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A B S T R A C T

This study presents a family of coexisting multi-scroll chaos in a network of coupled non-
oscillatory neurons. The dynamics of the system are analyzed using phase portraits, basins of
attraction, time series, bifurcation diagrams, and spectra of Lyapunov exponents. The coexistence
of multiple bifurcation diagrams leads to a complex pattern of multi-scroll formation, which is
further complicated by the presence of coexisting single-scroll attractors that merge to form multi-
scroll chaos. In addition, the presence of bursting phenomena and multiple firing partners is
present in the model. A control strategy based on a noninvasive control method is applied to
select the desired multi-scroll. The effectiveness of the control method is demonstrated through
numerical simulations. The experimental validation on an Arduino microcontroller confirms the
theoretical results and demonstrates the feasibility of implementing the proposed model. These
remarkable behaviors hold significant implications for understanding brain dynamics and have
potential applications in various fields.

1. Introduction

The intricate dynamics of the human brain, characterized by chaotic electrical signal transmission between neurons during
cognitive processes and emotional expressions, have inspired research into neural networks and chaotic systems [1–3]. The unpre-
dictability, ergodicity, and pseudo-randomness exhibited by chaotic neural networks present a unique avenue for exploration in
complexity science. The complex topology of multi-scroll chaos offers high complexity and mirrors the brain’s chaotic behavior.
Multi-scroll chaos is a complex nonlinear dynamical behavior characterized by the presence of spiraling toward a distinct attractor in
the phase space. The ability to produce multiple scrolls or chaotic trajectories makes these attractors particularly valuable for ap-
plications in secure communications, random number generation, and chaotic synchronization [4].

In recent years, numerous studies have revealed the presence of multi-scrolls in different systems/circuits with various methods.
Bao et al., [5] present a 2D non-autonomous neuron model with sinus activation functions, and multi-scroll chaotic attractors have
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emerged with lines of equilibrium points. Parametric control of multi-scrolls has been shown using sine-piecewise-linear functions,
revealing complex multi-scroll attractors [6,7]. Dana et al., investigate a unidirectional coupling scheme of two chaotic oscillators with
piecewise linear functions and reveal interesting multi-scroll dynamics without additional breakpoints [8]. Similarly, Monroy et al.
[9], designed a chaotic system able to generate diverse multi-scroll attractors by using a piecewise-linear function. Boya et al.,
introduce a novel six-scroll chaos and multistability into a simple Thomas system and use this complex behavior for medical data
privacy [10]. Njitacke et al., used the heterogeneous structure of neuron models to express energy dissipation, infinite coexistence,
selected control, and multi-scroll structures [11–14]. Kengne et al., explored the coupling of some systems and displayed complex
coexisting states and multi-scroll attractors based on coupling schemes [15–18].

Some complex schemes of formation of multi-scrolls have been shown by using Hopfield Neural Networks with various structures of
rich structures. Lin et al., [19] revealed rich n-scroll chaotic attractors from a memristive magnetized Hopfield neural network. Zhang
et al. [20], investigated an offset boosting coexisting attractors with multi-double-scrolls in a memristive Hopfield neural network.
Similarly, Bao et al. [21], revealed rich plane coexisting dynamics with two memristor-based Hopfield neural networks (HNNs). Yu et
al., found multi-scrolls in multiple directions and coexistence of multiple double-scroll chaos within a memristive HNN under con-
siderations of external disturbance [22]. Tang et al. [23], investigated the dynamical analysis of memristive HNNs based on a
multi-segment function and revealed hyperchaotic multi-scrolls.

