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Simple Summary: Currently, polymeric biomaterials are the choice for the design of scaffolds for the
regeneration of peripheral nerves. Polyhydroxybutyrate (PHB) is a polymer belonging to the class of
polyesters that are produced naturally in nature by microorganisms. To gain a better understanding
of the efficacy of therapeutic approaches involving PHB scaffolds for peripheral nerve regeneration,
we conducted a systematic review of the literature with the aim of discussing the current knowledge
of PHB scaffolds applied to nerve regeneration. The use of PHB as a biomaterial to prepare tubular
scaffolds for nerve regeneration was shown to be promising. The incorporation of additives appears
to be a trend that improves nerve regeneration.

Abstract: In the last two decades, artificial scaffolds for nerve regeneration have been produced
using a variety of polymers. Polyhydroxybutyrate (PHB) is a natural polyester that can be easily
processed and offer several advantages; hence, the purpose of this review is to provide a better
understanding of the efficacy of therapeutic approaches involving PHB scaffolds in promoting
peripheral nerve regeneration following nerve dissection in animal models. A systematic literature
review was performed following the “Preferred Reporting Items for Systematic Reviews and Meta-
Analyses” (PRISMA) criteria. The revised databases were: Pub-Med/MEDLINE, Web of Science,
Science Direct, EMBASE, and SCOPUS. Sixteen studies were included in this review. Different animal
models and nerves were studied. Extension of nerve gaps reconnected by PHB scaffolds and the time
periods of analysis were varied. The additives included in the scaffolds, if any, were growth factors,
neurotrophins, other biopolymers, and neural progenitor cells. The analysis of the quality of the
studies revealed good quality in general, with some aspects that could be improved. The analysis of
the risk of bias revealed several weaknesses in all studies. The use of PHB as a biomaterial to prepare
tubular scaffolds for nerve regeneration was shown to be promising. The incorporation of additives
appears to be a trend that improves nerve regeneration. One of the main weaknesses of the reviewed
articles was the lack of standardized experimentation on animals. It is recommended to follow the
currently available guidelines to improve the design, avoid the risk of bias, maximize the quality of
studies, and enhance translationality.
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1. Introduction

Peripheral nerve injury is a problem of high incidence that implies loss of both sensi-
bility and motor function [1,2]. When the injury causes neurotmesis—i.e., discontinuity
of the nerve—surgical techniques must be applied in an attempt to repair the damage [3].
The most commonly used techniques consist of directly suturing the ends of the cut nerve
or closing the gap with an autograft—i.e., placing a piece of nerve harvested from the
same individual—or an allograft—i.e., a piece of nerve harvested from another individual
of the same species [2,3]. The ends of the nerve can only be sutured when the gap is
short [2,3]. The use of autografts or allografts to close wider gaps has the disadvantage of
causing denervation or requiring a donor [2,3]. An interesting alternative to close extensive
gaps is the placement of an artificial scaffold with the characteristics of promoting nerve
regeneration [2].

Scaffolds are biomaterials designed to perform the following functions during tissue
regeneration: (i) promote cell-biomaterial interaction, cell adhesion, and extracellular matrix
deposition, (ii) allow the passage of gases, nutrients, and regulatory factors to allow cell
survival, proliferation, and differentiation, (iii) biodegrade to a controllable rate similar
to the rate of tissue regeneration under the conditions of interest, and (iv) cause minimal
toxicity in vivo [4]. The design of the scaffold is very important since it determines its
properties, causing it to be more efficient in specific applications [5]. One of the major
challenges in developing a scaffold lies primarily in the choice of a biomaterial with suitable
properties [6].

Different promising alternatives for building scaffolds have been described in the
literature, including peptides [7], glycoderivatives [8], and synthetic materials such as
polyrotaxanes [9]. Polymeric biomaterials are widely preferred when it comes to scaffold
design for peripheral nerve regeneration [6]. In the last two decades, artificial scaffolds
for nerve regeneration have been produced using a variety of polymers, both natural and
synthetic, and biodegradable and non-biodegradable [10]. Among the biodegradable and
biocompatible polymers, polyhydroxyalkanoates (PHAs; Figure 1) stand out as they are a
family of polyhydroxyesters of 3-, 4-, 5- and 6-hydroxyalkanoic acids, which are produced
by a variety of bacterial species under nutrient-limiting conditions with carbon excess and
are found as discrete cytoplasmic inclusions in bacterial cells. For this reason, they are
considered green plastics and have a positive social and environmental impact [11,12].

Poly-3-hydroxybutyrate (P3HB) is a very promising biodegradable polymer of the
polyhydroxyalkanoate (PHA) family for making nerve scaffolds [13–34]. The advantages
of P3HB over other polymeric materials that give it many possibilities of being an ideal
material include their synthesis from renewable sources, good tensile strength, good flexi-
bility, and excellent biocompatibility and biodegradability properties, properties necessary
in biomedical applications [29,33,35,36]. It is also a versatile natural polymer that can be
extruded, molded, spun into fibers, made into films, and mixed with other polymers to
produce heteropolymers. This has made the selection of the P3HB biopolymer a natural
choice to create 3D structures suitable for fabricating tissue engineering scaffolds [12].
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Figure 1. General chemical structure of the PHAs. Typical values: x = 1 to 4; n = 1000 to 10,000;
R = alkyl group (CmH2m+1) or functionalized alkyl group. Reused from [37] with kind permission of
John Wiley and Sons.
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PHB in its simpler form, i.e., Poly(3HB) (Figure 2), became widely available at the
beginning of the 1990s, which provided opportunities for its evaluation as a medical
biomaterial [37]. At the beginning, it was not targeted as an implantable biomaterial and
was thus lacking the quality for obtaining approval of drug administrators [38]. PHB causes
prolonged and acute inflammatory responses, so the need was to produce PHB of high
purity, check its biodegradation in vivo, conduct the fabrication of scaffolds and modify
their surface [38]. The first film made of PHB for surgical applications was approved by the
FDA in 2007 [39].
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permission of John Wiley and Sons.

