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Abstract: In recent years, growing evidence has indicated the pivotal role of mitochondria in mast
cell immunological activation. We have previously reported a decrease in degranulation and cy-
tokine secretion following the inhibition of pyruvate dehydrogenase (PDH) either by CPI-613 (PDH
inhibitor/anti-cancer drug) or through its interaction with mitochondrial microphthalmia-associated
transcription factor (MITF). In the present study, we further explored the role played by mitochondrial
MITF in mast cell exocytosis using rat basophil leukemia cells [RBL], as well as mouse bone marrow-
derived mast cells (BMMCs). Here, we report that mast cell degranulation, cytokine secretion and
oxidative phosphorylation (OXPHOS) activities were associated with phosphorylation of Serine 73 of
mitochondrial MITF, controlled by extracellular signals regulated by protein kinase (ERK1/2) activity.
Also, we report here that decreased OXPHOS activity following ERK1/2 inhibition (U0126 treatment)
during IgE-Ag activation was mediated by the dephosphorylation of Serine 73 mitochondrial MITF,
which inhibited its association with PDH. This led to a reduction in mast cell reactivity. In addition,
a phosphorylation-mimicking mitochondrial MITF-S73D positively regulated the mitochondrial ac-
tivity, thereby supporting mast cell degranulation. Thus, the present research findings highlight the
prominence of mitochondrial MITF Serine 73 phosphorylation in immunologically activated mast cells.

Keywords: allergy; mast cells; mitochondria; microphthalmia-associated transcription factor; pyru-
vate dehydrogenase; extracellular signal-regulated kinase; degranulation; cytokines

1. Introduction

We recently reported that pyruvate dehydrogenase (PDH), a key player in oxidative
phosphorylation and cellular respiration, regulates Mast Cell function controlled by its
association with mitochondrial microphthalmia-associated transcription factor (MITF) [1].
PDH phosphorylation is one of the fundamental factors determining PDH activity [2]
during allergic stimulus. Inhibition of PDH activity by CPI-613, a known anti-cancer
agent [3], has been shown to reduce mast cell β-hexosaminidase and cytokine release [1].
Variable factors such as post-translational modifications and protein interactions with MITF
influence its transcriptional activity, regulating MITF function in a coordinated manner.
So far, the evidence suggests that MITF is among the most important transcription factors
involved in regulation of mitochondrial function [1] and therefore complete characterization
of its mode of action is of great importance. MITF is a basic-helix-loop-helix-leucine zipper
(bHLHZ) transcription factor, with a major role in mast cell growth, differentiation and
maturation [4]. It has previously been observed that MITF regulates the gene expression
of mast cell proteases [5,6], c-KIT [7], and granzyme B [8]. Along with mitogen-activated
protein kinase (MAPK) activation, mast cell IgE-Ag stimulation activates several kinase
pathways [9]. This activated signal transduction pathway causes MITF phosphorylation
at Serine 73, which enhances its nuclear transcriptional activity [10]. It was previously
described that in melanoma cells, MAPK-mediated phosphorylation of MITF at Serine 73
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assembles the two coactivators, E1A binding protein p300 and cAMP-response element
binding protein (p300/CBP), which together enhance MITF transcriptional activity [11].
Previous research on melanocytes revealed that c-KIT triggers the MAPK/ERK/p90 Rsk
signaling pathway [12]. This activation causes phosphorylation at two Serine sites, 73 and
409, triggering MITF transactivation accompanied by ubiquitin-mediated degradation [12].

In the present work, we show that ERK signaling-mediated Serine 73 phosphorylation
of mitochondrial MITF affected its interaction with PDH and regulated mast cell function.

2. Materials and Methods
2.1. Antibodies

Anti-MITF-C5 for immunoprecipitation experiments was provided by Prof. David
Fisher (Harvard Medical School, Boston, MA, USA). Rabbit anti-MITF-phospho-Ser73
(MITF-pS73; SAB4503940) and rabbit anti-MITF (HPA003259) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Rabbit anti-p44/42 MAPK-ERK-phospho-Thr202/Tyr204 of
Erk1; Thr185 and Tyr187 of Erk2 (pERK; 4370), mouse anti-p44/42 MAPK-ERK 1/2 (ERK,
4696), rabbit anti-PDHA (3205), rabbit anti-glyceraldehyde-3-phosphate dehydrogenase
(GAPDH; 5174), rabbit anti-VDAC (4866) antibodies were purchased from Cell Signaling
Technology (Beverly, MA, USA).

2.2. Chemical Inhibitor Treatment

U0126 was purchased from Sigma-Aldrich and dissolved in 100% DMSO (Sigma-
Aldrich, St. Louis, MO, USA), was according to the manufacturer’s instructions, for all the
in vitro experiments.

2.3. Cell Culture

RBL-2H3 cells were maintained in RPMI 1640 medium without sodium pyruvate or
L-glutamine supplemented with 10% FBS, 2 mmol/L L-glutamine, 100 U/mL penicillin,
and 100 mg/mL streptomycin (Biological Industries, Beit Haemek, Israel), as previously
described [13]. Unless stated otherwise, complete medium was used for the experiments.
For mitochondrial ATP calculation, galactose (5 mmol/L) containing glucose-free RPMI
1640 medium without sodium pyruvate or L-glutamine and supplemented with 10%
dialyzed FBS, 2 mmol/L L-glutamine, 100 U/mL penicillin, and 100 mg/mL streptomycin
(Biological Industries, Beit Haemek, Israel) was used.

2.4. Bone Marrow-Derived Mast Cells (BMMCs) from Mice

Male and female C3H wild-type mice aged 6 to 8 weeks were purchased from Jackson
Laboratories (Cambridge, MA, USA). Mice were fed a regular diet and given drinking water
ad libitum. Experiments were approved by the Hebrew University Ethical Committee for
Animal Experimentation. Mice were euthanized by gradual exposure to carbon dioxide
followed by cervical dislocation for the extraction of bone marrow cells from the femur
and tibia bones. Afterwards, BMMCs were cultured in RPMI conditional medium, as
previously described [14,15]. Cells were generally grown for a minimum of four weeks
and used when greater than 90% of the population was positive for toluidine blue staining.
BMMCs and RBL cells were sensitized first with 200 ng/mL anti-DNP IgE mAb (SPE-7;
D8406 Sigma-Aldrich, St. Louis, MO, USA) for 2 h, washed in PBS, and then challenged
with 5 ng/mL dinitrophenyl albumin (DNP; A6661 Sigma-Aldrich, St. Louis, MO, USA)
for different incubation periods (5 to 60 min) depending on the experiment.