The study of chaotic dynamics in coupled neurons has attracted much attention in recent years due to its potential applications in
neuroscience and engineering [24]. In this context, the concept of multi-scroll chaos has emerged as a useful tool for modeling complex
behavior in neural systems. Yu et al., reveal rich complex bursting oscillations and synchronization phenomena issues through a
memristive neural network [25]. Madasamy et al., [26] studied the bidirectional coupling of two Hopfield inertial neurons with
monotonic and non-monotonic activation functions and uncovered chameleon dynamics with elegant multi-scroll chaos formation.
Some recent works show that artificial neural networks under different activation functions reveal rich dynamical behaviors in the
brain, which are not observed when we have a single activation function [26,27]. Dongmo and Kengne [28] discussed a chain bidi-
rectional coupling of four inertial systems revealing coexisting multi-stable patterns with the merging of multi-scroll chaos.

Non-oscillatory neurons exhibit complex dynamics that can lead to chaotic behavior. Investigating multi-scroll chaos in these
systems enhances our understanding of how neural networks can display rich dynamical properties, which are crucial for modeling
brain functions and understanding neurological disorders.

Understanding the mechanisms of multi-scroll chaos in coupled non-oscillatory neurons under different activation functions
provides a more accurate representation of certain types of neural circuits found in the brain, particularly in regions where oscillatory
behavior is not predominant. Moreover, it is an important area of research for both basic neuroscience and engineering applications.
While it may offer benefits in terms of complexity and robustness, it also presents challenges to control and predictability.

In this paper, we will explore the complex dynamics of two coupled single-inertial Hopfield neurons owning two different
monotonic activation functions. Thus, our objectives in this work are as follows.

• Propose a novel coupling of two non-oscillatory neurons with different monotonic activation functions;
• Present complex coexistence of multi-scroll chaos with their corresponding phase space magnetization through basins of attraction;
• Display the bursting oscillation present in this model;
• Control the multistable behavior of multiple double-scrolls using time feedback control and show the desired one at the end of the
control;

• Finally, propose the microcontroller implementation of the model.

The layout of the paper is as follows: Section II discusses the mathematical model and basic properties of the bidirectional coupling
model. Section III presents investigations highlighting complex activities in the proposed model and focuses on the time feedback of
the desired multi-scroll. Section IV presents the microcontroller realization of the model. Finally, the last section concludes the paper.

2. Theoretical investigations

A. The coupling model

The primary focus of the study lies in coupled non-oscillatory neurons, neural models devoid of intrinsic oscillations but capable of
exhibiting complex chaotic behavior when interconnected. By coupling two non-oscillating inertial neuron models constituted with
different activation functions, we obtain the following system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = u
u̇ = − εu − (x+ αy) + c1f1(x+ αy)
ẏ = v
v̇ = − εv − (y+ βx) + c2f2(y+ βx)

(1)

where c1, c2 represent the synapse of the neurons. ε describes the inertial term of the neuron; α and β are coupling parameters. f1(w) =

tanh(w), f2(w) = arcsin h(w) describe the activation functions of the first and second neurons, respectively. By scrutinizing the col-
lective dynamics of these neurons with different coupled activation functions, we aim to unveil the underlying mechanisms of complex
behaviors of interconnected networks.
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B. Equilibrium points and stability

The equilibrium points of the coupled neurons (1) are calculated by setting all derivatives to zero. After solving, we obtain nine
equilibrium points described as follows:
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⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠,E1,2

⎛

⎜
⎜
⎝

±θ1αη
0
∓θ1η
0

⎞

⎟
⎟
⎠,E3,4

⎛

⎜
⎜
⎝

±θ1η
0
∓θ1βη
0

⎞

⎟
⎟
⎠,E5,6

⎛

⎜
⎜
⎝

±η(θ1 − αθ2)
0
±η(θ2 − βθ1)
0

⎞

⎟
⎟
⎠,E7,8

⎛

⎜
⎜
⎝

±η(θ1 + αθ2)
0
∓η(θ2 + βθ1)
0

⎞

⎟
⎟
⎠ with η=(1 − αβ)− 1.

θ1 = x+ αy, and θ2 = y+ βx. By replacing θ1 and θ2 in Eq. (1) we will obtain the numerical values of these parameters by fixing the
values of the synapses.