The advantages of using PH3B are inherent; however, one of the main challenges faced
by researchers engineering tissues from natural polymers is the design of scaffolds with
desirable physical and mechanical properties for the growth and proliferation of cells [40].
P3HB represents a great industrial and scientific advance in the search for new sustainable
energy sources.

Based on this premise, this systematic review will discuss the current knowledge of
PHB scaffolds applied to nerve regeneration. The focus is to provide a better understanding
of the efficacy of therapeutic approaches involving PHB scaffolds in promoting peripheral
nerve regeneration following nerve dissection in animal models.
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2. Materials and Methods
2.1. Literature Search Strategy

A systematic literature review was performed following the “Preferred Reporting
Items for Systematic Reviews and Meta-Analyses” (PRISMA) criteria [34]. The revised
databases were: PubMed/MEDLINE, Web of Science, Science Direct, EMBASE, and SCO-
PUS. The following query was used: (“PHB” OR “P3HB”) AND (“nerve injury” OR “nerve
lesion” OR “nerve regeneration”). A manual search of the literature was carried out by
reviewing the references in the articles found in the electronic search. The search was
performed between September 2019 and April 2022.

2.2. Eligibility Criteria

This systematic review includes primary in vivo studies analyzing the use of PHB
scaffolds applied to achieve peripheral nerve regeneration in lesions of the type of nerve
resection. No publication date limit was selected. Studies in English conducted on animals
were considered, as they were the most numerous in this topic and because they can be
analyzed regarding their quality associated with methodology/results and risk of bias
using available instruments (ARRIVE guidelines [41] and SYRCLE RoB [42] respectively).

2.3. Article Selection

The articles obtained in the systematic search were analyzed by reviewing the titles
and abstracts. Those articles that met the eligibility criteria were analyzed in full text to
confirm their relevance to the topic analyzed.

2.4. Data Extraction

Data were collected from full-text studies, in which relevant aspects of nerve injury
and PHB nerve scaffolds were reported. The information collected was: Authors and year
of publication; nerve (type)/gap size/time periods; animal model and sample size (n); PHB
used; scaffold fabrication method; additives used (if any); methods used; conclusion or
main outcome.

2.5. Analysis of Methodology and Results of Selected Studies

The analysis of the methodology and the results of the selected studies was performed
by analyzing the full-text studies to determine whether some aspects of the ARRIVE
(Animal Research: Reporting of In Vivo Experiments) guidelines were covered. The aspects
considered were the ones relevant to the main focus of this review: Ethics, the authors
declare following ethical guidelines for animal experimentation or having approval by a
Scientific Ethical Committee; control, experimental protocol has a control group; control 2:
experimental protocol has 2 control groups; PHB type: the authors declare the type of
PHB used (e.g., Polyhydroxybutyrate, Poly-3-hydroxybutyrate, etc.); PHB origin: the
authors declare the origin of the PHB used; scaffold fabrication method: the authors
explain the method of scaffold fabrication; nerve gap size: the authors declare the size
of the nervous gap; nerve studied: the authors declare which nerve was studied; time
periods: the authors declare in which time periods were the evaluations carried out; surgical
procedure: the authors explain the surgical procedures performed; euthanasia method:
the authors explain the euthanasia method used; species: the authors declare the animal
species studied; sex/weight: the authors declare sex and weight of animals at the beginning
of the experimental protocol; group size and distribution: the authors declare the size of
the experimental group and explain the distribution of animals in the groups; group size
justification: the authors justify the sample size; statistics: the authors declare the statistical
methods used; complete results: the authors present the complete results of the proposed
methodology; precision measures: the author report the precision values of the quantitative
data (e.g., SD, SEM, IQ distance); limitations: the authors state the limitations of the study;
conclusion > objectives: the conclusion is consistent with the proposed objectives. The
analysis using the ARRIVE guidelines was presented in the form of a table in order to



Biology 2022, 11, 706 5 of 17

show if the items analyzed were covered by each individual study or not. In the end, a
score of the percentage of compliance was calculated for each study and included in the
results table.

2.6. Analysis of the Risk of Bias of Selected Studies

The analysis of the risk of bias of the selected studies was carried out in the full-text
documents using the SYRCLE RoB (Systematic Review Center for Laboratory Animal
Experimentation—Risk of Bias) tool, which was also adapted to the main focus of this
review. The dimensions analyzed for each study were: selection bias; performance bias;
detection bias; attrition bias; reporting bias and other bias sources. The results of the risk
of bias of the selected studies using the SYRCLE RoB tool were presented in the form of a
table showing the fulfilled (Y), unfulfilled (N), and uncertain (U) dimensions. The ARRIVE
and SYRCLE RoB analyses were performed by two independent examiners. In cases where
there was disagreement between the examiners, a third examiner was consulted.

