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Abstract: Inside hippocampal circuits, neuroplasticity events that individual cells may undergo
during synaptic transmissions occur in the form of Long-Term Potentiation (LTP) and Long-Term
Depression (LTD). The high density of NMDA receptors expressed on the surface of the dendritic CA1
spines confers to hippocampal CA3-CA1 synapses the ability to easily undergo NMDA-mediated
LTP and LTD, which is essential for some forms of explicit learning in mammals. Providing a
comprehensive kinetic model that can be used for running computer simulations of the synaptic
transmission process is currently a major challenge. Here, we propose a compartmentalized kinetic
model for CA3-CA1 synaptic transmission. Our major goal was to tune our model in order to predict
the functional impact caused by disease associated variants of NMDA receptors related to severe
cognitive impairment. Indeed, for variants Glu413Gly and Cys461Phe, our model predicts negative
shifts in the glutamate affinity and changes in the kinetic behavior, consistent with experimental data.
These results point to the predictive power of this multiscale viewpoint, which aims to integrate the
quantitative kinetic description of large interaction networks typical of system biology approaches
with a focus on the quality of a few, key, molecular interactions typical of structural biology ones.

Keywords: CA3-CA1 synapses; NMDA; AMPA; systems biology; multiscale modeling; Schaffer
collateral-CA1 synapses

1. Introduction

Ionotropic glutamatergic receptors are a class of membrane receptors divided into
three main subtypes, classified according to their activation to the selective agonists: NMDA
(N-Methyl-D-aspartic acid), AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid), and Kainato. They play a key role in the process of synaptic transmission, which
takes place in excitatory glutamatergic synapses, and dysregulations in their normal activi-
ties have been widely linked to numerous neurological disorders and synaptopathies [1–5].
Particularly, NMDA and AMPA receptors have been identified as crucial in the molecu-
lar mechanism underlying the process of synaptic plasticity, a process that leads to the
modulation in the strength of the neuronal response to stimulation, linked to learning and
memory [6–8].

Complex cognitive functions such as learning and multiple forms of memory are
carried out by the hippocampal formation, which can dynamically sample, encode, store,
and retrieve information coming from the sensory experience [9–11]. The constant encoding
and integration of new information is possible thanks to the ability of a neural circuit to
continuously reshape its topology and modulate the strength of its connections. In the
hippocampal circuits, synaptic plasticity events that individual cells may undergo during
synaptic transmissions occur in the form of Long Term Potentiation (LTP) and Long Term
Depression (LTD). The trisynaptic circuit, particularly, has been extensively studied because
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of its apparently simple connectivity and the experimental accessibility of its structures.
Inside this pathway, CA3 Shaffer collateral axons innervate CA1 pyramidal cells, forming
excitatory glutamatergic synapses. The high density of NMDA receptors expressed on the
surface of the dendritic CA1 spines confers to this synapse the ability to easily undergo
NMDA receptor-mediated LTP and LTD, which has been substantially evidenced to be
essential for some forms of explicit learning in mammals [12,13].

In Schaffer collateral-CA1 synapses, AMPA and NMDA receptors populate the mem-
brane of the CA1 spine, actively participating in synaptic transmission. AMPA receptors
are GluR1-GluR4 containing homo/hetero-tetrameric receptors that mediate fast excitatory
neurotransmission in glutamatergic synapses. The early phase of synaptic plasticity events
that occur in Schaffer collateral-CA1 synapses are associated with alterations in the number
of AMPA receptors expressed on the spine membrane through activation of exocytosis
or endocytosis mechanisms, as well as changes in AMPA receptors conductance through
phosphorylation modifications [14,15]. Together, these molecular mechanisms lead to
fine modulations in the strength of the synaptic transmission. The reactions underlying
such modulation are controlled by the transient variations in the Ca2+ concentration that
occur in the post-synaptic spine, especially, due to the activation of NMDA receptors.
NMDA receptors are hetero-tetrameric glutamatergic ionotropic receptors permeable to
Na2+, K+, Ca2+, and Mg2+ ions [16,17]. The permeability to Mg2+ ions gives to NMDA
receptors a pronounced voltage-dependent behavior. At resting membrane potentials,
external Mg2+ ions enter into the receptor’s pore but, unlike the other permeating ions,
they bind tightly to the pore, blocking it and impairing further ion permeation [18,19].
One of the most accepted physiological mechanisms needed to efficiently unblock NMDA
receptors, thus generating an inward Ca2+ flux, is a temporal coincidence between the
release of pre-synaptic neurotransmitter and a depolarization of the post-synaptic spine (of
sufficient amplitude and duration) elicited by post-synaptic activity. This synchronicity
is taken into account in the Spike Timing Dependent Plasticity (STDP) paradigm that also
includes the post-synaptic dendritic activity expressed in the form of back-propagating action
potentials (bAPs) [20,21]. The transient post-synaptic Ca2+ inward current generated by the
activation and unblocking of NMDA receptors critically acts on the kinetic equilibrium of
the different calcium-binding proteins involved in LTP/LTD-inducing pathways, such as
Ca2+/Calmodulin-dependent Kinase II (CaMKII) [22–24].

Dysfunctions on LTP/LTD-mediated synaptic plasticity have been associated with
many neurological disorders such as epilepsy and Alzheimers, Hughtington, and Parkin-
son’s diseases [4,25–30].

A comprehensive and detailed understanding of the molecular mechanisms underly-
ing synaptic transmission and neuroplasticity is then crucial for the physio-pathological
characterization of many cognitive functions. However, even if LTP/LTD-mediated synap-
tic plasticity has been extensively studied, providing a substantial description of a full
integration of the interaction networks underlying the whole synaptic transmission, deeply
characterized at the molecular level, is currently a major challenge. This could be the
starting point for the identification of new therapeutic strategies, aimed at re-tuning the
global behavior of the intricate network of molecular interactions underlying synaptic
plasticity, thus restoring its functional integrity.

Systems biology models have been shown to be key in approaching the complexity
of this type of interaction networks. These models use a holistic approach to unveil the
complexity of the molecular pathways and to catalogue all the biological complexes and
the relationships between them [31]. They have evolved from empirical descriptions to
fundamental mathematical equations applied by computational methods, allowing us to
envision how such systems change over time under different conditions. In this way, one
can infer qualitative features of the whole system, such as the downstream consequences
of a single altered interaction, and consequently identify, for example, pharmacological
targets or even predict the severity of a structural variant of a molecular species.
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Here, we present, and render available to the scientific community (see Data Avail-
ability section), a mathematical model of the CA3 Schaffer collateral-CA1 transmission.
Although other integrated and detailed models of glutamatergic synapses have been pro-
posed recently [32,33], a clinical-oriented application of such models, able to also take into
account the molecular characterization of particular disease-associated variants, is lacking.
The rationale of our work was to provide a synaptic model that can be easily reproduced,
run, and be integrated into larger analytical pipelines, proposing a novel viewpoint on the
possible applications of comprehensive and detailed system biology models.

