslational modifi- 
cation (by phosphorylation, etc.) might account for the different migration 
characteristics of different pili. But at this point, we assume that different subunit 
sizes relate to differing primary amino acid sequences of  Gc pili as reflected in 
others' demonstrations (5) of amino acid composition differences for pili from 
variants of  a given Gc strain. Schoolnik et al. (11) have recently proposed a 
model for pilin in which each pilin subunit species is composed of an N-terminal 
constant region and a variable, C-terminal portion. The variations in apparent 
pilus subunit size may correlate with sequence variability in this C-terminal of  
pilin molecules. 

The frequency of variation in pilus subunit size exceeds that for other Gc 
surface components that have been studied. Outer membrane protein III (P.III) 
is present and apparently identical on all Gc examined (9, 14). The monoclonal 
antibody that recognizes the 2-ME-modifiable P.III of all Gc also binds to 2-ME- 
modifiable proteins of  other neisseriae (J. Swanson, unpublished observations). 
Lipopolysaccharide (15, 16) and outer membrane protein I (17, 18) each occur 
in several structural variations among different Gc strains, and changes in each 
of these constituents probably proceed at a very low frequency compatible with 
classic mutations. But, for neither lipopolysaccharide nor outer membrane pro- 
tein I has the extent of diversity or the number of different forms of P.I been 
established. Changes in outer membrane protein II composition occur at high 
frequency, and multiple subunit size and antigenic forms of P.II occur within 
individual strains (7). But pilus subunit size seems to be even more plastic than 
transitions in Gc's P.II constitution. Although colony to colony and day to day 
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variations were seen in frequencies of P+ ~ P++ transitions even with a single 
strain and the same medium, piliation phenotype transitions occur with frequen- 
cies roughly in the range of 0.1-5.0% among progeny of single colonies. 

The results described here are in apparent conflict with the findings of others. 
Specifically, our results show there is no correlation between colony opacity/ 
protein II phenotype and pilus subunit size; such correlation was suggested in 
studies from two groups (3, 4). We suspect that those studies used Gc that were 
not related as closely in passage history as those used here. As shown in our 
studies, Gc of any given piliation plus opacity colonial phenotype may have either 
the same or different pilus subunit size as compared with Gc of  any different 
colonial phenotype in the same strain. The results of Salit et al. (3) also suggest 
this kind of relationship, in that 9 of the 14 strains they examined showed 
different pilus subunit sizes between opaque and transparent colony forms, 
whereas the other 5 strains' opaque versus transparent variants had pilus subunits 
of the same size. 

The lack of correlation between pilus subunit size and colony opacity pheno- 
type also suggests there is no close genetic linkage between pilus subunit size and 
protein II expression as was suggested in a recent article by Meyer et ai. (21). 
They found differences between P÷ organisms differing in their opacity pheno- 
types, between P- Gc of different opacity types, and between P+ versus P- Gc of 
the same opacity phenotype, by Southern hybridization with a plasmid containing 
molecularly cloned Gc pilus genes. Those differences in hybridization patterns 
suggest Gc chromosomal DNA rearrangements coincident with a change from 
"P+Op" (IIx +) to "P+Tr" (II-), which is interpreted as suggesting that "the switch 
from the Tr  to Op state may involve the organization of the pilus gene as well." 
That interpretation is not supported by our finding that there is no change in 
pilus subunit size coincident with either gain or loss of protein II change in 
colony opacity phenotype. These observations argue against any close genetic 
linkage between expression of a particular pilus form and of protein II. 

S u m m a r y  
The apparent subunit sizes for pili of gonococci (Gc) have been visualized by 

using either Iodogen l~sI-iabeled whole Gc or immunoblotting with antipilus 
antiserum. These methods permitted definition of  pilus subunit sizes for Gc of a 
given strain that had undergone changes either in piliation phenotype or in 
colonial opacity/protein II phenotype. The results indicate that pilus subunit size 
does not change coincident with changes in colony opacity/protein II phenotypes; 
but change in pilus subunit size is seen after a change in piliation phenotype (P+ 

P++, and vice versa). Marked diversity in pilus subunit sizes is found for Gc of 
individual strains when P+ derivatives of P- colonies are compared. This diversity 
extends to pilus subunits of  Gc found in single colonies; two distinct pilus forms 
were demonstrated for Gc residing in several single colonies. These findings 
show that Gc of a given strain are able to express any of a number of different 
pilus subunit size forms. 

Note added in proof'. A recent article reports variation in subunit size of pili on 
Gc of the same strain isolated from different anatomical sites (cervix versus 
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urethra) of  an individual female; differences in pilus subunits also were found 
for Gc of  the same strain isolated from male versus female sexual partners 
(Duckworth, M., D. Jackson, K. Zak, and J. E. Heckels. 1983. Structural varia- 
tions in pili expressed during gonococcal infection. J. Gen. Microbiol. 129:1593). 
Those findings demonstrate  that pilus subunit size can differ among variants in 
a single Gc strain in vivo as well as in vitro. 

Our thanks to Susan Smaus for typing, to Chuck Taylor and Bob Evans for photographic 
work, to Gary Schoolnik for the antipilus antiserum, and to the Laboratory of Microbial 
Structure and Function staff for helpful discussions and review of the manuscript. 
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