3. Results
Study Selection

The article search and selection process is summarized in Figure 3. The total number
of articles found in the databases was 193 citations, of which 82 articles were duplicates.
After the initial reading by title and abstract, 71 articles were ruled out for being unrelated
to the review topic. After reading full-text articles (40 in total), 24 were excluded. Finally, in
this review, 16 articles were included that corresponded to experimental studies in vivo
that met the previously defined criteria.
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Data were extracted from studies in selected animals using Table 1 which consid-
ers information relevant to nerve regeneration studies using tubular scaffolds prepared
with PHB.
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Table 1. Evidence extracted from animal studies selected.

Authors and Year
of Publication

Nerve
(Type)/Gap
Size/Time

Periods

Animal (n) PHB Formula Used
Scaffold

Fabrication
Method

Additive
(If Any) Methods Used Conclusion or

Main Outcome

Borkenhagen et al.,
1998 [13]

Sciatic nerve
(mixed)/8 mm/4,

12, 24 weeks
Rats (26)

Poly[glycolide-co-(ε-
caprolactone)]-diol &

poly[(R)-3-
hydroxybutyric

acid-co-(R)-3-
hydroxyvaleric

acid]-diol
(all polymers had a
molecular weight

higher than 100 KDa)

Melt extrusion
(tube) No additive

Macroscopic
morphology,

histology

PHB holds
promises for its

utilization as
nerve guid-

ance channels.

Ljungberg et al.,
1999 [14]

Superficial radial
nerve (sensory)/

~2–3 mm/6,
12 months

Cats (20)

Polyhydroxybutyrate
(PHB)

(molecular weight
150 KDa)

Rolled sheets
(tube) and
fibrin glue.

No additive

Histology,
quantitative
immunohis-

tochem. (IHC)

No differences
between

wrapping the
nerve ends in
PHB sheet or
epineurally
suturing of
the nerve.

Hazari et al.,
1999a [15]

Radial Nerve
(mixed)/

2–3 mm/6,
12 months

Cats (20)

Poly-3-
hydroxbutyrate

(PHB)
(molecular weight

150 KDa)

Rolled PHB
sheet wrapped

around the nerve
ends &

Tissue Glue

No additive Histology,
quantitative IHC

No differences
beetwen PHB

tube and
Epineural Repair

Hazari et al.,
1999b [16]

Sciatic nerve
(mixed)/10 mm/

7, 14, 30 days
Rats (36)

Poly-3-
hydroxybutyrate

(molecular weight
150 KDa)

Rolled sheets
sealed longitudi-

nallywith
cyanoacrylate

(tube)

No additive
Quantitative

IHC,
morphometry

Good nerve
regeneration in

comparison with
nerve grafts.

Young et al.,
2002 [17]

Common
peroneal nerve
(Mixed)/2, 3,
4 cm/2, 3, 6,

9 weeks

Rabbit (90)

Poly-3-
hydroxybutyrate

(PHB)
(molecular weight

150 KDa)

Sterile PHB
sheets with

unidirectional
fiber orientation

(long axes)

No additive
IHC, histology,

macroscopic
morphology

PHB conduits
support

peripheral nerve
regeneration up
to 63 days. They
are suitable for
long-gap nerve
injury repair.

Mohanna et al.,
2003 [18]

Common
peroneal nerve

(Mixed)/2,
4 cm/3, 6,
9 weeks

Rabbit (90)

Poly
3-hydroxybutyrate

(PHB)
(molecular weight

150 KDa)

Rolled PHB
sheet around

(16 G) cannula,
long axes fiber

orientation

Glial growth
factor

(rhGGF2,
1.29 mg mL−1,

80 kDa)
diluted in

1 mL of 50:50
alginate

fibronectin
solution

Quantitative
IHC

Inhibition of
regeneration of

nerve
regeneration was

partially
reversed by the
addition of GGF

to the PHB
conduits.

PHB-GGF
stimulates a

progressive and
sustainable

regeneration
increase in long

nerve
gap conduits.

Hart et al.,
2003 [19]

Sciatic nerve
(mixed)/10 mm/

2, 4 months
Rats (30)

Poly-3-
hydroxybutyrate

(PHB)
(molecular weight

150 KDa)

Rolled sheets
(tube)

PHB sheets—
compressed PHB
fibers (2–20 µm

Ø)

Leukemia
inhibitory

factor
(recombinant
murine rhLIF
100 ng/mL)
hosted in a
matrix of
hydrogel

comprising 2%
ultra-pure

low-molecular-
weight
high-

mannuronic-
acid-content

calcium
alginate and
0.05% bovine

fibronectin

Quantitative
IHC, macro

morphometry

rhLIF has a
potential role in

promoting
peripheral nerve

regeneration
after secondary

repair and can be
effectively

delivered within
PHB conduits for

nerve repair.



Biology 2022, 11, 706 7 of 17

Table 1. Cont.

Authors and Year
of Publication

Nerve
(Type)/Gap
Size/Time

Periods

Animal (n) PHB Formula Used
Scaffold

Fabrication
Method

Additive
(If Any) Methods Used Conclusion or

Main Outcome

Birchall et al.,
2004 [20]

Recurrent
laryngeal nerve
(mixed)/4 mm/
30, 60, 120 days

Minipig (6)

Polyhydroxybutyrate
(PHB)

(molecular weight
150 KDa)

PHB sheet rolled
to form a conduit No additive

IHC;
morphometry;

histologic
quantif.;

macroscopic
morphology

Functional and
histological

recovery within
2–4 months and

appears to
sustain abductor

muscle fiber
morphology.