Our model allows us to simulate several features of the CA3-CA1 synaptic transmis-
sion process. These include (1) glutamate release inside the synaptic cleft as a result of a
pre-synaptic stimulation, (2) bAP in the post-synaptic dendritic spine, (3) kinetic descrip-
tion of the gating mechanism of both NMDA and AMPA receptors, (4) estimation of the
excitatory post-synaptic currents (EPSCs) and excitatory post-synaptic potentials (EPSPs),
including the explicit calculation of the NMDA-mediated inward Ca2+ current, and (5)
kinetic descriptions of the Ca2+-dependent molecular reactions that take place inside the
post-synaptic spine and lead to the activation of CaMKII. Here we report some of the
qualitative features observed in the receptors-specific contributions to synaptic transmis-
sion, as well as in the timing of pre/post-synaptic stimulation. Finally, we offer a further
integration of our systems biology approach with a molecular level modeling of disease
associated variants. This approach may pave the way to novel multiscale approaches
to be used in the pharmacology or structural systems biology field. Because complex
biological systems do not rely on individual metabolic networks, having a fully integrated
description of metabolic networks allows us to envision the system as a whole instead of a
sum of its parts [34]. It follows that the combination of integrated pathways with molecular
detail observations, as the one we are presenting here, may bring to light new therapeutic
strategies and bring us closer to the new era of personalized medicine.

2. Results and Discussions

This section is divided in two main subsections. In the first part, we present the
implementation of the mechanistic model, providing an overview on the structure of
the pipeline through the description of the individual modules, implemented to describe
different fragments of the system. The second part contains the simulation of the model
under different parameter configurations. This allows us to infer some qualitative features
of the system, with a particular focus on the timing between pre and post-synaptic stimuli,
and finally to assess shifts in the global system behavior given by the introduction of rare
variants in the NMDA receptors associated with diseases.

2.1. An Integrative, Python-Based Pipeline for Simulating Glutamatergic Synaptic Transmission

We developed an integrative mathematical pipeline for the easy running of numerical
simulations of synaptic transmission in individual CA3 Schaffer collateral-CA1 synapses,
driven by both pre- and post-synaptic stimulation. The pipeline is composed of four
different main modules, each one aimed at modelling a different part of the whole trans-
mission process. Starting from the definition of a stimulation pattern, new modules were
progressively implemented and added on top of each other, defining a linear pipeline for
simulating the synaptic transmission (Figure 1).
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Figure 1. Conceptual scheme of the pipeline to simulate our synaptic transmission model. This scheme illustrates all of 
the four modules of our framework: (i) Stimulation Pattern Design (SPD module); (ii) Receptors Gating Simulation (RGS 
module); (iii) Excitatory Post-Synaptic Currents and Potentials (EPSCs/EPSPs) Calculation (CPC module); (iv) Ca2+/Cal-
modulin-dependent Kinase II (CaMKII) Activation Simulation (CAS module). 

2.1.1. Stimulation Pattern Design (SPD) 
This module implements a series of functions that easily allow us to define a stimu-

lation pattern that will drive the synaptic transmission. Such stimulation patterns can be 
composed of both pre- and post-synaptic stimuli, organized as trains of bursts. Here, 
highly customizable patterns can be designed by setting the number of stimuli composing 
each burst, the intra-burst, and the inter-burst frequencies for both pre- and post-synaptic 
stimuli (Figure 2). 

 
Figure 2. Example scheme of a stimulation pattern. Pre- and post-synaptic stimuli are organized as trains or bursts. Each 
burst is composed of a sequence of stimuli, delivered at an intra-burst frequency. Inter-burst frequency defines the interval 
between each burst. Number of stimuli per burst, intra-burst, and inter-burst frequencies can be defined during the stim-
ulation pattern design, for both pre- and post-synaptic patterns. 

Figure 1. Conceptual scheme of the pipeline to simulate our synaptic transmission model. This scheme illustrates all
of the four modules of our framework: (i) Stimulation Pattern Design (SPD module); (ii) Receptors Gating Simulation
(RGS module); (iii) Excitatory Post-Synaptic Currents and Potentials (EPSCs/EPSPs) Calculation (CPC module); (iv)
Ca2+/Calmodulin-dependent Kinase II (CaMKII) Activation Simulation (CAS module).

2.1.1. Stimulation Pattern Design (SPD)

This module implements a series of functions that easily allow us to define a stim-
ulation pattern that will drive the synaptic transmission. Such stimulation patterns can
be composed of both pre- and post-synaptic stimuli, organized as trains of bursts. Here,
highly customizable patterns can be designed by setting the number of stimuli composing
each burst, the intra-burst, and the inter-burst frequencies for both pre- and post-synaptic
stimuli (Figure 2).
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Pre-synaptic stimuli are idealized and modeled as the instantaneous rise and fall
of the free glutamate concentration in the synaptic cleft, assuming a square pulse-like
shape. In this article, we will refer to a pre-synaptic stimulus as a “glutamate pulse”.
The quantity of released glutamate (i.e., the pulse amplitude, expressed in µM) and the
glutamate exposure time inside the cleft (i.e., the pulse width, expressed in ms) of each pre-
synaptic stimulus can be independently parametrized. Post-synaptic stimuli are modeled
as dendritic back-propagating action potentials, consisting of transient depolarization
potentials of the post-synaptic spine membrane. The shape of such stimuli has been
defined using a two-component exponential function (see methods, Section 3.1.1 for further
details), as proposed by Shouval et al. [35]. The stimulation pattern defined in this module
will constitute the input of the following modules.

2.1.2. Receptors Gating Simulation (RGS)

Pre-synaptic stimuli, defined during the design of the stimulation pattern, are used as
input to a second module, which is used to simulate the interactions between the neuro-
transmitter and the AMPA and NMDA receptors. This module contains the compartmental
kinetic description of both the receptor-neurotransmitter binding reactions and the gating
mechanisms that lead to the opening of the channels. Particularly, the latter consists of
state-transition models (including closed, pre-open, open, and desensitized states) that
statistically represent the stochastic distribution of the current traces recorded by electro-
physiological experiments. We selected and integrated one kinetic model for both AMPA
and NMDA receptors, proposed by Koike et al. and Amico-Ruvio and Popescu [36,37],
respectively. Then, we translated both models into systems of first-order differential equa-
tions, implemented in a single larger kinetic model using the python PySB package (see
methods for further details). Finally, a numerical integration was performed, allowing the
simulation of the receptor’s behavior with a high temporal resolution (integration step of
1 µs). We tested the reliability of these ex-novo implementations by comparing the behaviors
predicted by our model, for both AMPA and NMDA receptors, with the behaviors reported
in the works by Koike et al. and by Amico-Ruvio and Popescu [36,37] (Table S1). We
observed a strong consistency between the kinetic features of both AMPA and NMDA
receptors predicted by our PySB-based model and the respective original models, pointing
to a high reliability of our implementation.