2.5. Cytosol and Mitochondrial Fractionation

RBL and BMMC cells were washed once in cold PBS before homogenization. Cells
(20 × 106) were homogenized in buffer A (250 mmol/L sucrose, 20 mmol/L HEPES,
10 mmol/L potassium chloride, 1.5 mmol/L magnesium chloride, 1 mmol/L ethylene-
diaminetetraacetic acid (EDTA) and 1 mmol/L ethyleneglycol-bis-(β-aminoethylether)-
N,N,N9,N9-tetraacetic acid (EGTA) (pH 7.4) supplemented with 1 mmol/L phenylmethyl-
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sulfonyl fluoride (PMSF), 0.5 mmol/L sodium orthovanadate (SOV), 15 mmol/L sodium
fluoride (NaF) and 1% protease inhibitor cocktail) by passing through a 10 G syringe
needle followed by a brief sonication for 3 s. The procedure was performed at 4 ◦C. The
homogenate was centrifuged for 5 min at 2000× g, and the supernatant was kept. This
was repeated twice, and the supernatants were combined and then centrifuged for 10 min
at 2000× g to remove the nuclei and cell debris. The supernatant was transferred to a
clean tube and centrifuged for 10 min at 14,000× g to pellet mitochondria. They were then
washed twice, resuspended in a small volume of buffer A, and stored at −80 ◦C until use.
The mitochondrial pellet was resuspended in buffer B (lysis buffer A, 20% glycerol) with
the addition of protease inhibitor cocktail (P8340, Sigma-Aldrich, St. Louis, MO, USA) to
prepare the mitochondrial protein fraction.

2.6. Gel Electrophoresis and Western Blotting

RBL cells were lysed by the addition of lysis buffer (50 mmol/L Tris-HCl (pH 7.4), 1%
Nonidet P-40, 0.25% sodium-deoxycholate, 150 mmol/L NaCl, 1 mmol/L EDTA) supple-
mented with PMSF, SOV, NaF and protease inhibitor cocktail as mentioned in Section 2.5,
just before use. Cells and mitochondria were vortexed and incubated on ice for 15 min.
The lysates were then centrifuged at 14,000× g for 15 min, and pellets were discarded.
The protein concentration of each sample was determined using Bradford reagent (Sigma-
Aldrich). Proteins were resolved by 10% to 15% SDS-PAGE under reduced conditions and
transferred to polyvinylidene difluoride membranes (Merck Millipore, Co Cork, Ireland).
The membranes were incubated in 5% fat-free skim milk or BSA in TBST buffer (10 mmol/L
Tris-HCl (pH 7.4), 150 mmol/L NaCl, and 0.1% Tween 20) for 1 h and then in 5% BSA and
TBST containing various dilutions of primary antibodies for 18 h at 4 ◦C. The membranes
were washed 3 times with TBST for 5 min before and after incubation with a secondary
antibody. The proteins were detected with the appropriate secondary antibody (1 h at room
temperature) coupled to horseradish peroxidase-conjugated goat anti-rabbit or anti-mouse
antibody and visualized by means of chemiluminescence in the Bio-Rad Gel Documentation
system, according to the manufacturer’s instructions. Densitometry of the respective protein
bands on the western blot pictures were quantified using the ImageJ program.

2.7. Mitochondrial Targeted Plasmids

An MITF expression construct used in our earlier work (1) was amplified by means of
PCR and then excised and ligated into mitochondrial targeted pCMV/myc/mito vector
(pShooter) (Invitrogen-Thermo Fisher Scientific, San Diego, CA, USA) [16]. Serine at
MITF-73 site was mutated either with phosphorylation mimicking aspartate (S73D) or
dephosphorylation mimicking alanine (S73A) using the Q5 site-directed mutagenesis kit
(New England Biolabs, Ipswich, MA, USA) on the obtained mitochondrial MITF-WT
(wildtype) vector. The following two sets of primers were used to generate the mutated
mitochondrial MITF-S73D or S73A from the mitochondrial MITF-WT:

Primer set 1 for mutating S = AGC to D = GAC

MITF73D_F CGCACCCAACGACCCTATGGCTATGCTCAC

MITF73D_R CTGCTCCCCGGCACTGGT

Primer set 2 for mutating S = AGC to A = GCC

MITF73A_F CGCACCCAACGCCCCTATGGCTATGCTCAC

MITF73A_R CTGCTCCCCGGCACTGGT

2.8. Transfection

Amaxa Nucleofector (Amaxa, Cologne, Germany) technology was used to transfect
RBL cells. For plasmid transfection, a total of 2 × 106 cells and 2 mg of each plasmid was
used. Briefly, cells were resuspended in 100 mL of Ingenio solution (Mirus, Madison, WI,
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USA), DNA (plasmid) was added, and the mixture was transferred to an electroporation
cuvette. Electroporation was performed with the T-20 program for RBL cells.

2.9. β-Hexosaminidase Release Assay (Degranulation Assay)

RBL cells (1 × 104) were immunologically activated, as described above. After IgE
incubation, cells were washed 3 times with 5 mL of degranulation buffer (130 mmol/L NaCl,
5 mmol/L KCl, 5.6 mmol/L glucose, 1 mmol/L MgCl2, 1.2 mmol/L CaCl2, 10 mmol/L
HEPES (pH 7.4), and 0.1% BSA) and resuspended in 200 µL of the same buffer with DNP
for 30 min. β-Hexosaminidase release was determined in triplicates in a 96-well plate.
Aliquots (20 mL) of supernatants and cell lysates were incubated for 30 min with 100 mL of
substrate solution (1.3 mg/mL p-nitrophenyl-b-D-2-acetamido-2-deoxyglucopyranozide in
0.1 mol/L citrate, pH 4.5). The reaction was stopped by the addition of 200 µL of 0.2 mol/L
glycine (pH 10.7). The plate absorbance was read in an ELISA reader at a wavelength of
405 nm. Percentage release values for each experimental condition were calculated.