Recovery occurs
despite a
complex

inflammatory
response.

Mohanna et al.,
2005 [21]

Peroneal
(mixed)/20,

40 mm/120 days
Rabbit (30)

Poly-3-
hydroxybutyrate

(PHB)
(molecular weight

150 KDa)

Rolled sheets
(tube)

PHB sheets—
compressed PHB

fibers
(2–20 µm Ø)

Glial growth
factor

(rthGGF2,
1.29 mg mL−1,

80 kDa)
diluted in 1
mL of 50:50

alginate
fibronectin

solution

Histology, quant.
IHC,

ultrastructure
(TEM), muscle

atrophy

GGF-containing
PHB conduits

promoted
sustained axonal
regeneration and
improved target

muscle
reinnervation.

Kalbermatten et al.,
2008a [22]

Sciatic
(mixed)/10 mm/

2 weeks
Rats (24)

Poly-3-
hydroxybutyrate

(PHB)
(molecular weight

150 KDa)

PHB sheets
rolled (16 G) 14
mm long, 2 mm

diameter

A
fibrinogen-cell
solution was
made in 1:10
dilution from

Tisseel®

containing
9 mg/mL

fibrinogen and
80 × 106

Schwann
cells/mL. This

solution
(25 mL) was
used to coat

PHB that was
treated with

25 mL of
diluted

thrombin
solution

(5 IU/mL) for
10 min.

Histology, IHC,
macroscopic
morphology

Beneficial
combinatory
effect of an
optimized

matrix, cells and
conduit material
(PHB) as a step

towards
bridging

nerve gaps.

Kalbermatten et al.,
2008b [23]

Sciatic
(mixed)/10 mm/

2 weeks

Rats
(12)

Poly-3-
hydroxybutyrate

(PHB)
(molecular weight

150 KDa)

Rolled sheets of
compressed PHB
fibers soaked in

fibrin glue (tube)

About
80 × 106

Schwann
cells/mL were
suspended in

25 mL of
fibrinogen

solution. PHB
conduits were

coated with
25 mL of a

diluted
thrombin
(5 IU/mL)

solution for
10 min and
then the fib-
rinogen/cell
solution was

added.

Histology, IHC,
macroscopic
morphology

PHB showed
significant

advantage in
rapidly

connecting a
nerve gap lesion.

Kalbermatten et al.,
2008c [24]

Sciatic
(mixed)/10 mm/2,

4 weeks

Rodents
(12)

Poly-3-
hydroxybutyrate

(PHB)
(molecular weight

150 KDa)

PHB sheets
wrapped around

a cannula and
heat sealed

(tube) vs. Fibrin
conduits.

No additive
Quantitative

IHC,
morphology

Advantage of the
new fibrin

conduit for the
important initial

phase of
peripheral nerve
regeneration in

comparison with
PHB conduit.
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Table 1. Cont.

Authors and Year
of Publication

Nerve
(Type)/Gap
Size/Time

Periods

Animal (n) PHB Formula Used
Scaffold

Fabrication
Method

Additive
(If Any) Methods Used Conclusion or

Main Outcome

Bian et al., 2009 [25]
Sciatic

(mixed)/10 mm/1,
2, 3 months

Rats (60)

Poly(3-
hydroxybutyrate-co-
3-hydroxyhexanoate)

(PHBHHx)
(molecular weight

610 KDa)

Dipping–
leaching No additive

Electrophysiol.
analysis,
histology,

ultrastructure
(TEM)

PHBHHx nerve
conduits showed

proper
mechanical

strengths and
biodegradability
artificial nerve

conduits to
repair nerve

damages.

Durgam et al.,
2010 [27]

Sciatic
(mixed)/10 mm/

8 weeks
Rats (11)

Poly(3-
hydroxybutyrate-co-
3-hydroxyvalerate)

(PHB-HV)
(no information on
molecular weight)

Rolled sheets of
PCL and PECA

glued with a
PHB-HV

solution (tube)

Co-polymers
of polypyrrole

(PPy) with
poly (ε-

caprolactone)
(PCL) and
poly (ethyl

cyanoacrylate)
(PECA).

Melt-pressed
PHB-HV films

were
airbrushed
with a PPy
co-polymer

(PPy–PCL or
PPy–PECA)
and pressed.

Histology

Biomaterials
(PCL, PECA and
PHB-HV) have

good
biocompatibility

and support
proliferation and
growth neurons
in vivo (without

electrical
stimulation).

Schaakxs et al.,
2017 [33]

Sciatic
(mixed)/10 mm/

12 weeks
Rats (15)

Poly-3-
hydroxybutyrate

(PHB)
(molecular weight

150 KDa)

Rolled sheets of
compressed PHB
fibers soaked in

fibrin glue (tube)

Primary
Schwann cells
(SCs) isolated
from adult rat
sciatic nerves

or SC-like
differentiated

adipose-
derived stem
cells (dASCs)

from rats were
trypsinised

and 80 × 106

cells/mL were
suspended in
25 µL diluted

fibrinogen
solution. The

PHB strips
were coated
with 25 µL

diluted
thrombin (5

IU/mL)
solution for 10
min and then

the cell
solution was

added.