2.1.3. EPSCs/EPSPs Calculation (CPC)

The third module of our framework consists of a system of equations used to explicitly
calculate the EPSCs and the respective EPSPs generated during the simulation of the
synaptic transmission. The EPSCs are estimated by calculating, over the simulation, the
ion fluxes that permeate each open channel (predicted with the RGS module described
in Section 2.1.2). This estimation is made according to the channel-specific conductance,
the channel-specific reversal potential, and the depolarization level of the post-synaptic
membrane. The EPSPs are then derived from the EPSCs (see methods Section 3.1.3 for
further details). All the depolarization potentials, which include the EPSPs and, eventually,
the bAPs arising from the post-synaptic stimulation, are summed together to assess the
global changes in the membrane depolarization value. In this module, the equation for the
explicit estimation of the NMDA-mediated Ca2+ current is used to assess the post-synaptic
changes in the Ca2+ concentration according to a simple model proposed by Shouval
et al. [35] (see methods, Section 3.1.3 for further details).

2.1.4. CaMKII Activation Simulation (CAS)

The last module of our pipeline aims to simulate a kinetic description of the post-
synaptic molecular interactions that controls the CaMKII kinase autophosphorylation
events. For this purpose, as previously described for the RGS module (Section 2.1.2), we
selected from the literature a detailed kinetic model based on its reproducibility, and we
transcribed all its reactions into a second PySB model as a system of first-order differen-
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tial equation. We chose to implement a model for the CaMKII activation proposed by
Pepke et al. [38], and we integrated it into the simulation pipeline. This kinetic model
includes a large number of reactions, mainly characterizing the interactions between free
Ca2+ ions, calcium-binding messenger CaM, and the CaMKII enzyme. Particularly, the
Ca2-CaM mediated autophosphorylation of CaMKII enzyme, which leads to its own activa-
tion, directly plays a pivotal role in inducing the early phase of synaptic plasticity [22–24].
Although the changes in the synaptic strength are currently not explicitly assessed in
our model, the variations in the activated CaMKII accumulation allows one to assess the
relative efficiency of the simulated synaptic transmission.

2.2. Kinetic Behavior Analysis of AMPA and NMDA Receptors under Different Pre-Synaptic
Stimulation Conditions

We explored how AMPA and NMDA receptors kinetically behave under different
stimulations patterns, exploiting the RGS module (Section 2.1.2). For this purpose, we
simulated the model using different pre-synaptic stimulation patterns, consisting of either
a single glutamate pulse or bursts of multiple glutamate pulses, delivered at different
frequencies (ranging from 10 to 100 Hz). The amplitude of the glutamate pulses was set
into a physiological range of 1–2 mM [39,40], while the time width was varied in a range
between 1 ms and 1.5 s.

We first focused on the kinetic behavior of AMPA receptors under a single glutamate
pulse of 1 mM, simulated with 1, 5, and 10 ms width. The desensitization kinetics of AMPA
receptors predicted by the gating model shows a much slower time course (τ = ~25 ms,
fitted with single exponential function) compared to the deactivation kinetics (τ = ~0.55 ms,
fitted with single exponential function) after the end of a single glutamate pulse (Figure 3A).
Moreover, both the exposure time of the glutamate (defined by the pulse width) and the
stimulation frequency seem to strongly affect the number of desensitized receptors reached
after a single pre-synaptic event [36] (Figure 3B). The faster deactivation, compared to
the desensitization predicted by the model, points to the property of AMPA receptors
to preferentially undergo a temporal accumulation of desensitized states instead of the
open states.

We then analyzed how the variation of the glutamate pulses duration affects the
summation of desensitized states under a single pre-synaptic burst stimulation. The latter
was simulated by a single burst composed of 5 glutamate pulses of 1 mM amplitude and
1,5, and 10 ms width, with an intra-burst frequency of 100 Hz. We observed a significant
increase in the temporal summation of desensitized AMPA receptors as the glutamate
exposure values increased (Figure 3C–E, respectively).

Next, we analyzed the predicted kinetic behavior of NMDA receptors. By simulating
a single glutamate pulse of 1 mM amplitude and 1 ms, 500 ms, and 1.5 s width, we
observed a significatively slower deactivation and desensitization kinetics compared to
AMPA receptors (Figure 4). Fitting the curves with a single exponential function, we found
time constants of 163, 195, and 210 ms for the deactivation kinetics after 1 ms, 500 ms, and
1.5 s of glutamate exposure, respectively, and a time constant of 1.95 s for the desensitization
kinetics (Figure 4A,B). From these results, we got a ratio between the desensitization and
the deactivation time constant (τdesens/τdeact) of ~12 for the NMDA receptors and ~45 for
the AMPA receptors. The lower value found for the NMDA receptors leads to a more
efficient temporal summation of its open states. In fact, when we simulated the model
with a single pre-synaptic burst of 5 glutamate pulses of 1 mM amplitude and 1, 5, and
10 ms width, with intra-burst frequencies of 10, 50, and 100 Hz, we observed, effectively,
summation of the open NMDAs (Figure 4C–E).
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Figure 3. Opening and desensitization kinetics of the AMPA receptors. (A) Open fraction kinetics following a stimulation
with a single glutamate pulse of 1 mM amplitude and width of 1 ms (black), 5 ms (dark grey) and 10 ms (light grey). Blue
dotted trace shows the desensitization kinetics, while red dotted traces show the deactivation kinetics following glutamate
removal from the synaptic cleft. (B) Desensitized fraction kinetics following a stimulation with a single glutamate pulse of 1
mM amplitude and width of 1 ms (black), 5 ms (dark grey), and 10 ms (light grey). (C–E) Kinetics of open and desensitized
fractions following pre-synaptic stimulations with a burst composed of 5 glutamate pulses, with glutamate pulse amplitude
of 1 mM, an intra-burst frequency of 100 Hz, and a pulses width of 1 ms (C), 5 ms (D), and 10 ms (E).
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dotted trace shows the desensitization kinetics, while red dotted traces show the deactivation kinetics following glutamate
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To have a better insight into the difference between the kinetic behavior of AMPA and
NMDA receptors, we simulated our model with a single pre-synaptic burst of 5 glutamate
pulses of 1 mM amplitude and 1, 5, and 10 ms width, varying the intra-burst frequency
between 10 and 100 Hz. For each intra-burst frequency, we calculated the ratio between
the total number of desensitized and open receptors. According to our model, these
simulations pointed out that the desensitized/open ratio of AMPA receptors depends more
on the stimulation frequencies and on the glutamate pulses durations compared to the
desensitized/open ratio of the NMDA receptors (Figure 5).
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2.3. Temporal Relationship between Pre- and Post-Synaptic Stimuli Strongly Impacts Synaptic
Transmission Efficiency