The linear perturbation of system (1) is gives the Jacobian matrix described in Eq. (2),

M=

⎡

⎢
⎢
⎣

0 1 0 0
ϕ1(θ1) − ε α ϕ1(θ1) 0
0 0 0 1
βϕ2(θ2) 0 ϕ2(θ2) − ε

⎤

⎥
⎥
⎦ (2)

with ϕ1(θ1) = c1
(
1 − tan h2(θ1)

)
− 1 and ϕ2(θ2) = c2/

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(θ2)2 + 1
)√

− 1.

Eq. (2) above are used to discuss the stability of any equilibrium points through the Routh Hurwitz criterion. The characteristic
equation associated to this model (1) as follows

p(λ)= λ4 + δ3λ3 + δ2λ2 + δ1λ1 + δ0 (3)

Where δk(k= 0,1, 2,3) represent the coefficient of the characteristic equation. These coefficient are given in Table 1 according to each
equilibrium point with their related stabilities.

From the data presented in Table 1, the first five equilibrium points are always unstable due to these with coefficients of the
characteristic polynomial equation with different signs. The four other equilibrium points involve conditional stability due to the
parameters of the model. This implies that Hopf bifurcation occurs in this model. The critical value εc related to the transition from a
stable state to an oscillatory state from the above equilibrium points is given by eq. (4).

εc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− w2c + (1 − αβ)
2
(
− 1+ c1

(
1 − tan h2(θ1)

))(
− 1+ c2

/( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(θ2)2 + 1
√ ))

w− 2
c

√
√
√
√

(4)

The frequency of stable oscillations and the non-degeneracy condition have been obtained respectively by eqs. (5) and (6).

Table 1
The equilibrium points of model (1) and their stabilities.

Equilibrium points Coefficient of the characteristic equation (3) Stability
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E3,4

⎛

⎜
⎜
⎝

±θ1η
0
∓θ1βη
0

⎞

⎟
⎟
⎠

⎡

⎢
⎢
⎣

δ3 = 2ε
δ2 = ε2 + 2 − c1

(
1 − tan h2(θ1)

)
− c2

δ1 = ε
(
2 − c1

(
1 − tan h2(θ1)

)
− c2
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)
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wc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 0.5
(

− 2+ c1
(
1 − tan h2(θ1)

)
+ c2

/( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(θ2)2 + 1
√ ))√

(5)

Real
(
dλ
dεc

|ε=εc

)

=
− 2w2c

ε2c + 4w2c
∕= 0 (6)

Thus, the model presents self-excited attractors for a specific parameter range.

3. Numerical investigation

In this section, numerical analysis is performed using nonlinear analysis tools with the high precision of the fourth-order Runge-
Kutta algorithm to conduct the dynamics analysis of the pairing of two non-oscillatory neurons.

1. Dynamic behavior

The present model with two different activation functions reveals an elegant formation of multi-scroll chaos, justified by the
coexistence of four bifurcation diagrams with two parallel branch bifurcation diagrams. Fig. 1 shows the complex structure of four-
scroll chaos according to some specific values of coupling parameters. In Fig. 1(a), the dynamical evolution of α shown in the
range α ∈ [1; 2.5] when other parameters are fixed ε = 0.56, c1 = 2.4, c2 = 2.4 and β = − 0.48 under initial conditions ( ±1,0,0, 0 )

computed in upward and downward directions with fixed values. Similarly, β undergoes a reversal from periodic to chaotic multi-scroll
in the range β ∈ [ − 0.85, − 0.35], with α = 1.42, ε = 0.56, c1 = 2.4, and c2 = 2.4, with the same initial conditions as provieded in
Fig. 1(b). The Lyapunov spectrum corresponding to these bifurcation diagrams is provided in Fig. 2(a)–(b). From Fig. 2, it can be seen
that there is a maximum of one positive Lyapunov exponents in some regions, while in others, there are all negatives. Thus, these
coupling neurons present periodic and chaotic behaviors.