2.10. ATP Determination

RBL cells were either treated with inhibitor or transfected as mentioned above. Twenty-
four hours before the ATP assay, the growth medium was changed to a glucose-free medium
(RPMI 1640 without D-glucose, sodium pyruvate, or L-glutamine; Biological Industries,
Beit Haemek, Israel) supplemented as above.

Mitochondrial ATP levels were measured by using the ATPlite luminescence–based assay,
according to the manufacturer’s instructions (PerkinElmer, Groningen, The Netherlands).

2.11. Oxygen Consumption

RBL cells were either treated with inhibitor or transfected as mentioned above. Twenty-
four hours before oxygen measurement, the growth medium was changed to a glucose-free
medium (as above). The oxygen consumption rate was measured by Cell Mito Stress Test Kit
using the Agilent Seahorse XF96 extracellular flux analyzer (Agilent Technologies, TX, USA).

2.12. Measurement of Cytokines, Pyruvate Levels and PDH Activity

Mast cells were sensitized with IgE anti-DNP for 2 h, followed by 30 min incubation
with DNP-BSA. During the IgE sensitization, RBL/BMMCs cells were incubated either
with 20 µmol/L U0126 or with DMSO as control and degranulation and cytokine (TNF-
alpha, Granzyme B) secretion were assessed by measuring β-hexosaminidase release
and by ELISA, respectively. Granzyme B (88-8022-22) and TNF alpha (88-7324-22) levels
were estimated using the ELISA kits from Thermo Fisher Scientific, San Diego, CA, USA.
Pyruvate levels (ab65342) and PDH activity (ab109902) were estimated using the kits from
Abcam (Cambridge, UK) according to the manufacturer instructions.

2.13. Coimmunoprecipitation

RBL cells were used in coimmunoprecipitation experiments. Cells (5–10 × 106) were
lysed by the addition of 400 µL of cold lysis buffer (0.01 mol/L Tris-HCl [pH 7.4], 1%
deoxycholate, 1% Triton X-100, 0.1% SDS, 0.15 mol/L NaCl supplemented with PMSF,
SOV, NaF and protease inhibitor cocktail as mentioned in Section 2.5). Cells were then
homogenized, and their supernatants were collected after 15 min centrifugation in a
microcentrifuge at 14,000× g at 4 ◦C. Recovered lysates were incubated overnight at
4 ◦C with anti-mouse MITF-C5. The next day, 20 µL of protein A/G plus agarose beads
(sc-2003, Santa Cruz Biotechnology, TX, USA) were added to the lysate prebound to the
antibody and incubated with agitation for 2 h at 4 ◦C. The recovered immune complexes
were washed 3 times with cold PBS buffer 400 µL and 25 µL of sample buffer (3 mL of
glycerol, 3 mL of 20% SDS, 1.6 mL of β-mercaptoethanol, 2.4 mL of 1 mol/L Tris-HCL
(pH 6.8), and 6 mg bromophenol blue for color) was added to the prewashed beads. Beads
with the sample buffer were boiled at 100 ◦C for 10 min and loaded on a 10% SDS gel.
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2.14. Statistical Analysis

For the quantification of Western blots, a two-tailed Student t-test statistical analysis
was made and one way-ANOVA was performed for comparing the data in other assays.
Data represented as means ± SEMs.

3. Results
3.1. IgE-Ag Mast Cell Activation Induces Phosphorylation of MITF in Mitochondria

Mast cells triggered by monomeric IgE through the MAPK and AKT signaling mech-
anisms induce cytokine secretion and increase cell survival [17,18]. This IgE stimulation
alone affects MITF Serine 73 phosphorylation and increases MITF’s nuclear transcriptional
activity [10]. The present section of the study was initiated to understand whether pro-
longed exposure of antigen (Ag)/allergen DNP on IgE-stimulated cells has any effect on
MITF phosphorylation and to identify the changes at the mitochondrial level. RBL cells were
sensitized with IgE for 2 h followed by DNP challenge for 5–60 min. The cells were lysed as
mentioned in Section 2.6 and Western blot analysis was done using the antibodies against
MITF-pS73 and MITF. The results presented in Figure 1A clearly show that the response to
the immunological trigger is time dependent, as phosphorylation of MITF at Serine 73 is
induced in a time-dependent manner in samples of whole cell lysate. Densitometry analysis
of MITF-pS73 relative to the respective MITF bands at different time intervals is shown in
Figure 1B. In order to check the status of MITF phosphorylation localized in both cytosol and
mitochondria, a fractionation methodology was followed as mentioned in Sections 2.5 and 2.6
to visualize protein levels using western blots. A rise in phosphorylation of MITF on Serine 73
was observed in both mitochondrial and cytosolic fractions after immunological activation
for 15 min, in both RBL and BMMCs (Figure 1C,D). Purity of the subcellular fractionation
was confirmed using GAPDH as cytosolic marker and VDAC as mitochondrial marker; these
were also the corresponding MITF loading controls (Figure 1C).

3.2. Mitochondrial Serine 73-MITF Is ERK1/2-Dependently Phosphorylated during Mast Cell
IgE-Ag Stimulation

It was known that in activated melanoma cells extracellular signaling kinases 1 and 2
(ERK1/2) regulate phosphorylation of MITF on the Serine 73 residue [11]. Yet, such phospho-
rylation of MITF inside the mitochondria has not been previously identified. It was important
to determine that phosphorylation on S73 is carried out by a specific kinase and is not due to
translocation upon IgE-Ag stimulation, since the pathological stress or external stimuli makes
the protein localization and effects the mitochondrial dynamics [19,20]. Therefore, we investi-
gated the correlation between mitochondrial ERK1/2 and MITF-Serine 73′s phosphorylation
in activated mast cells. It can be seen from our results that ERK1/2 signaling phosphorylates
MITF on Serine 73 during mast cell activation (Figure 2A). Following IgE-DNP RBL activation
in mast cells, the level of Serine 73 phosphorylated MITF was increased in whole lysates
(Figure 2A) and in the mitochondria (Figure 2B). The amount of phosphorylated ERK1/2 in
the mitochondria was also increased in these activated cells (Figure 2B). An increase in ERK1/2
levels in mitochondria after immunological stimulation was reported by us in our earlier
study [16]. When RBL cells were treated with U0126, an ERK1/2 pathway inhibitor [21], the
pS73-MITF level decreased in whole cell lysate compared to control (DMSO alone) (Figure 2A).
A similar decrease in pS73-MITF was observed in mitochondria, as can be seen in the western
blot shown in Figure 2B, and in the corresponding densitometry analysis using VDAC as
loading control (Figure 2C). Therefore, phosphorylation of mitochondrial MITF at Serine 73 in
immunologically activated mast cells is dependent on ERK1/2 signaling.