During the stimulation of the synapse, the equations implemented in the CPC module
(Section 2.1.3) allow us to explicitly assess the individual contribution of both AMPA and
NMDA receptors to the global electrical transmission. Pre-synaptic-induced excitatory po-
tentials and post-synaptic dendritic back-propagation events, programed during the stimu-
lation pattern design, are integrated together to continuously estimate the variations in the
NMDA permeability, as well as in the Ca2+ flux driving force (see methods Section 3.1.3 for
further details). We explored, through several simulations, how the temporal relationship
between pre- and post-synaptic stimuli can shape the efficiency of the electro-chemical trans-
mission.

2.3.1. AMPA-Mediated EPSPs Are Not Sufficient to Efficiently Relieve the Mg2+ Block from
NMDA Receptors

The pronounced voltage-dependent affinity of NMDA receptor for the extracellular
Mg2+ ions causes the actual permeation of the channel to be strongly modulated by the
depolarization level of the membrane [19]. We have previously observed that the kinetic
equations implemented in the RGS module predict no effective temporal summations
of open AMPA receptors because of their fast desensitization and deactivation kinetics,
as observed in other studies [36,41]. Analyzing the output of the RGS module using the
equations implemented in the CPC module (Sections 2.1.2 and 2.1.3), we then observed
that, coherently, the AMPA-mediated responses also tend not to summate (Figure S1).

This observation prompted us to investigate if the amplitude of an AMPA-mediated
EPSP evoked by a single pre-synaptic event was high enough to relieve the Mg2+ block
from NMDA receptors. Because the EPSPs amplitudes of AMPA and NMDA receptors are



Int. J. Mol. Sci. 2021, 22, 1536 10 of 24

influenced by their levels of expression on the post-synaptic spine surface, we performed
multiple simulations of a single glutamate pulse of 1 mM amplitude and 1, 5, and 10 ms
width, varying the level of available AMPA receptors in a range between 20 and 200 [42].
Simulation results reported that the maximum AMPA-mediated EPSPs peaks elicited by
single-pulse pre-synaptic stimulations reach −40 mV with 200 units of AMPA receptors
(Figure 6A). According to the Mg2+ unblocking probability function that we have incorpo-
rated into the model (see methods Section 3.1.3 for further details), such a depolarization
level can effectively release the Mg2+ ion from NMDA receptors only if the extracellular
Mg2+ concentration is very low compared to the physiological concentration (Figure 6B),
which is near to 1 mM [19].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 24 
 

 

200 [42]. Simulation results reported that the maximum AMPA-mediated EPSPs peaks 
elicited by single-pulse pre-synaptic stimulations reach −40 mV with 200 units of AMPA 
receptors (Figure 6A). According to the Mg2+ unblocking probability function that we have 
incorporated into the model (see methods Section 3.1.3 for further details), such a depo-
larization level can effectively release the Mg2+ ion from NMDA receptors only if the ex-
tracellular Mg2+ concentration is very low compared to the physiological concentration  
(Figure 6B), which is near to 1 mM [19]. 

 
Figure 6. (A) Simulated AMPA-mediated EPSPs evoked by different numbers of available AMPA receptors, ranging from 
20 (lower trace) to 200 (upper trace). Solid, dashed, and dotted traces refer to single pulse stimulation performed with a 
glutamate pulse width of, respectively, 1, 5, and 10 ms. (B) Sigmoidal unblocking probability function for Mg2+ block, 
expressed as a function of membrane voltage. Each trace corresponds to a different value of extracellular Mg2+ concentra-
tion. 

These results emphasize the fact that pre-synaptic events on their own may not be 
enough to ensure an effective Ca2+ permeation. As supported by the STDP paradigm, tem-
poral coordination between pre- and post-synaptic events must occur in order to allow a 
significant Ca2+ influx that can effectively trigger plasticity [43]. 

2.3.2. Synchronization between Pre- and Post-Synaptic Stimulation Significantly In-
creases the NMDA Receptor Contribution to Synaptic Transmission. 

We further investigated how the synchrony between pre- and post-synaptic activity 
can affect the efficiency of synaptic transmission, particularly by increasing the amplitude 
of the NMDA receptors-mediated EPSCs and EPSPs. For this purpose, we compared the 
individual responses of the AMPA and NMDA receptors obtained from two different 
stimulation patterns, one including only pre-synaptic stimulation and one including cou-
pled pre- and post-synaptic stimulations. In both stimulation pattern, the pre-synaptic 
stimulation consisted of a single theta burst composed of 5 glutamate pulses of 1 mM 
amplitude and 1, 5, and 10 ms width, with an intra-burst frequency of 100 Hz [44]; post-
synaptic stimulation was designed as a single dendritic back-propagation event, which 
occurs in the post-synaptic spine 1 ms after the first pre-synaptic stimuli was delivered. 
Simulations were performed in the presence of 20 AMPA and 15 NMDA receptors [42,45], 
with extracellular Mg2+ concentration set to 1 mM. As expected, significant increases in 
the total NMDA receptor-mediated current peak (~2.5 fold), as well as in the Ca2+ that 
permeated the channel (~4.5 fold), were observed during the coupled pre- and post-syn-
aptic stimulation compared to the pre-synaptic stimulation alone, showing the impact of 
bAP-mediated synaptic facilitation on the NMDA receptors conductance (Figure 7). 
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These results emphasize the fact that pre-synaptic events on their own may not be
enough to ensure an effective Ca2+ permeation. As supported by the STDP paradigm,
temporal coordination between pre- and post-synaptic events must occur in order to allow
a significant Ca2+ influx that can effectively trigger plasticity [43].