Functional gait
test EMG,

morphometry

The PHB strip
seeded with cells

provides a
beneficial

environment for
nerve

regeneration.

Ozer et al.,
2018 [34]

Sciatic
(mixed)/10 mm/

8 weeks
Rats (30)

Poly-3-
hydroxybutyrate

(PHB)
(molecular weight

454 kDa)

PHB (5 wt%) in
chloroform by

electrospinning
method

Chitosan-
coated PHB

conduits were
seeded with

mesenchymal
stem cells
harvested

from human
iliac bone
marrow

(hMSC-bm)

Functional gait
test, EMG,
histology

PHB/chitosan-
hMSC-bm nerve
conduits may be
a useful artificial
guide for nerve
regeneration.

Studies using PHB as a biomaterial for the preparation of tubular scaffolds used in
peripheral nerve regeneration have been developed since the 1990s [13–16]. Several animal
models have been used, with most studies carried out on rodents and rabbits. Likewise,
different nerves have been studied, with the sciatic nerve being the most studied of all. It
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is also noted that the sizes of nerve gaps reconnected by PHB tubular scaffolds and the
periods of analysis were varied.

The most common PHB form used in the selected studies was “poly-3-hydroxybutyrate.”
The most common way of manufacturing the scaffolds was rolling a purchased PHB sheet to
form a tube (Figures 4 and 5). The sheets were made by Astra Tech AB (Mölndal, Sweden),
had a molecular weight of approximately 150 kD, and unidirectional fiber orientation. Only
three studies manufactured the PHB scaffolds autonomously [13,25,34]. Regarding the
additives included in the scaffolds, a trend was repeated in almost all studies from 2003 to
2018: the adding of growth factors, other biopolymers, and neural progenitor cells.
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glue. Magnification 6×. Reused from (Ljungberg et al., 1999) [14] with kind permission of John Wiley
and Sons.

Most of the selected studies analyzed morphological characteristics using different
methods—e.g., histology, immunohistochemistry, and ultrastructure. Functional aspects of
nerve recovery were analyzed only in the two most recent studies [33,34].

The use of PHB as a fabrication material for tubular nerve scaffolds (NC, NGC)
seems to be promising for peripheral nerve regeneration [13,16] in cases of long-gap
nerve injury [17] generating a rapid reconnection of these nerve gaps [23]. The studies
reported adequate properties of PHB in terms of mechanical strength, biodegradability,
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biocompatibility, and support for the proliferation and growth of neurons [25,27]. However,
in some cases, no differences were noted with the standard surgical treatment of epineural
repair (epineural suture) [14,15]. In other cases, other materials, such as fibrin, obtained
better results [24]; even PHB without additives inhibited peripheral nerve regeneration [18].
The inclusion of additives such as GGF [18,21], rhLIF [19], and cells [22,33,34] in the PHB
scaffolds suggest an improvement in the nerve regeneration results obtained.

The analysis of the quality of the studies through the application of the ARRIVE
guidelines adapted for this review is summarized in Table 2. Some of the analyzed aspects
showed a low level of compliance in the studies. For example, “sample size justifica-
tion” was not met in any study; the inclusion of a “second control group” was present in
three [25,27,34] of the sixteen studies; the limitations were declared in four [13,14,18,20];
euthanasia methods in six [14,18,20,33,34]; and the sex/weight of the animals in
eight [13,15,18,20,21,25,27,34]. In addition, six studies [13,15,22,24,27] present a conclu-
sion that disagrees with the objectives set and four [16,20,21,27] of the included studies did
not inform of the statistical methods used.

Table 2. Quality analysis of animal studies using ARRIVE guidelines [41] adapted for nerve regener-
ation treated with PHB scaffolds.
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Borkenhagen et al., 1998 [13] • • • • • • • • • • • • •
Ljungberg et al., 1999 [14] • • • • • • • • • • • • • • • • •
Hazari et al., 1999a [15] • • • • • • • • • • • • • • •
Hazari et al., 1999b [16] • • • • • • • • • • • • •
Young et al., 2002 [17] • • • • • • • • • • • • • •
Mohanna et al., 2003 [18] • • • • • • • • • • • • • • • • •
Hart et al., 2003 [19] • • • • • • • • • • • • • • •
Birchall et al., 2004 [20] • • • • • • • • • • • • • •
Mohanna et al., 2005 [21] • • • • • • • • • • • • • •
Kalbermatten et al., 2008a [22] • • • • • • • • • • • • • •
Kalbermatten et al., 2008b [23] • • • • • • • • • • • • • •
Kalbermatten et al., 2008c [24] • • • • • • • • • • • • •
Bian et al., 2009 [25] • • • • • • • • • • • • • • •
Durgam et al., 2010 [27] • • • • • • • • • • • • •
Schaakxs et al., 2017 [33] • • • • • • • • • • • • • • • •
Ozer et al., 2018 [34] • • • • • • • • • • • • • • • • •

• = Ethics: Declares to follow ethical guidelines for animal experimentation or approval by a Scientific Ethical
Committee; Control: Experimental protocol has a control group; Control 2: Experimental protocol has 2 control
groups; PHB type: declares the type of the PHB used; PHB origin: declares the origin of the PHB used; scaffold
fabric method: explains the fabrication method for the scaffold; nerve gap size: declares the size of the nervous
GAP; nerve studied: declares nerve studied; periods evaluated: declares the time in which the evaluations were
carried out; surgical procedure: explains the surgical procedures performed; euthanasia method: explains the
euthanasia method used; species: declares the animal species studied; sex/weight: declares sex and weight
of animals at the beginning of the experimental protocol; group size and distribution: declares the size of the
experimental group and explains the distribution of animals in the groups; group size just.: justifies the sample
size; statistics: declares the statistical methods used for data analysis; complete results: presents complete results
of the proposed the methodology; precision measures: reveals the precision values of the quantitative data
(e.g., SD; SEM or IQ distance); limitations: states the limitations of the study; conclusion > objectives: conclusion
consistent with the proposed objectives.