3.3. Dissociation of Mitochondrial Serine 73-Phosphorylated MITF from PDH after
Immunological Activation

We previously reported the association of mitochondrial MITF with PDH, whereby
the association-dissociation status was dependent on immunological activation of the
mast cell. PDH is known to be dephosphorylated after allergic stimulation, causing its
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dissociation from MITF, freeing it to play an active role in mitochondria [1]. To determine
whether phosphorylated MITF interacts with PDH after immunological activation and
in the presence of ERK1/2 inhibitor, immunoprecipitation experiments were performed.
MITF was immunoprecipitated with MITF-specific antibody, and its interaction with PDH
was determined by means of Western blot analysis with anti-PDHA.
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Figure 1. IgE-Ag stimulation affects mitochondrial MITF Serine 73 phosphorylation. (A), RBL cells
were sensitized with 100 ng/mL IgE for 2 h followed by a 0–60 min DNP challenge. Non-sensitized
cells are presented as Control (Q: Quiescent). The protein levels of MITF in the whole cell lysates were
determined by Western blot analysis using anti-pS73-MITF, anti-MITF and anti-GAPDH antibodies.
(B), Densitometry of MITF-pS73/MITF levels in RBL cells that were activated for 0–60 min. (C), RBL
and BMMCs were treated with 100 ng/mL IgE for 2 h followed by a 15 min DNP challenge and
were fractionated into cytosol and mitochondria. The protein levels of MITF in both fractions were
determined by Western blot analysis using anti-pS73-MITF, anti-MITF, anti-GAPDH (cytosolic marker)
and anti-VDAC (mitochondrial marker) antibodies. (D), Densitometry of MITF-pS73/GAPDH and
MITF-pS73/VDAC levels in RBL cells that were activated for 15 min followed by cytosolic and
mitochondrial fractionation. A two-tailed Student t-test was performed for all the western blots.
Results represent means± SEMs (n = 4, **** p≤ 0.0001; *** p≤ 0.001; ** p≤ 0.01; * p≤ 0.05; ns p > 0.05).
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Figure 2. ERK1/2-dependent mitochondrial MITF Serine 73 phosphorylation in immunologically 
activated mast cells. (A), RBL cells were sensitized with 100 ng/mL IgE for 2 h, followed by a 15 min 
Figure 2. ERK1/2-dependent mitochondrial MITF Serine 73 phosphorylation in immunologically
activated mast cells. (A), RBL cells were sensitized with 100 ng/mL IgE for 2 h, followed by a
15 min DNP challenge. Thirty minutes before the addition of DNP, 20 µmol/L U0126 was added
to the medium. The protein levels of MITF and ERK in the whole cell lysates were determined
by Western blot analysis using anti-pS73-MITF, anti-MITF, anti-pERK, anti-ERK and anti-GAPDH
antibodies. (B), RBL cells were treated as in (A). The cells were fractionated into cytosol and mitochon-
dria. The protein levels of MITF in both fractions were determined by Western blot analysis using
anti-pS73-MITF, anti-MITF, anti-pERK, anti-ERK, anti-GAPDH (cytosolic marker) and anti-VDAC
(mitochondrial marker) antibodies. (C,D), Densitometry of MITF-pS73/total MITF levels in RBL
cells wholecell lysate (C) and mitochondrial fractions (D) that were treated with U0126 and DMSO
as control as in (A). A two-tailed Student t-test was performed for all the western blots. Results
represent means ± SEMs (n = 4, *** p ≤ 0.001; ** p ≤ 0.01; * p ≤ 0.05; ns p > 0.05).

As can be seen in Figure 3, Serine 73 phosphorylation of MITF due to IgE-Ag stimula-
tion causes PDH to dissociate from the MITF-PDH complex. However, IgE-Ag stimulation,
in the presence of ERK1/2 inhibitor (U0126), results in MITF remaining associated with
PDH in the MITF-PDH complex. This experiment clearly shows the significance of this
phosphorylation site in the interaction between these two proteins.

3.4. Inhibiting Serine 73 Phosphorylation of Mitochondrial MITF during IgE-Ag Stimulation
Reduces the Mast Cell Reactivity

Mitochondrial MITF’s phosphorylation of Serine 73 in activated RBL mast cells was
decreased by U0126 inhibitor treatment (Figure 2B). Therefore, the effect of this inhibitor
on mast cell function was assessed by measuring β-hexosaminidase release, TNF-α and
granzyme B levels in RBL cells (Figure 4A–C) and BMMC (Figure 4D–F). Figure 4G–J
shows the effect of inhibitor treatment on ATP levels, oxygen consumption rate (OCR) in
OXPHOS-dependent medium along with pyruvate and PDH activity levels.
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inhibitor. Cell lysates were pre-treated with U0126 as described in Figure 2. Non-sensitized cells are 
presented as Control (Q: Quiescent). For IP anti-MITF antibody was used and for Western blot anal-
ysis, anti-pS73-MITF, anti-MITF, anti-PDHA antibodies were used. (B), Densitometry of 
PDHA/MITF levels in RBL cells after IP experiment. A two-tailed Student t-test was performed for 
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Figure 3. Serine 73 phosphorylation of MITF affects MITF-PDH interaction during mast cell stimula-
tion. (A), IP of MITF in IgE-DNP activated RBL cell lysates in the presence and absence of ERK1/2
inhibitor. Cell lysates were pre-treated with U0126 as described in Figure 2. Non-sensitized cells are
presented as Control (Q: Quiescent). For IP anti-MITF antibody was used and for Western blot analy-
sis, anti-pS73-MITF, anti-MITF, anti-PDHA antibodies were used. (B), Densitometry of PDHA/MITF
levels in RBL cells after IP experiment. A two-tailed Student t-test was performed for all the western
blots. Results represent means ± SEMs (n = 4, ** p ≤ 0.01; * p ≤ 0.05; ns p > 0.05).