2.3.2. Synchronization between Pre- and Post-Synaptic Stimulation Significantly Increases
the NMDA Receptor Contribution to Synaptic Transmission

We further investigated how the synchrony between pre- and post-synaptic activity
can affect the efficiency of synaptic transmission, particularly by increasing the amplitude
of the NMDA receptors-mediated EPSCs and EPSPs. For this purpose, we compared the
individual responses of the AMPA and NMDA receptors obtained from two different stim-
ulation patterns, one including only pre-synaptic stimulation and one including coupled
pre- and post-synaptic stimulations. In both stimulation pattern, the pre-synaptic stimula-
tion consisted of a single theta burst composed of 5 glutamate pulses of 1 mM amplitude
and 1, 5, and 10 ms width, with an intra-burst frequency of 100 Hz [44]; post-synaptic
stimulation was designed as a single dendritic back-propagation event, which occurs in the
post-synaptic spine 1 ms after the first pre-synaptic stimuli was delivered. Simulations were
performed in the presence of 20 AMPA and 15 NMDA receptors [42,45], with extracellular
Mg2+ concentration set to 1 mM. As expected, significant increases in the total NMDA
receptor-mediated current peak (~2.5 fold), as well as in the Ca2+ that permeated the
channel (~4.5 fold), were observed during the coupled pre- and post-synaptic stimulation
compared to the pre-synaptic stimulation alone, showing the impact of bAP-mediated
synaptic facilitation on the NMDA receptors conductance (Figure 7).
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Because we had observed that the presence of a bAP during stimulation significantly 
increases the NMDA receptor mediated EPSC, we analyzed how variations in temporal 
coordination level between pre- and post-synaptic stimuli impacts the amplitude of the 
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Figure 7. Simulation of synaptic transmission elicited by a single pre-synaptic burst of 5 glutamate pulses, in the absence
of (A–C) or in the presence of (D–F) a single post-synaptic back-propagating action potential (bAP). (A,D) Time course of
the individual AMPA-mediated EPSC. (B,E) Time course of the individual NMDA-mediated EPSC. (C,F) Time course of
the Ca2+ molar flowrate that permeate NMDA receptors during the simulations. Pre-synaptic bursts were composed of 5
glutamate pulses of 1 mM amplitude and 1 ms (black pulses), 5 ms (dark grey pulses), and 10 ms (light grey pulses) width;
in each plot, the responses elicited by 1 to 10 ms widths are represented by different colors, respectively, from the darkest to
the brightest. Post-synaptic activity (red trace) was programmed as a single dendritic back-propagation event that occurs 1
ms after the first pulse of the pre-synaptic burst began. Both simulations were performed in the presence of 20 AMPA, 15
NMDA, and 1 mM of extracellular Mg2+.
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Because we had observed that the presence of a bAP during stimulation significantly
increases the NMDA receptor mediated EPSC, we analyzed how variations in temporal
coordination level between pre- and post-synaptic stimuli impacts the amplitude of the
elicited Ca2+ influx. For this purpose, we performed multiple simulations varying the time
interval between pre- and post-synaptic stimuli (∆t = tpost − tpre). For each simulation,
we then evaluated the effect of the bAP-induced synaptic facilitation by calculating the
maximum Ca2+ concentration reached in the post-synaptic spine. Simulating a single
pre-synaptic glutamate pulse of 1 mM amplitude and 1 ms width, together with a single
post-synaptic bAP, we found that post-synaptic Ca2+ rises from a value of ~200 nM (the post-
synaptic Ca2+ concentration elicited by a single pre-synaptic event alone) to a maximum
of ~1.4 µM (Figure 8). This value is obtained when the pre-synaptic event precedes the
post-synaptic event (positive ∆t) of ~20 ms, in agreement with the Hebbian STDP paradigm
for synaptic plasticity (see Feldman 2012 [20] for a review).
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Figure 8. Relationship between pre/post-synaptic stimulation timing and the Ca2+ concentration
peaks reached in the post-synaptic spine. Simulations were performed in the presence of 20 AMPA,
15 NMDA, and 1 mM of extracellular Mg2+. Maximum post-synaptic Ca2+ concentration was reached
with ∆t ≈ 20 ms. Gray rectangle highlights negative ∆t values in which post-synaptic stimuli precede
pre-synaptic stimuli.

2.4. Kinetic and Pharmacological Analysis of NMDA Variants: Multiscale Integration

Deactivation time course defines the time required by the receptor-mediated current to
decay after the removal of the agonist from the synaptic cleft. This kinetic feature, together
with EC50 values of the agonist, constitute a prominent quantitative feature used to perform
functional analysis of ion channels [46]. Many published studies on rare NMDA receptor
variants have tried to assess the severity of a certain mutation, considering its impact on
both glutamate potency and deactivation time constant [25,47–49].

We used our model to predict the glutamate affinity (Kd) and the weighted deac-
tivation time constant (τw) in NMDA receptor variants, based on the EC50 values that
have been reported in different experimental and computational studies [25,47,48,50]. In
particular, we focused on two rare variants: Glu413Gly and Cys461Phe that fall inside
the GluN2B binding pocket (Figure 9). These variants have been shown to decrease the
glutamate potency, which may result from a decrease in the glutamate affinity [47,48,50,51].
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Figure 9. Structure of human GluN1/GluN2A NMDA receptor (PDB accession code: 4TLM). The GluN2B subunit is colored
in light blue. The insights show the glutamate binding domain of the wild-type (WT) receptor and the two structural
variants Glu413Gly (E413G) and Cys461Phe (C461F). Each window focuses on the docked glutamate (white molecule) and
the crucial residues that directly participate to the interaction. Red arrows point to the residue substitution of each of the
two structural variants.

Therefore, we tuned the NMDA kinetic model to reproduce the same concentration-
response behaviors experimentally observed for both the Glu413Gly and Cys461Phe vari-
ants.

Exploiting our kinetic model, we were able to computationally assess the NMDA-
glutamate concentration-response relationship by using the following approach: firstly,
we sampled concentration values in a range between 0.01 and 1000 mM; next, for each
value, we ran the RGS module, simulating a single glutamate pulse, with amplitude
corresponding to the current glutamate concentration value and width of 1.5 s, as reported
by experiments [47], setting the number of AMPA receptors to 0 (because we were interested
in isolating the NMDA response). Finally, calculating from each simulation the peak of the
evoked current, EC50 value was obtained by fitting the concentration-response data with
the logistic function.

To predict the shifts in the NMDA receptor-glutamate affinity associated with the rare
variants Glu413Gly and Cys461Phe, knowing their experimental EC50 values (75–79 µM
for Glu413Gly [47,48] and 169 µM for Cys461Phe [47]), we progressively increase, during
a sequence of multiple simulations, the ratio between the rate constants koff and kon
(i.e., the Kd) of the equations describing the interaction between the NMDA receptor
and the glutamate. For each simulation, we computed the EC50 value, and at the end
of all the simulations we selected the Kd that rendered the EC50 values closest to the
experimental ones.