The risk of bias analyzed by applying the SYRCLE RoB tool (Table 3) showed that the
criteria of the dimensions “Performance” and “Detection” were “Unclear” in all parameters.
In the “Selection” dimension, only the “Baseline” parameter was met in half of the studies.
In practically all selected studies, it was not clear if the “Allocation” and “Sequence” param-
eters were covered. Four studies fulfilled the “Attrition” parameter because they declared
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that there were no animal losses and/or explained the losses that occurred [14,23,24,34].
Five studies did not clearly explain animal losses, but reported the postoperative charac-
teristics of the experimental protocols [18–21,33]; and seven studies did not deliver clear
information for animal losses occurred in the experiments [13,15–17,22,25,27]. In the “Re-
porting” dimension, only nine studies declared the positive and negative results of the
experiments performed [13,14,18,20,21,23,27,33,34].

Table 3. Analysis of the risk of bias in animal studies using the SYRCLE RoB tool [42] scale adapted
for nerve damage and treated with PHB scaffolds.

STUDY
Selection Bias Performance Bias Detection Bias Attrition

Bias
Reporting

Bias Other

Sequence Baseline Allocation Random
Housing

Housing
Blinding

Random
Outcome

Asses.

Outcome
Asses.

Blinding

Incomplete
Outcome

Addr.

Sel.
Outcome

Rep.

Free of
Other

Problems
Borkenhagen et al.,
1998 [13] U U U U U U U U Y N

Ljungberg et al.,
1999 [14] U Y N U U U U Y Y N

Hazari et al.,
1999a [15] U Y U U U U U U U N

Hazari et al.,
1999b [16] U U U U U U U U U N

Young et al.,
2002 [17] U U U U U U U U U Y

Mohanna et al.,
2003 [18] U Y U U U U U U* Y Y

Hart et al.,
2003 [19] U U U U U U U U* U N

Birchall et al.,
2004 [20] U Y U U U U U U* Y Y

Mohanna et al.,
2005 [21] U Y U U U U U U* Y N

Kalbermatten et al.,
2008a [22] U U U U U U U U U N

Kalbermatten et al.,
2008b [23] U U U U U U U Y Y Y

Kalbermatten et al.,
2008c [24] U U U U U U U Y U Y

Bian et al.,
2009 [25] U U U U U U U U U Y

Durgam et al.,
2010 [27] U Y U U U U U U Y Y

Schaakxs et al.,
2017 [33] U U U U U U U U* Y Y

Ozer et al.,
2018 [34] U* Y U U U U U Y Y Y

Y = There
are expla-
nations of
the assign-
ment

Y = reports
sex,
weight
and
species

Y = There
are expla-
nations of
allocation
conceal-
ment

Y = There
are expla-
nations of
how the
accommo-
dation
was
hidden

Y = There
are expla-
nations of
blinding
of
caregivers
and/or re-
searchers

Y = There
are expla-
nations of
blinded
analysis of
animals

Y = Informs
blinded
evaluation
of results

Y = Animal
losses
explained
or states
no animal
losses.

Y = Reports
positive
and
negative
results

Y = Nothing
unsual
(bias)

U = No ex-
planation
of the as-
signment.
U* =
mentions
“randomly
allocated”

U = Lack
of baseline
data

U = No ex-
planation
of
allocation
conceal-
ment

U = No ex-
planation
of accom-
modation
conceal-
ment

U = No ex-
planations
of
blinding
of
caregivers
and/or re-
searchers

U = No ex-
planations
of blinded
analysis of
animals

U = No in-
formation
from
blinded
evaluation
of the
results.

U = Animal
losses not
declared.
U* =
Declared
postopera-
tive
condition.

U = Does
not report
negative
results

Finally, seven studies showed other possible sources of bias (Other/Free of Other
Problems). Borkenhagen et al. did not state a clear objective or hypothesis of the study [13].
Ljungberg et al. showed a correlation that is not described in the methodology [14].
Hazari et al. presented data on controls selectively [15]. In addition, six studies showed a
close relationship with the company that developed the PHB sheets used [14–16,19,21,22].
Furthermore, in two of them, an author was affiliated with the company [15,16]; in another
two, the authors declared being financed by the company [14,21]; and finally, the PHB used
was donated by the company in two other studies [19,22].
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4. Discussion

The present systematic review gathered and analyzed evidence on the use of polyhy-
droxybutyrate biopolymer (PHB), a type of polyhydroxyalkanoate (PHA), in peripheral
nerve regeneration. PHB is a biopolymer of microbial origin [43] that have several pos-
itive properties in their use as a material in the construction of nerve scaffolds, such as
adequate flexibility and tensile strength, excellent biocompatibility, and biodegradabil-
ity [29,33,35,36].