As shown in Figure 4A,D, p-S73 MITF inhibition resulted in a significant 50% reduction
in degranulation levels (n = 4, p < 0.0001). U0126 treatment significantly decreased the
release of cytokines TNF-α in RBL cells (n = 4, p = 0.002) and in BMMC (n = 4, p < 0.0001)
and granzyme B in RBL cells (n = 4, p = 0.0097) and in BMMC (n = 4, p = 0.0037).

In order to determine the effect of U0126 on mitochondrial function, RBL cells were
cultured for 24 h in a glucose-free incomplete medium that creates OXPHOS-dependent
conditions supplemented with dialyzed serum as an energy source or in the complete
medium as a control. Afterwards, cells were incubated with 20 µmol/L U0126 for 2 h and
ATP levels were measured with the ATPlite Luminescence Assay System (Perkin Elmer).
OCR was also assessed using the XF96 extracellular flux analyser (Seahorse Biosciences)
As shown in Figure 4G,H U0126 inhibitor significantly reduced mitochondrial ATP (n = 4,
p = 0.0036) with decreased oxygen levels (n = 4, p = 0.3166), correlating to the reduction
of cytokine secretion levels. To further evaluate the effect of these inhibitors on pyruvate
dehydrogenase complex activity, the levels of pyruvate and the substrate of PDH, which
would be expected to accumulate if PDH is inhibited, were also checked. RBL cells were
treated as described in Figure 2 using U0126, and then the total pyruvate levels were
measured with a pyruvate ELISA kit. As shown in Figure 4I, inhibition of p-S73 MITF
increased the pyruvate levels and a significant decrease in PDH activity (Figure 4J) was
noted (n = 4, p < 0.001).

3.5. Checking the Overexpression of Phosphorylated and Dephosphorylated Mimicking
Mitochondrial MITF Serine 73 on Mitochondrial Function and Mast Cell Activity

Dephosphorylation of mitochondrial MITF at Serine 73 followed by U0126 inhibitor
treatment decreased mast cell reactivity by lowering the PDH activity (Figures 3 and 4). In
order to provide support for the importance of mitochondrial MITF Serine 73, two mutant
plasmids (phosphorylated and dephosphorylated mimicking) were transfected and then
mast cell characteristics were analyzed. Figure 5A shows the effect of mitochondrial
MITF-S73D or A on β-hexosaminidase release in RBL cells; Figure 5B shows the oxygen
consumption rate and Figure 5C shows the pattern of mitochondrial respiration obtained
from the Seahorse XF Mito Stress test.
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Figure 4. Inhibition of mitochondrial MITF Serine 73 phosphorylation using U0126 affects mast
cell degranulation and mitochondrial functions. Mast cells were stimulated with IgE-DNP and
incubated either with 20 µmol/L U0126 or DMSO as control and degranulation activity was assessed
by measuring β-hexosaminidase release and cytokine (TNF-α, granzyme B) secretion using the
ELISA assays in RBL cells (A–C) and BMMCs (D–F). Mitochondrial activity assay results are shown
in (G) mitochondrial ATP, (H) Oxygen consumption rate with the increased pyruvate levels (I) and
the decreased pyruvate dehydrogenase activity (J) in RBL cells. A two-tailed Student’s t-test was
performed for all the assays. Results represent means ± SEMs (n = 4, **** p ≤ 0.0001; *** p ≤ 0.001;
** p ≤ 0.01; ns p > 0.05).
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Figure 5. Effect of overexpression of mitochondrial MITF Serine 73 mutants (D or A) on mast
cell degranulation and mitochondrial functions. Transfections were made in RBL cells either with
EV or mitochondrial MITF-S73D or mitochondrial MITF-S73A. After 48 h, cells were stimulated
with IgE-DNP and degranulation activity was assessed by measuring β-hexosaminidase release (A).
Relative oxygen consumption rate at basal respiration was compared in transfected RBL cells (B).
One (out of 3 experimental repeats from Figure 5B) of the Seahorse XF cell Mito Stress profile is
shown to assess the effect of mitochondrial MITF-S73D or S73A on mitochondrial respiration, where
each dot represents means ± SDs (n = 12) (C). Mitochondrial ATP (D) and pyruvate levels (E) 48 h
after transfection were measured and compared with mitochondrial MITF-WT. Results represent
means ± SEMs (n = 3 or 4, ** p ≤ 0.01; * p ≤ 0.05; ns p > 0.05).
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As can be seen in Figure 5A, overexpression of mitochondrial MITF-S73D resulted
in a significant increase in degranulation levels (n = 4, p = 0.0277). Mitochondrial MITF-
S73A decreased the release of β-hexosaminidase by approximately 18% in RBL cells when
compared with EV, where the data is statistically significant (n = 4, p = 0.0085).

In order to determine the effect of mutant plasmids on mitochondrial function, transfected
RBL cells were cultured for 24 h in a glucose-free medium supplemented with dialyzed serum
as an energy source. 48 h after transfection, oxygen consumption rate was assessed using
the XF96 extracellular flux analyser. As shown in Figure 5B, mitochondrial MITF-S73D
significantly increased the basal mitochondrial respiration (n = 3, p = 0.0099). In contrast,
mitochondrial MITF-S73A decreased the oxygen levels by 8.5% when compared with EV and
by 36% when compared to mitochondrial MITF-S73D, where the data is statistically significant
(n = 3, p = 0.0052). ATP levels were measured with the ATPlite Luminescence Assay System
in glucose-free medium 48 h after transfection (Figure 5D). To further evaluate the effect of
these mutants on PDH activity, pyruvate levels were also checked using a pyruvate ELISA kit.
As shown in Figure 5E, mitochondrial MITF-S73A had significantly higher pyruvate levels
(n = 3, p < 0.0192) which is in correlation with the significant decrease in ATP levels (n = 4,
p < 0.0088). Both ATP and pyruvate levels data were statistically significant in comparison
with the mean of EV (n = 4, p < 0.0038; n = 3, p < 0.0191, respectively).