According to Fig. 1(a), some striking phase portraits are present in the plane (x, y) describing the road to four-scroll chaos for-
mation. In Fig. 3(a), the model shows coexistence between two double-scroll chaos with one pair of single-scroll chaos obtained when

Fig. 1. Bifurcation diagram displaying the evolution of periodic to chaotic motion, when monitoring α in α ∈ [1, 2.5] with β = −

0.48 (a) and β in β ∈ [ − 0.85, − 0.35],with α = 1.42 (b). Other parameters are set ε = 0.56, c1 = 2.4, c2 = 2.4.

Fig. 2. (a)–(b) Lyapunov spectrum corresponding to Fig. 1(a)–(b).
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Fig. 3. (a)–(c) Phase portraits plotted in the plane (x, y) and (d)–(f) basins of attraction plotted in the plane (x(0), y(0))
showing the coexisting road to four scroll − chaos
formation. (a) Coexistence between two double − scroll chaos with one pair of single scroll − chaos at α = 1.435 with initial conditions (0, 0,± 1,0), and
(0,0,± 2, 0), (b) coexistence of three double − scroll chaotic attractors coexisting at α = 1.822 with initial conditions (0, − 1, 1,1) and ( ± 2, − 1, 1, 1),
(c) formation of four scroll chaotic attractor at α = 2.4 with initial conditions (0, 0, 1, 0). In the basins of attraction, black color indicates unbounded
oscillations and others colors correspond to each coexisting attractors.

Fig. 4. (a) Phase portraits plotted in the plane (x, y) and (b) cross section of the basins of attraction plotted in the plane (x(0),
y(0)) showing the coexistence of four single − scroll chaos when α = 1.2 with initial conditions (0,0, ± 1,0), and (0,0, ± 4,0). Color of the cross sections
of the basins of attraction correspond to each coexisting attractors.
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α = 1.435 under initial conditions (0,0, ± 1,0), and (0,0, ± 2,0). The pair of single-scrolls merge into a single double-scroll chaos and
coexist with a pair of two other double-scroll chaos when α = 1.822 with initial conditions (0, − 1, 1,1) and ( ± 2, − 1, 1,1) as shown in
Fig. 3(b). The formation of the four-scroll chaotic attractor is presented in Fig. 3(c) when α = 2.4 with initial conditions (0,0,1,0). In
the basins of attraction, the black color indicates unbounded oscillations and other colors correspond to each coexisting attractor
(please see Fig. 3(d)–(f)).

Fig. 5. (a) Time-domain waveforms plotted in the plane (t, y), (b) phase portraits plotted in the plane (x, y) and (c) cross section of the basins of
attraction plotted in the plane (x(0), y(0)) displaying the coexistence of four periodic spiking bursting partners for α = 1.896 with initial conditions (0,0,
± 1, 0), and (0, 0, ± 3.9,0). Color of the cross sections of the basins of attraction correspond to each coexisting attractors.

Fig. 6. (a) Time-domain waveforms plotted in the plane (t, x), and (b) involving the coexistence of symmetric bursting partners when parameters are set as,
ε = 0.56, c1 = 6, c2 = 5, α = 0.7 and β = − 0.7 under initial conditions (±1, 0, 0,0).
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Some complex oscillations of multistability are discussed in this work. Multistability is a phenomenon that presents the coexistence
of multiple solutions for the same parameter values under different initial conditions [29–32].