This systematic review focused mainly on PHB because it is the most used PHA for
this type of application. After the initial literature search, several in vitro and animal studies
and only one clinical study were found [26]. Thus, the authors decided to focus on animal
studies due to the number of studies available and the existence of well-known tools to
analyze quality (ARRIVE) and risk of bias (SYRCLE RoB) for these types of studies.

The in vitro studies that evaluated the use of PHB as a biomaterial for the construction
of peripheral nerve scaffolds are of fundamental importance in this topic, mainly helping
to understand cellular behaviors in obtaining the best regenerative results [29,44–47].
However, these studies show high heterogeneity in their methods and designs, which
makes it difficult to compare their results. In recent studies, it was noted that Schwann
cells, the glial cells supporting the peripheral nervous system, were the most studied
cell type [44–46]. PC12 [29], neuronal [46], and fibroblast lineage [47] cells that produce
the collagen that makes up the endo and perineurium region were also studied with the
intention of understanding the interaction of PHB with peripheral nerve regeneration.

The method of fabrication of PHB scaffolds chosen by these studies was preferentially
electrospinning [29,44–47]. The cell analysis strategies used were mainly viability [29], dif-
ferentiation [44,46] proliferation [29,45,47], migration [47], adhesion [29], and cell growth
orientation [44–46]. Better results were observed in the cases where PHB was associated
with some approaches to improve the properties of this material, such as the mixture/blend
of other polymers (PHBV [44,45], P(3HO), and P(3HB) [46]) and polyaniline [47], in addi-
tion to the functionalization of the PHB scaffolds using oxygen plasma printing [47] and
naturally occurring peptides in the ECM [45].

The ARRIVE and SYRCLE RoB scores revealed a good quality of studies carried out in
animals with the tubular PHB nerve scaffold. However, weaknesses were noted in these
studies. The ARRIVE application revealed a weakness present in all selected studies: the
lack of justification for the sample size, which is a factor that directly affects the statistical
power associated with the study and, therefore, the reliability of the conclusions. In
addition, only four studies declared their limitations [13,14,18,20], six studies declared the
method of euthanasia applied [14,18,20,21,33,34] and eight studies [14,15,18,20,21,25,27,34]
stated the weight and sex of the animals. This lack of information also influences the
validity and mainly the reproducibility of the studies carried out. Finally, it was noted
that six studies [13,15,20,22,24,27] presented a conclusion that did not answer clearly the
objective of the study and four studies [16,20,21,27] did not state clearly the statistical
methods used. This lack of information may raise doubts about the results of these studies.

The application of the SYRCLE RoB tool to assess the risk of bias in the selected
studies revealed that many of the criteria and dimensions evaluated did not present
sufficiently clear data or information. The parameter of “Baseline” were fulfilled by
seven studies [14,15,18,20,21,27,34]. The “Reporting bias” dimension was met by nine
studies [13,14,18,20,21,23,27,33,34] and “Attrition bias” was met in only four studies [14,23,24,34].
A fact that drew attention in the analysis of the risk of bias was the close relationship
between authors and the company Astratech in six studies [14–16,19,21,22]. Astratech
developed the PHB sheets used in the studies and provided funding. In all these cases, the
results of using this biomaterial in nerve regeneration were positive or promising.

The application of the two tools (ARRIVE and SYRCLE) for the analysis of studies
carried out in animals revealed the weaknesses of these studies in relation to their method-
ology, results, and risk of bias. This lack of success to comply with all parameters and
dimensions analyzed by both tools does not necessarily completely invalidate the results of
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these studies. Most of the studies selected in this review were published prior to ARRIVE
(2010) and SYRCLE (2014). However, that does not mean that they were exempted from
complying with the conditions needed to reach reliable results. There must be future efforts
to comply with the parameters of tools like ARRIVE and SYRCLE in order to favor the stan-
dardization, quality, and, therefore, relevance of studies in animals. The studies in animals
have evolved to favor their translationality to clinical studies in the last years [48–50]. The
data extracted from the selected studies showed that the use of PHB as a biomaterial for
preparing nervous scaffolds dates back to the 1990s [13–16]. Most of the reviewed articles
were published between 1995 and 2010. Then, the number of articles started to drop and
only two of them were published in the last 10 years.

The model of nerve injury studied in all cases is that of nerve resection, in which one
gap is generated in the nerve, which can be considered the most serious type of nerve injury
because it generates a total nerve interruption (neurotmesis) with the problem of lack of
biological structure for its reconnection. However, it was noted that the studied nerve, the
gap size, and the recovery times were varied among studies. In most cases, the studied
nerve was classified as “mixed”—e.g., sciatic, radial, peroneal, recurrent laryngeal—which
favors the analysis of both motor and sensory recovery.

The size of the gap ranged from 2–3 mm in cats [14,15] to 40 mm in rabbits [17,18], with
the 10 mm gap in rats being the most evaluated model [16,19,22–25,27,33,34]. This could
indicate a possible standardization of the gap among the most recent studies carried out
in rats. The post-nerve injury analysis times were also very varied, from 7–30 days [16] to
6–12 months [14,15] without an apparent pattern or trend in the selected studies. Previous
studies have shown that the larger the size of the nerve gap, the worse the prognosis of
nerve regeneration [51].