4. Discussion

Mast cells are well known for their contribution as the first line of defense in innate
and adaptive immunity. The inflammatory response of mast cells can be triggered by
numerous external stimuli from the environment, ranging from bacteria, insects, food,
pollen, pollution and even emotional stress. Out of various mechanisms that could activate
mast cells to release cytokines and other mediators into the external microenvironment,
the most studied mechanism is the IgE-dependent signalling pathway. Understanding the
mitochondrial homeostasis which supports mast cell activation by regulating the energy
metabolism and dynamics and the functions of the newly identified regulators such as
PDH, MITF and STAT3 is of great importance [20]. Our earlier studies established the fact
that mast cell activation is based on mitochondrial OXPHOS activity and is regulated by
transcription factors such as MITF and STAT3 [1,22]. Even though MITF’s functions as a
transcription factor in nuclei are well studied, its active role in mitochondria is unexplored.
The present study evaluates one of the most important post-translational modifications,
i.e., phosphorylation of MITF in mitochondria via ERK1/2.

Mast cell activation by IgE-DNP leads to an increase in nuclear MITF phosphorylation
on Serine 73 [10], and this phosphorylation is time dependent. MITF phosphorylation is short
term and happens immediately after allergic trigger, since longer exposure time may lead to
ubiquitin-mediated degradation, as was observed in previous studies in melanoma [12,23].
Subcellular fractionation of mast cells into the cytosol and mitochondria reveals that MITF
is Serine 73 phosphorylated after IgE-DNP stimulus. Localization of ERK1/2 into the
mitochondria indicates its active role in phosphorylating mitochondrial substrates such
as the BCL2 family proteins to influence metabolism, cell survival and mitophagy [24],
by which ERK 1/2 activated by phosphorylation after allergic activation maintains the
energy homeostasis. To understand whether phosphorylation of MITF at Serine 73 is due to
mitochondrial ERK1/2, a well-known ERK1/2 inhibitor U0126 was added during IgE-DNP
stimulation of RBL cells and BMMCs. A significant decrease in pS73-MITF levels with
unchanged MITF levels indicates active ERK is responsible for this phosphorylation.

The mast cell inhibitory function of U0126 in connection with OXPHOS activities by
decreasing the STAT3 phosphorylation on Serine 727 denotes its potential in developing
anti-allergic drugs. Our results show that U0126 causes a significant decrease in mitochon-
drial ATP and oxygen consumption rate. The rise in pyruvate levels with the decreased
PDH activity after U0126 treatment shows the regulatory mechanism of MITF Serine 73
phosphorylation on the PDH complex. U0126 significantly reduced TNFα and granzyme B
release after IgE-DNP activation when compared to control.



Cells 2022, 11, 589 12 of 14

Additionally, the direct influence of mitochondrial targeted MITF as a protein interactor
in context to its phosphorylation state at Serine 73 was presented in this work. Even though
nuclear transcription factors are best known for their major role in gene expression, recent
studies on different other transcription factors like p53 [25], CREB [26] and STAT3 [27,28]
translocation to mitochondria denotes their other functionality as a direct protein interactor
to influence mitochondrial bioenergetics. During immunological activation of mast cells,
MITF-Serine 73 phosphorylation was noted and overexpression of the phosphorylated mim-
icking mitochondrial MITF-S73D caused elevated degranulation compared to control cells.
At the same time, mitochondrial functionality assays of oxygen, ATP, and pyruvate levels
were influenced in opposing directions when mast cells were transfected with either mito-
chondrial MITF-S73D or S73A. This phenomenon denotes the importance of flexible post
translational modifications up on external stimuli, affecting the protein-protein interactions
to transform the mitochondrial functions of the activated cell [29].

Maintaining the mitochondrial functions through the active PDH complex converting
pyruvate to acetyl COA is necessary for supporting the energy needs [30,31] of the mast
cell allergic response [1]. In light of its well-established role during IgE-DNP stimulus,
identifying the molecules which could alter PDH functionality is beneficial. One such
regulation is MITF interaction with PDH in a quiescent state, as well as their dissociation
after activation when MITF was Serine-73 phosphorylated. IP experiments in different
conditions reveal the fact that active ERK1/2, when inhibited by U0126, dephosphorylates
MITF at Serine 73. This inhibition makes the MITF bind to PDH, consequently affecting
the PDH function. An active pyruvate dehydrogenase complex can control the metabolic
changes acting as the gatekeeper by linking the glycolysis to the Krebs cycle, implicating
the necessity of designing targeted therapeutic agents [32]. The summary of the present
study was represented in graphical abstract.

In conclusion, the findings of the present research indicate that MITF is Serine 73
phosphorylated by ERK1/2 in mitochondria due to activation. After IgE-DNP stimulus
phosphorylated-73 Serine MITF dissociates from PDH, thereby increasing the PDH func-
tionality for increasing the mitochondrial OXPHOS activities, supporting the degranulation
and cytokine secretion of mast cells.

Author Contributions: L.B.P. designed and carried out the experiments, performed the statistical
calculations and wrote the manuscript with the support from E.R. and S.G. prepared mutant plasmids
and together with L.B.P. worked on transfection assays. E.R. supervised the findings of this work. All
authors have read and agreed to the published version of the manuscript.

Funding: The present study was funded by the Israel Science Foundation, 115/2013, and Hebrew-
University- National Research Foundation of Singapore HUJ-CREATE (R182-005-172-281) to E.R.

Institutional Review Board Statement: BMMC extraction from mice was approved by the Ethic
Committee Name: Hebrew University Ethical Committee for Animal Experimentation, Approval
Code & date: MD 19-15917-3 & 14 November 2019.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Graphical abstract was created with BioRender.com and the publication license
was granted on 1 February 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sharkia, I.; Erlich, T.H.; Landolina, N.; Assayag, M.; Motzik, A.; Rachmin, I.; Kay, G.; Porat, Z.; Tshori, S.; Berkman, N.; et al.

Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia
transcription factor. J. Allergy Clin. Immunol. 2017, 140, 204–214. [CrossRef] [PubMed]

2. Rardin, M.J.; Wiley, S.E.; Naviaux, R.K.; Murphy, A.N.; Dixon, J.E. Monitoring phosphorylation of the pyruvate dehydrogenase
complex. Anal. Biochem. 2009, 389, 157–164. [CrossRef]

http://doi.org/10.1016/j.jaci.2016.09.047
http://www.ncbi.nlm.nih.gov/pubmed/27871875
http://doi.org/10.1016/j.ab.2009.03.040


Cells 2022, 11, 589 13 of 14

3. Zachar, Z.; Marecek, J.; Maturo, C.; Gupta, S.; Stuart, S.D.; Howell, K.; Schauble, A.; Lem, J.; Piramzadian, A.; Karnik, S.; et al.
Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J. Mol.
Med. 2011, 89, 1137. [CrossRef] [PubMed]

4. Kitamura, Y.; Morii, E.; Jippo, T.; Ito, A. Effect of MITF on mast cell differentiation. Mol. Immunol. 2002, 38, 1173–1176. [CrossRef]
5. Morii, E.; Tsujimura, T.; Jippo, T.; Hashimoto, K.; Takebayashi, K.; Tsujino, K.; Nomura, S.; Yamamoto, M.; Kitamura, Y. Regulation

of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood 1996, 88, 2488–2494.
[CrossRef]

6. Morii, E.; Ogihara, H.; Oboki, K.; Kataoka, T.R.; Jippo, T.; Kitamura, Y. Effect of MITF on Transcription of Transmembrane
Tryptase Gene in Cultured Mast Cells of Mice. Biochem. Biophys. Res. Commun. 2001, 289, 1243–1246. [CrossRef] [PubMed]

7. Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y. Cell type-specific deficiency of c-kit
gene expression in mutant mice of mi/mi genotype. Am. J. Pathol. 1994, 145, 827–836. [PubMed]

8. Ito, A.; Morii, E.; Kim, D.K.; Kataoka, T.R.; Jippo, T.; Maeyama, K.; Nojima, H.; Kitamura, Y. Inhibitory effect of the transcription
factor encoded by the mi mutant allele in cultured mast cells of mice. Blood 1999, 93, 1189–1196. [CrossRef] [PubMed]

9. Kawakami, T.; Kitaura, J. Mast cell survival and activation by IgE in the absence of antigen: A consideration of the biologic
mechanisms and relevance. J. Immunol. 2005, 175, 4167–4173. [CrossRef]

10. Sonnenblick, A.; Levy, C.; Razin, E. Immunological trigger of mast cells by monomeric IgE: Effect on microphthalmia transcription
factor, STAT3 network of interactions. J. Immunol. 2005, 175, 1450–1455. [CrossRef]

11. Hemesath, T.J.; Price, E.R.; Takemoto, C.; Badalian, T.; Fisher, D.E. MAP kinase links the transcription factor Microphthalmia to
c-Kit signalling in melanocytes. Nature 1998, 391, 298–301. [CrossRef]

12. Wu, M.; Hemesath, T.J.; Takemoto, C.M.; Horstmann, M.A.; Wells, A.G.; Price, E.R.; Fisher, D.Z.; Fisher, D.E. c-Kit triggers dual
phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 2000, 14, 301–312.
[CrossRef]

13. Razin, E.; Zhang, Z.C.; Nechushtan, H.; Frenkel, S.; Lee, Y.N.; Arudchandran, R.; Rivera, J. Suppression of microphthalmia
transcriptional activity by its association with protein kinase C-interacting protein 1 in mast cells. J. Biol. Chem. 1999, 274,
34272–34276. [CrossRef]

14. Razin, E.; Ihle, J.N.; Seldin, D.; Mencia-Huerta, J.M.; Katz, H.R.; LeBlanc, P.A.; Hein, A.; Caulfield, J.P.; Austen, K.F.; Stevens, R.L.
Interleukin 3: A differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J.
Immunol. 1984, 132, 1479–1486.

15. Yagil, Z.; Erlich, T.H.; Ofir-Birin, Y.; Tshori, S.; Kay, G.; Yekhtin, Z.; Fisher, D.E.; Cheng, C.; Wong, W.S.F.; Hartmann, K.; et al.
Transcription factor E3, a major regulator of mast cell-mediated allergic response. J. Allergy Clin. Immunol. 2012, 129, 1357–1366.
[CrossRef]

16. Erlich, T.H.; Yagil, Z.; Kay, G.; Peretz, A.; Migalovich-Sheikhet, H.; Tshori, S.; Nechushtan, H.; Levi-Schaffer, F.; Saada, A.; Razin, E.
Mitochondrial STAT3 plays a major role in IgE-antigen-mediated mast cell exocytosis. J. Allergy Clin. Immunol. 2014, 134, 460–469.
[CrossRef] [PubMed]

17. Kitaura, J.; Asai, K.; Maeda-Yamamoto, M.; Kawakami, Y.; Kikkawa, U.; Kawakami, T. Akt-dependent cytokine production in
mast cells. J. Exp. Med. 2000, 192, 729–740. [CrossRef] [PubMed]

18. Koranteng, R.D.; Swindle, E.J.; Davis, B.J.; Dearman, R.J.; Kimber, I.; Flanagan, B.F.; Coleman, J.W. Differential regulation of
mast cell cytokines by both dexamethasone and the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. Clin. Exp.
Immunol. 2004, 137, 81–87. [CrossRef] [PubMed]

19. John, G.B.; Anjum, R.; Khar, A.; Nagaraj, R. Subcellular localization and physiological consequences of introducing a mitochondrial
matrix targeting signal sequence in bax and its mutants. Exp. Cell Res. 2002, 278, 198–208. [CrossRef] [PubMed]

20. Chelombitko, M.A.; Chernyak, B.V.; Fedorov, A.V.; Zinovkin, R.A.; Razin, E.; Paruchuru, L.B. The Role Played by Mitochondria in
FcεRI-Dependent Mast Cell Activation. Front. Immunol. 2020, 11, 584210. [CrossRef]

21. Favata, M.F.; Horiuchi, K.Y.; Manos, E.J.; Daulerio, A.J.; Stradley, D.A.; Feeser, W.S.; Van Dyk, D.E.; Pitts, W.J.; Earl, R.A.; Hobbs,
F.; et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 1998, 273, 18623–18632.
[CrossRef]

22. Erlich, T.H.; Sharkia, I.; Landolina, N.; Assayag, M.; Goldberger, O.; Berkman, N.; Levi-Schaffer, F.; Razin, E. Modulation of
allergic responses by mitochondrial STAT3 inhibitors. Allergy 2018, 73, 2160–2171. [CrossRef]

23. Xu, W.; Gong, L.; Haddad, M.M.; Bischof, O.; Campisi, J.; Yeh, E.T.; Medrano, E.E. Regulation of microphthalmia-associated
transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 2000, 255,
135–143. [CrossRef] [PubMed]

24. Cook, S.J.; Stuart, K.; Gilley, R.; Sale, M.J. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS
J. 2017, 284, 4177–4195. [CrossRef] [PubMed]