Multistability refers to a phenomenon in which a system can exist in multiple stable states or configurations under the same set of
conditions. Multistability is an interesting property of neural dynamics [33], which appears in forced, coupled, and self-reproducing
systems [34–37]. It holds significance in image encryption as well [38]. In Fig. 4(a), a fascinating result is showcased, revealing the
presence of four homogeneous strange attractors when α = 1.2 under specific initial conditions (0,0,± 1,0), and (0,0,± 4,0). The plot
illustrates these attractors in the plane (x,y), along with a cross-section of the basins of attraction depicted in the plane (x(0),y(0)).
Each coexisting attractor is color-coded for clarity, as shown in Fig. 4(b). Furthermore, the coupling model discussed in this work
explores the spiking multistability of four periodic spiking oscillations, comprising a pair of period-2 cycles and a pair of period-4
cycles. These oscillations manifest when α = 1.896 given specific initial conditions (0, 0, ± 1, 0), and (0, 0, ± 3.9, 0). The complex
spiking oscillations are visually represented through time-domain waveforms in the plane (t,y), phase portraits plotted in the plane (x,
y), and cross-sections of the basins of attraction in plane (x(0),y(0)), as depicted in Fig. 5(a)–(c) respectively.

2. Bursting oscillations

Bursting oscillations are a type of dynamic behavior observed in various biological and artificial systems, characterized by the
occurrence of rapid bursts of activity followed by periods of quiescence or slower oscillations. These oscillations can be described as a
sequence of spikes or rapid oscillatory events that occur in clusters, separated by intervals of relative inactivity. Bursting oscillations
play a crucial role in signal processing and communication within the brain. They allow for the rapid transmission of information in a
synchronized manner, which is important for functions such as sensory perception, motor control, and cognitive processes [39–41]. In
addition, bursting activity can help regulate the overall excitability of neural networks, influencing the likelihood of generating action
potentials in response to incoming signals. This complex activity is present in this model when parameters are set as ε = 0.56, c1 = 6,
c2 = 5, α = 0.7 and β = − 0.7 and initial conditions (±1,0,0,0). Fig. 6(a) displays the waveforms of chaotic bursting oscillation plotted
in the plane (t,x), it corresponding phase portraits plotted in the plane (x, y) (see Fig. 6(b)).

3. Control of multistability

The feedback term method in control theory involves adding a space-dependent feedback term to the dynamical equations of a
system to guide the dynamics toward a desired attractor by suppressing other attractors. This method is particularly effective in
controlling multistability, where multiple attractors coexist in chaotic systems. The magnitude of the feedback is adjusted based on the
difference between a state variable and an unstable fixed point near the desired attractor. Unlike the linear increase control method
commonly used for managing multistability [32], the feedback term approach is simpler and does not require expanding the system’s
size. Increasing the system’s size can alter the dynamics and affect the coexisting attractors during control. With the feedback term
method, the control is initiated by selecting a specific attractor as the "designated survivor attractor," providing predictability in the
outcome of the control process.

The temporal feedback control method is explored in this paper to enable one to target any desired state, for an initial time only and
inactive afterward. In order to exploit the temporal feedback method introduced by Ref. [42], and define as follows:

Ẋ= F(x) − ζh(t)(X − λ) (7)

where X is the m-dimensional vector of dynamical variables for the nonlinear system and F(x) is a vector field describing its dynamics.
ζ is the feedback strength, λ represent the parameter of desired attractor and the time dependent term h(t) can be defined as,

h(t)=
{
1 if t ≤ tmin + τ
0 if otherwise (8)

where tmin represents the transient regime while τ is a pulse of some duration. Therefore, the controlled neurons are given as follow,
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = u − h(t) ζ(x − λ)
u̇ = − εu − (x+ αy) + c1f1(x+ αy)
ẏ = v
v̇ = − εv − (y+ βx) + c2f2(y+ βx)

(9)

By carefully choosing the space-dependent term and adjusting the feedback strength, the undesired attractors gradually converge
toward the designated survivor attractor. The control of the coexistence of the three double-scroll chaos of Fig. 3(b) is carried out in
Fig. 7(a) when λ = 0.3 for double-scroll chaos in green color and in Fig. 8(a) when, and λ = 6 for double-scroll chaos in blue color.