As a result, we found that the NMDA receptor kinetic behavior generated by predicted
Kd values shows a current deactivation time constantly very close to the experimental ones
(Table 1).



Int. J. Mol. Sci. 2021, 22, 1536 14 of 24

Table 1. Predicted Kd and deactivation time constant for NMDA Wt and variants. Deactivation decay
was fitted with a two-component exponential function, and the weighted Tau was then calculated
(see methods Section 3.2.2).

Predicted Kd (µM) Weighted Tau (ms)

Predicted Exp.

Wt 2.5 328 314–570 [47,48,52]
Glu413Gly 190.5 29 20–34 [47,48]
Cys461Phe 446.5 27 28 [48]

The kinetic model of the NMDA receptor was tuned by only increasing the koff rate
constant of the glutamate binding reactions. Therefore, we reasoned that the coherence
between our results and the experimental data points to the fact that the analyzed variants
are likely to affect the affinity of the receptor (thus causing an EC50 shifting) by negatively
altering the glutamate residence time inside the binding pocket of the receptor.

For the wild-type NMDA receptor, we found a Kd value of 2.5 µM and a deactivation
constant of 328 ms, whereas, for the Glu413Gly and Cys461Phe variants, we found Kd
values of 190.5 and 446.5 µM and deactivation constants of 29 and 27 ms, respectively
(Figure 10 and Table 1). As these results imply, the Glu413Gly and Cys461Phe variants
increase the Kd of the glutamate ~75 and ~180-fold (Table 1).
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receptors. Simulation data was fitted with logistic regression. EC50 values of 2.7, 76, and 169 µM for
WT, Glu413Gly, and Cys461Phe-NMDA receptors, respectively.

The next step in our multiscale analysis of NMDA Glu413Gly and Cys461Phe receptor
variants consisted in further investigating if the calculated affinity alterations can impact
the synaptic plasticity mechanism. To address this question, we simulated the effects of
the structural variants on the amplitude of the rise in the post-synaptic Ca2+ concentration
and on the amount of activated CaMKII, an enzyme that directly plays a pivotal role in
triggering synaptic plasticity events in CA3-CA1 synapses. This latter estimation was
done by exploiting the CAS module (Section 2.1.4). This module contains a mathematical
description of the Ca2+-dependent CaM-CaMKII transduction pathway, which, starting
from Ca2+ transients, leads to activation of CaMKII kinase (see methods Section 3.1.4 for
further details). We stimulated our virtual synapse with a pair of single pre- and post-
synaptic stimuli (glutamate pulse of 1 mM amplitude and 1ms width, time interval between
pre- and post-synaptic stimuli of 20 ms). As expected, we found that the predicted decrease
in the NMDA glutamate affinity significatively attenuates the amplitude of the elicited
post-synaptic Ca2+ variation ~5 and ~8.5 fold for the Glu413Gly and Cys461Phe variants,
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respectively (Figure 11A). Moreover, the kinetic model for the Ca2+-mediated activation of
the CaMKII enzyme predicted much lower amounts of activated CaMKII for Glu413Gly
(~13 fold) and Cys461Phe (~23 fold) variants compared to the wild type (Figure 11B).
Considering the key role that the CaMKII enzyme plays in the molecular mechanism
underlying the synaptic plasticity process, the predicted drastic decrease in the activation
efficiency of such enzyme points out the severity of these rare structural variants. In fact,
because CaMKII-driven neuroplasticity seems to be negatively affected in a significant way,
severe neuropathological phenotypes, including learning and memory impairment, are
likely to arise.
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All simulations were performed under one pair of single pre- and post-synaptic pulses, with a pre-synaptic pulse of 1 ms of
glutamate exposure, a delay between the pre- and the post-synaptic stimuli of 20 ms, and 1 mM of Mg2+.

In the last part of our in silico experiment, we were interested in reporting a more
general representation of the relationship between NMDA-glutamate affinity and CaMKII
enzyme activation efficiency. Here, our rationale was to search for an NMDA-glutamate
affinity threshold that can be used for discriminating between high and low-severity
variants, knowing their respective Kd. We proceeded, for this purpose, to simulate the
whole synaptic model with the same basic stimulation pattern previously adopted for
the analysis of the Glu413Gly and Cys461Phe variants but varying the Kd affinity value
in a range between 1 and 1000 µM. For each simulation (i.e., for each Kd value), we
selected the maximum amount of activated CaMKII observed. Data were first normalized
to the maximum response observed across all the simulations and then fitted with the
four-parameter logistic function (see methods Section 3.2.3 for further details) (Figure 12).
Finally, the threshold was calculated by finding the bending point of the fitted curve, which
corresponded to a Kd value of ~19 µM (Figure 12).
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of 20 ms, and 1 mM of Mg2+.

The identification of this type of thresholds can be very useful for a rapid assessment
of the downstream effects of variants and can be easily integrated into larger analytical
pipelines. We are currently working on a further implementation of this synaptic model that
also integrates a detailed kinetic description of the reactions controlling the phosphorylation
of AMPA receptors by the CaMKII enzyme, an event which is known to directly control
synaptic strength modulations (LTP and LTD) by altering the conductance and trafficking
of these receptors. With this further extension, we aim to explicitly quantify synaptic
plasticity events that can occur during the stimulations.

3. Methods

In this section, we provide a full and detailed description of all the individual modules
that compose the proposed mathematical model, each of which implements a different
fragment of the whole synaptic transmission process.

This modular rationale at the base of the framework implementation guarantees
an easy customization of the simulation pipeline, as well as the further extensibility of
the system.

The current build of the framework includes:

• Stimulation Pattern Design (SPD) module, where both pre- and post-synaptic stimuli
can be programmed independently. This module allows us to define the inputs of the
virtual synapse.

• Receptors Gating Simulation (RGS) module. This module performs a compartmental-
ized kinetic simulation of the virtual synaptic cleft, where a neurotransmitter released
from pre-synaptic stimuli interacts with ionotropic membrane receptors expressed on
the post-synaptic spine.

• EPSCs/EPSPs Calculation (CPC) module. This module analyzes the data coming
from the RGS module and, calculating synaptic currents and their respective poten-
tials, integrates pre- and post-synaptic stimuli. It constitutes a “bridge” between the
extracellular and the intracellular compartments.