Regarding the manufacture of the scaffolds, 13 studies used commercial PHB sheets
made by electrospinning [14–24,27,33]. Only three studies manufactured their own custom-
made scaffolds for nerve regeneration by the methods of melt extrusion [13], dipping-
leaching [25], and electrospinning [34]. The own manufacture of the scaffolds may not be as
standardized as the use of PHB sheets industrially assembled by electrospinning; however,
it would allow the customization of the characteristics of the scaffolds in order to improve
regeneration results, especially with the intention of preparing an environment favorable
to nerve cells because it resembles the extracellular matrix. The preparation of scaffolds
by the electrospinning method allows obtaining a structure similar to the extracellular
matrix, which would help to promote nerve regeneration [52]. Most of the studies did not
discuss critical characteristics of the material such as molecular mass and purity. Further
characterization of the material used is needed in order to understand its impact on the
treatment success. PHB can cause prolonged and acute inflammatory responses, so the need
is to produce PHB of high purity, check its biodegradation in vivo, improve the fabrication
of scaffolds and modify their surface [38].

Most of the included studies analyzed improvement of nerve regeneration by morpho-
logical methodologies exclusively, such as macroscopic morphology, histology, microscopic
morphometry, immunohistochemistry, and ultrastructural analysis [3–24,27]. These meth-
ods are known for their application in studies of changes in peripheral nerves, allowing
some prediction of functional characteristics [53,54]. The main objective of using PHB
scaffolds would be the restoration of the function lost by peripheral nerve damage, which
remains one of the main challenges in nerve regeneration [55–58]. Studies analyzing sen-
sory and motor function by direct methods are necessary to assess the effectiveness of
nerve regeneration achieved by the use of this type of biomaterial. However, this was done
only in two of the most recent studies [33,34].

The main results of the selected studies revealed in most studies that the use of PHB for
peripheral nerve regeneration was positive and or promising, with the adequate features of
mechanical strength, biocompatibility and proliferation of neurons [13,16–23,25,27,33,34].
Studies carried out in rodents and those that included additives showed practically only
positive or promising results from the use of PHB as a biomaterial for nerve regeneration.
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The inclusion of additives seems to be a trend that has been observed in most of the more
recent studies [18,19,21–23,27,33,34], which seems to reveal that PHB nerve scaffolds would
serve more as a vehicle for other nerve regeneration strategies, such as the adding of growth
factors and cells.

Within the selected studies, the lack of control groups in five studies drew atten-
tion [13,18,21,23,24]. The use of control groups was proposed in 1801 and is currently
standard practice in basic and clinical studies [59]. The control group consists of a group
with the same configuration as the experimental groups except for the applied/studied
variable [60]. The lack of control groups makes the quality of these studies questionable,
as a good control group validates the experiment carried out and provides the basis for
evaluating the effects of treatments [61] that are necessary when studying peripheral nerve
regeneration using scaffolds. In addition, in these cases, two simultaneous control groups
could be used, the negative control groups—i.e., lack of intervention—and positive control
groups—i.e., intervention with expected effect [61]—in order to establish the effect of using
PHB scaffolds in a more solid and objective way. However, among the selected studies only
three recent studies used two control groups in their methodology [25,27,34].

Only one clinical study was found on this topic, Åberg, et al. [26], which compared
the use of PHB tubular scaffolds with the epineural suture in 12 individuals through
sensory and motor clinical, neuropsychological, morphological, and psychological tests
after 2 weeks, 3, 6, 9, 12 and 18 months after surgery. The study revealed that most tests
showed no differences between treatments, but suggested an improvement in sensory
recovery in patients who received the PHB scaffold, although it would need confirmation
in a larger clinical study. This result agrees in part with the animal studies analyzed in the
present review; in addition, it is worth mentioning that the scaffold used in this clinical
study performed by Åberg, et al. [26] was not associated with any additive, which could
change its results [26].

Among the limitations of this systematic review, we can mention searching for studies
published only in English, not reviewing published or unpublished studies such as theses
and dissertations, or even in different databases from those consulted. In addition, this
review was focused only on animal studies, which was the authors’ decision as they found
only one clinical study on this topic.

5. Conclusions

The use of PHB as a biomaterial to prepare tubular scaffolds for nerve regeneration
was shown to be promising. The incorporation of additives appears to be a trend that
improves nerve regeneration.

One of the main weaknesses of the reviewed articles was the lack of standardized
experimentation on animals. It is recommended to follow current guidelines, such as
ARRIVE and SYRCLE RoB, to improve the design, avoid the risk of bias, maximize the
quality of studies, and enhance translationality. In particular, control groups should be
defined more carefully.

The experimental methodologies found in the literature were shown to be highly het-
erogeneous. To achieve more conclusive results, it would be recommended to standardize
the injuries and the time periods analyzed in future studies. It would also be recommended
to conduct functional analysis in order to directly assess the effectiveness of the treatments
regarding function recovery.

Further efforts must be made in order to refine the fabrication of PHB mats intended
for medical use. Chemical characteristics of the material should be addressed in future
in vitro and in vivo studies in order to correlate them with the results. Critical aspects such
as purity should be taken into account. Further characterization of the material used is
needed in order to understand its impact on treatment success. Clinical studies should
be conducted after proven success of the material in both in vitro and in vivo studies
in animals.
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