During these controls, we can see that the other double-scroll chaotic attractors gradually converge to the designated survivor
attractors with the increase in the feedback strength ζ when τ = 5. In Figs. 7 (b) and Fig. 8 (b), these phase portraits of the attractors at
the end of the control process demonstrate that the attractors align with the designated survivor attractors with the same color. This
outcome confirms the effectiveness of the feedback term method in controlling neural system with multiple attractors. Moreover, this
method offers practical advantages for applications as it allows for targeted control of specific attractors without uncertainty about the
final outcome, unlike other control methods that may not guarantee a specific attractor after control is applied.
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Fig. 7. (a) Bifurcation diagrams illustrating the unselected trajectory of Fig. 3 (b) merge with the one of the desired trajectory when the control
parameter of coupling strength ζ of the controlled system and phase portrait of the chaotic desired attractor obtained when ζ = 1 (b).
These diagrams are obtained for ε = 0.56, c1 = 2.4, c2 = 2.4, α = 1.822, β = − 0.48, τ = 5, and λ = 0.3.

Fig. 8. (a) Bifurcation diagrams illustrating the unselected trajectory of Fig. 3 (b) merge with the one of the desired trajectory when the control
parameter of coupling strength ζ of the controlled system and phase portrait of the chaotic desired attractor obtained when ζ = 1 (b).
These diagrams are obtained for ε = 0.56, c1 = 2.4, c2 = 2.4, α = 1.822, β = − 0.48, τ = 5, and λ = 6.

Fig. 9. Experimental setup of the microcontroller-based realization displaying the four-scroll chaos plotted in the plane (x,y), obtained with same
parameters of Fig. 3 (c).
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4. Microcontroller-based realization

The microcontroller hardware platform offers a reliable alternative to analog circuit experiments, which are susceptible to errors
due to parasitic parameters and temperature drift. By using the digital circuit method described in literature [43–45], we perform the
microcontroller realization of the proposed coupling bi-neuron model. The experimental setup of the microcontroller-based imple-
mentation is shown in Fig. 9, where we can observe the four-volute chaos drawn in the plane (x,y). The Arduino Mega Board is used
here as a digital calculator, and the Arduino Uno is used for real-time data acquisition. A 16-bit digital-to-analog converter is used in
this experiment to convert the digital data into analog signals.

The model parameters used in Figs. 3(b) and 6 were maintained for these experiments, ensuring consistency in the comparison of
results between numerical and microcontroller implementation (respectively present in Figs. 10 and 11(a)–(b)). Figs. 10–11 further
illustrates the experimental outcomes achieved through the microcontroller implementation, showcasing the effectiveness and reli-
ability of this approach in studying complex dynamical systems like the coupled Hopfield inertial neurons.

5. Conclusion

This study successfully demonstrates the existence of a family of coexisting multi-scroll chaos in a network of coupled non-
oscillatory Hopfield neurons. Through a comprehensive analysis involving phase portraits, basins of attraction, time series, bifurca-
tion diagrams, and Lyapunov exponents, it provides a comprehensive exploration of the complex dynamics inherent to this system. The
coexistence of multiple bifurcation diagrams results in an intricate scheme of multi-scroll formation, further complicated by bursting
oscillations and multiple firing partners. A control strategy utilizing a noninvasive method is effectively applied to select the desired
multi-scroll. An experimental validation on an Arduino microcontroller is supported to verified numerical simulations. The selected
control of desired attractors opens avenues for applications in various fields, including neural network design and medical data pri-
vacy. In particular, the ability to manipulate multi-scroll chaos could optimize the performance of the cryptosystems, enhancing data
security.

Fig. 10. Microcontroller-based realization showing the coexistence of three double scroll chaotic attractors plotted in the plane (x, y).

Fig. 11. Microcontroller-based realization showing the coexistence of chaotic bursting partners. (a) Time series plotted in the plane (t, x),
and (b) phase portrait plotted in the plane (x, y), obtained with same parameters of Fig. 6.
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