25. Zhang, W.; Gong, J.; Yang, H.; Wan, L.; Peng, Y.; Wang, X.; Sun, J.; Li, F.; Geng, Y.; Li, D.; et al. The Mitochondrial Protein MAVS
Stabilizes p53 to Suppress Tumorigenesis. Cell Rep. 2020, 30, 725–738.e4. [CrossRef] [PubMed]

26. De Rasmo, D.; Signorile, A.; Roca, E.; Papa, S. cAMP response element-binding protein (CREB) is imported into mitochondria
and promotes protein synthesis. FEBS J. 2009, 276, 4325–4333. [CrossRef]

27. Rincon, M.; Pereira, F.V. A New Perspective: Mitochondrial Stat3 as a Regulator for Lymphocyte Function. Int. J. Mol. Sci. 2018,
19, 1656. [CrossRef] [PubMed]

http://doi.org/10.1007/s00109-011-0785-8
http://www.ncbi.nlm.nih.gov/pubmed/21769686
http://doi.org/10.1016/S0161-5890(02)00058-5
http://doi.org/10.1182/blood.V88.7.2488.bloodjournal8872488
http://doi.org/10.1006/bbrc.2001.6077
http://www.ncbi.nlm.nih.gov/pubmed/11741327
http://www.ncbi.nlm.nih.gov/pubmed/7524330
http://doi.org/10.1182/blood.V93.4.1189
http://www.ncbi.nlm.nih.gov/pubmed/9949161
http://doi.org/10.4049/jimmunol.175.7.4167
http://doi.org/10.4049/jimmunol.175.3.1450
http://doi.org/10.1038/34681
http://doi.org/10.1101/gad.14.3.301
http://doi.org/10.1074/jbc.274.48.34272
http://doi.org/10.1016/j.jaci.2011.11.051
http://doi.org/10.1016/j.jaci.2013.12.1075
http://www.ncbi.nlm.nih.gov/pubmed/24582310
http://doi.org/10.1084/jem.192.5.729
http://www.ncbi.nlm.nih.gov/pubmed/10974038
http://doi.org/10.1111/j.1365-2249.2004.02510.x
http://www.ncbi.nlm.nih.gov/pubmed/15196247
http://doi.org/10.1006/excr.2002.5586
http://www.ncbi.nlm.nih.gov/pubmed/12169275
http://doi.org/10.3389/fimmu.2020.584210
http://doi.org/10.1074/jbc.273.29.18623
http://doi.org/10.1111/all.13467
http://doi.org/10.1006/excr.2000.4803
http://www.ncbi.nlm.nih.gov/pubmed/10694430
http://doi.org/10.1111/febs.14122
http://www.ncbi.nlm.nih.gov/pubmed/28548464
http://doi.org/10.1016/j.celrep.2019.12.051
http://www.ncbi.nlm.nih.gov/pubmed/31968249
http://doi.org/10.1111/j.1742-4658.2009.07133.x
http://doi.org/10.3390/ijms19061656
http://www.ncbi.nlm.nih.gov/pubmed/29866996


Cells 2022, 11, 589 14 of 14

28. Diallo, M.; Herrera, F. The role of understudied post-translational modifications for the behavior and function of Signal Transducer
and Activator of Transcription 3. FEBS J. 2021, 1–21. [CrossRef]

29. Stram, A.R.; Payne, R.M. Post-translational modifications in mitochondria: Protein signaling in the powerhouse. Cell. Mol. Life
Sci. 2016, 73, 4063–4073. [CrossRef] [PubMed]

30. Park, S.; Jeon, J.H.; Min, B.K.; Ha, C.M.; Thoudam, T.; Park, B.Y.; Lee, I.K. Role of the Pyruvate Dehydrogenase Complex in
Metabolic Remodeling: Differential Pyruvate Dehydrogenase Complex Functions in Metabolism. Diabetes Metab. J. 2018, 42,
270–281. [CrossRef]

31. Echeverri Ruiz, N.P.; Mohan, V.; Wu, J.; Scott, S.; Kreamer, M.; Benej, M.; Golias, T.; Papandreou, I.; Denko, N.C. Dynamic
regulation of mitochondrial pyruvate metabolism is necessary for orthotopic pancreatic tumor growth. Cancer Metab. 2021, 9, 39.
[CrossRef] [PubMed]

32. Saunier, E.; Benelli, C.; Bortoli, S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new
pathways and pharmacological agents. Int. J. Cancer 2016, 138, 809–817. [CrossRef] [PubMed]

http://doi.org/10.1111/febs.16116
http://doi.org/10.1007/s00018-016-2280-4
http://www.ncbi.nlm.nih.gov/pubmed/27233499
http://doi.org/10.4093/dmj.2018.0101
http://doi.org/10.1186/s40170-021-00275-4
http://www.ncbi.nlm.nih.gov/pubmed/34749809
http://doi.org/10.1002/ijc.29564
http://www.ncbi.nlm.nih.gov/pubmed/25868605

	Introduction 
	Materials and Methods 
	Antibodies 
	Chemical Inhibitor Treatment 
	Cell Culture 
	Bone Marrow-Derived Mast Cells (BMMCs) from Mice 
	Cytosol and Mitochondrial Fractionation 
	Gel Electrophoresis and Western Blotting 
	Mitochondrial Targeted Plasmids 
	Transfection 
	-Hexosaminidase Release Assay (Degranulation Assay) 
	ATP Determination 
	Oxygen Consumption 
	Measurement of Cytokines, Pyruvate Levels and PDH Activity 
	Coimmunoprecipitation 
	Statistical Analysis 

	Results 
	IgE-Ag Mast Cell Activation Induces Phosphorylation of MITF in Mitochondria 
	Mitochondrial Serine 73-MITF Is ERK1/2-Dependently Phosphorylated during Mast Cell IgE-Ag Stimulation 
	Dissociation of Mitochondrial Serine 73-Phosphorylated MITF from PDH after Immunological Activation 
	Inhibiting Serine 73 Phosphorylation of Mitochondrial MITF during IgE-Ag Stimulation Reduces the Mast Cell Reactivity 
	Checking the Overexpression of Phosphorylated and Dephosphorylated Mimicking Mitochondrial MITF Serine 73 on Mitochondrial Function and Mast Cell Activity 

	Discussion 
	References