• CaM/CaMKII Activation Simulation (CAS) module. This module performs a com-
partmentalized kinetic simulation of a set of molecular reactions that takes place in the
virtual post-synaptic spine, which includes the interactions between Ca2+, Calmodulin
(CaM), and Ca2+/CaM-dependent Kinase II (CaMKII).
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The kinetic equations used to describe the reactions contained in both the RGS and
CCS modules are implemented, exploiting the PySB python package [53] as systems of
first-order differential equations. Numerical integration is performed using the SciPy
ODE integrator [54]. All of the data analysis and fittings were performed using SciPy
and Numpy packages [54,55]. Finally, all the plots were generated using the Matplotlib
library [56].

All the code is stored in a publicly available github repository (https://github.com/
pietromicheli/CA3-CA1_SynapticModel), where a jupyter notebook file for running simu-
lations and performing basic analysis can also be found.

3.1. Mathematical Model Implementation
3.1.1. SPD Module

In this module, the stimulation pattern of the virtual synapse can be designed. Bidi-
rectionality is a crucial feature of neuronal communication. The functional and topological
properties of the brain neural network can be significantly shaped by the temporal rela-
tionship between forward and backward signals, as the STDP paradigm for the synaptic
plasticity claims [20,21,57]. Therefore, integration of pre- and post-synaptic stimuli consti-
tute a logic core of our implementation. For this purpose, patterns of pre- and post-synaptic
stimuli can be programmed and simulated independently in order to analyze how the
system behaves under different levels of synchronization between pre- and post-synaptic
activities. Each pattern is modeled as a train of bursts. Numbers of stimuli per burst,
intra-burst, and inter-bursts frequencies can be specified to design custom stimulation
patterns (Figure 1).

In our model, pre-synaptic stimuli have been idealized as glutamate pulses, repre-
senting the instantaneous rise and fall in the free neurotransmitter concentration available
inside the cleft compartment following pre-synaptic action potentials. Amplitude (i.e., the
amount of available free glutamate) and width (i.e., the exposure time of the free glutamate)
of the pre-synaptic glutamate pulses can be defined during the stimulation design.

On the other hand, post-synaptic stimuli have been modeled as transient depolariza-
tions of the post-synaptic spine generated by dendritic back-propagating action potentials
(bAP). Each bAP is shaped using a two-component exponential function, taken from the
work by Shouval et al. [35]:

bAP(t) = Vmax ∗
((

I f ast ∗ exp

(
−t
τ f ast

))
+

(
Islow ∗ exp

(
−t
τ f ast

)))
(1)

where Vmax is the maximum depolarization value for bAP value set to +67 mV [58], Ifast and
Islow are the relative magnitudes of the fast and slow components of the bAP that sum to
one, and τfast and τslow are the relative time constants that describe the exponential decays
of the two components.

3.1.2. RGS Module

This module contains a system of kinetic equations describing the interactions between
glutamate and AMPA/NMDA receptors, which take place inside the cleft compartment.
The aim of this module is to accurately simulate both the receptors-neurotransmitter
binding reactions and the gating mechanism that lead to opening or desensitization of the
receptors.

Individual models describing the kinetic behavior of both AMPA and NMDA receptors
have been selected from the literature based on their reproducibility and subsequently
implemented as systems of first-order differential equations inside the PySB framework.
To reproduce the kinetic behavior of AMPA receptors, we chose a model proposed by
Koike et al. [36] for homomeric GluR2(flip) receptors. The model assumes two glutamate
binding steps, one pre-open transient state, three desensitized states, and one open state of
the receptor (Figure S2B). For the kinetic description of the gating mechanism of NMDA

https://github.com/pietromicheli/CA3-CA1_SynapticModel
https://github.com/pietromicheli/CA3-CA1_SynapticModel
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receptors, we used the model for GluN1/GluN2B NMDA receptor proposed by Amico-
Ruvio and Pospescu [37]. This kinetic scheme includes two sequential glutamate binding
steps, three pre-open transient states, two desensitization states, and one open state of
the receptor (Figure S2A). Because we assume a saturating concentration of glycine inside
the clef compartment, the binding steps with this molecule are not included in the kinetic
model. Thus, all the resting NMDA receptors are considered glycine bound.

3.1.3. CPC Module

In this module, we implemented a set of equations with the aim of assessing the
EPSCs and the respective EPSPs generated by the open fractions of both AMPA and
NMDA receptors. EPSPs are then integrated with the back-propagating action potentials
programmed during the stimulation design. Finally, the sum of all the depolarizing
contributions is used to assess the variations of the post-synaptic membrane potential.

Many synaptic models that have been proposed in the past estimated the EPSCs
and/or the EPSPs simply by using two-component exponential functions fitted on electro-
physiological recordings [35,58–60]. On the contrary, in our model, the open probabilities of
the receptors vary according to a system of deterministic rate equations that represent mass-
action kinetics of receptors-neurotransmitter interactions [53]. For this reason, the rising
and decay phases of both receptor-mediated EPSCs and EPSPs responses are shaped by the
complex receptor-specific interaction kinetics with the neurotransmitter. This confers more
flexibility to our model, allowing us, for example, to explore the responses generated by
mutant forms of the receptors by tuning the rate constants of some of the kinetic equations.

We defined the EPSCs of AMPA and NMDA receptors as follows:

EPSCAMPA(t) = OAMPA(t) ∗ GAMPA ∗
(
Vm(t − ∆t)− VEAMPA

)
(2)

EPSCNMDA(t) = ONMDA(t) ∗ GNMDA ∗
(
Vm(t − ∆t)− VENMDA

)
∗ B(Vm(t − ∆t)) (3)

where OAMPA(t) and ONMDA(t) are the number of open NMDA and AMPA receptors at
each time step; GNMDA and GAMPA are the single channel conductance set to 40 pS and
15 pS, respectively [61–63]; Vm(t − ∆t) is the membrane potential at time (t − ∆t); VE is
the channel-specific equilibrium reversal potential and defines the value of the membrane
potential for which the electrochemical equilibrium is reached and, thus, the net flux
through the channel is 0 (we assume that VEAMPA = VENMDA = 0) [64]; and B(Vm) describes
the voltage dependence of the NMDA current given by the Mg2+ blocks defined by [35]:

B(Vm) =
1

1 − exp(−KMVm) ∗
(
[Mg2+ ]

3.27

) (4)

Once the EPSCs have been calculated, the relative EPSPs are determined simply by
applying the law of Ohm:

EPSPAMPA(t) = EPSCAMPA(t)∗Rs (5)

EPSPNMDA(t) = EPSCNMDA(t) ∗ Rs (6)

where Rs is the spine’s resistance set to 500 MΩ [65].
Finally, the total membrane potential, defined as the sum of the partial depolarization

contributions, is calculated according to the equation:

Vm(t) = Vr + EPSPAMPA(t) + EPSPNMDA(t) + bAP(t) (7)

where Vr is the resting membrane potential of the spine (−65 mV).
In CA3 Schaffer collateral-CA1 synapses, the key mediator of the post-synaptic re-

sponse is the elicited intracellular Ca2+ variation. Because NMDA receptors are the major
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source of Ca2+ during spine stimulation [66], we explicitly calculate the NMDA receptor-
mediated Ca2+ molar flowrate as follows:

ICa2+(t) = ONMDA(t) ∗ GCa2+ ∗
(

VM(t − ∆t)− VECa2+

)
∗ B(Vm(t − ∆t)) (8)

where GCa2+ expresses the permeability of the NMDA receptor to Ca2+ ions, set to 2 nM·ms−1

·mV−1 [58] and VECa2+ is the reversal equilibrium potential for Ca2+ set to +130 mV [58].
Finally, the calcium dynamics in the post-synaptic cell is integrated by a simple

first-order differential equation [35,58]:

d
[
Ca2+(t)

]
dt

= ICa2+(t)−
[
Ca2+(t)

]
τCa2+

(9)

where τCa2+ is the passive decay time constant of post-synaptic Ca2+ concentration, set to
20 ms [35].

A full list of all the parameters used in the equations described above is provided in
the supplementary data (Table S2).

3.1.4. CAS Module

The last module of the pipeline contains a compartmentalized kinetic description of
a reaction network that takes place inside the post-synaptic spine. Here, our rationale
was to assess the variability in the amount of activated CaMKII enzyme upon different
stimulation conditions. Because CaMKII plays a crucial role in the positive regulation of the
early phase of LTP in CA3 Schaffer collateral-CA1 synapses [22–24], this estimation allows
us to qualitatively infer the strength and the efficiency of the synaptic transmission. As
previously described for the RGS module, we selected from the literature a kinetic model
based on its reproducibility; we translated it inside the PySB framework and, finally, we
appended the new block to the pipeline. For this purpose, we selected from the BioModels
database [67] a model describing a set of interactions that, starting from post-synaptic rise
in Ca2+ concentration, leads to the autophosphorylation (i.e., the activation) of monomeric
CaMKII [38]. Particularly, the set of reactions implemented includes:

• Binding reactions between Ca2+ ions and CaM and CaM-CaMKII species;
• Dimerization reactions between Ca2+-CaM and monomeric CaMKII;
• Dimerization reactions between two Ca2+-CaM-CaMKII complexes;
• Autophosphorylation reactions of CaMKII monomers inside the 2

(Ca2+-CaM-CaMKII) complexes.

3.2. Data Fitting
3.2.1. Concentration-Response Curves

We computed the glutamate concentration-response curves for NMDA receptors by
stimulating the system with a glutamate pulse of 1.5 s in the absence of Mg2+ [47]. We run
multiple simulations varying the amplitude of the glutamate pulse, with a concentration
range between 0.01 and 1500 µM, and calculating the NMDA receptor-mediated current
peak values. The EC50 values were then calculated by fitting the concentration-response
data with the following equation:

Response % =
100(

1 + EC50
[glutamate]

)n (10)

where n is the Hill slope.
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3.2.2. Two-Component Exponential Function Fitting

The deactivation time constant for the NMDA wild-type receptor and Glu413Gly and
Cys461Phe variants were estimated as weighted time constants of the double exponential
fit of the NMDA receptor current decay after the exposure of 1 mM glutamate for 1.5 s. The
two-component exponential function used for the fitting takes the form:

I(t) = I f ast ∗ exp
(

−t
τslow

)
+ Islow ∗ exp

(
−t
τslow

)
(11)

where I is the current, Ifast and Islow are the amplitudes of the fast and slow components,
respectively, and τfast and τslow are the respective decay time constants. The weighted time
constant of decay (τw) was calculated using the following equation:

τw =
I f ast

I f ast + Islow
∗ τ f ast +

Islow
Islow + I f ast

∗ τslow (12)

3.2.3. Four-Parameter Logistic Function and Bending Points

The data generated by the simulation of the relationship between different glutamate-
NMDA Kd values and the concentration peaks of activated CaMKII enzyme (see results
Section 2.4) were fitted with the four-parameter logistic function:

Y =
a − d

1 +
(

X
c

)b + d (13)

where Y represents the activated CaMKII response, X represents the affinity value Kd
(expressed in µM), a is the lower asymptote, d is the upper asymptote, c represents the Kd
that generates a mid-way response between the estimated a and d, and b is a slope factor.
The bending point of the curve was then computed as follow:

Xbend =
a − d
1 + k

+ d (14)

Ybend = c ∗
(

a − Ybend
Ybend − d

) 1
b

(15)

where k is a constant value, set to 4.6805 [68].

4. Conclusions

We proposed a compartmental model for the hippocampal synapse CA3-CA1. Our
goal was to provide a simple and portable, python-based program to run kinetics simula-
tions of the synaptic transmission, which embodied both pre- and post-synaptic activity.
The rationale that drove us through the implementation, as well as the application, of
this model was to focus on the integration between system biology and structural biology
viewpoints. Exploiting this hybrid multiscale approach, we analyzed the impact that single
disease associated variants of NMDA receptors, related to neurological disorders and
cognitive impairments, may have on the whole synaptic transmission process. We were
able to consistently reproduce experimental data and to quantitatively infer molecular-level
causality of a variant-related functional impairment. Therefore, these results show the
predictive power of such a multiscale approach, aimed at observing behavioral shifts of
a complex system that emerge from amplification of small, quantifiable, molecular-level
alterations.

A future improvement of our model will allow us to explicitly quantify synaptic
plasticity events by adding further biological details, e.g., AMPA receptors conductance
modulation and translocation by CaMKII-mediated phosphorylation. The next step will
be to extend the structural analysis to the multiple molecular entities involved in the
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transmission and modulation processes, recalibrating the kinetic constants of the interac-
tions according to the conformational rearrangements caused by specific mutations. This
will allow us to explicitly simulate the molecular effects, as well as the impact on the
single-neuron functionality, of mutational signatures linked to neurological and cognitive
impairments, which affect one or multiple entities of the modeled interactome. Finally, this
approach may be extended to post-synaptic receptors belonging to other families, such as
G-protein coupled receptors.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/14
22-0067/22/4/1536/s1, Figure S1: AMPA-mediated EPSPs generated by pre-synaptic stimulations
composed of a single glutamate pulse or a burst of 5 glutamate pulses delivered at 100 Hz, Figure S2:
Kinetic schemes used for simulating the gating mechanisms of NMDA and AMPA receptors, Table S1:
Comparison between peak open probability and deactivation time constants values obtained from
our implementation and the ones reported by the original models, Table S2: List of the parameters
used in the equations of the CPC module.
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