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Abstract
Purpose Regular exercise reduces obesity and the risk of cardiovascular disease. However, health-promoting benefits of 
physical activity are commonly associated with increased inflammation and oxidative stress. Here, we tested whether con-
stant moderate exercise is able to prevent or attenuate the oxidative/nitrosative stress, inflammation, and serum lipids in 
lean and obese rats.
Methods Four-month-old female Sprague Dawley rats received standard or a high-fat diet. Animals were subjected to a 
physical activity protocol, consisting of 30 min forced treadmill exercise for 5 consecutive days per week during 10 months. 
Baseline and sedentary (non-exercised) rats were used as controls. Lipids, oxidized low-density lipoprotein cholesterol, nitric 
oxide metabolites, and pro- and anti-inflammatory markers were measured in blood collected upon euthanasia.
Results At variance to young baseline control rats, 14-month-old animals fed normal diet had increased plasma lipid levels, 
including total cholesterol and triglycerides, which were further elevated in rats that consumed a high-fat diet. While treadmill 
exercise did not lower the amount of serum lipids in standard diet group, forced physical activity reduced non-high-density 
lipoprotein cholesterol in response to high-fat diet feeding. Exercised rats fed standard diet or high-fat diet had lower abun-
dancy of nitric oxide metabolites, which coincided with increased levels of oxidized low-density lipoprotein cholesterol. 
Accordingly, the amount of nitric oxide metabolites correlated inversely with oxidized low-density lipoprotein cholesterol 
and homo-arginine. Exercise significantly reduced inflammatory cytokines in high-fat diet fed rats only.
Conclusion Our study suggests that regular exercise alters the equilibrium between oxidative and anti-oxidative compounds 
and reduces pro-inflammatory cytokines.

Keywords Long-term moderate exercise · Western-type diet · Oxidized LDL · Nitric oxide · Nitric oxide synthase · 
Sprague Dawley rats

Introduction

Cardiovascular disease (CVD) is a major cause of morbidity 
and mortality in Western societies and developing countries 
[1]. Modifiable risk factors, such as obesity and sedentarism 
are highly prevalent in patients with CVD, and both can be 
improved by safe and effective lifestyle interventions [2]. 
Such lifestyle factors are diet and exercise that affect the 
concentration of low-density lipoproteins (LDL), which 
are known metabolic driver of CVD, such as atheroscle-
rosis [3–5]. In addition, it is well established that elevated 
concentrations of LDL cholesterol (LDL-C) promote ath-
erosclerosis and increase the risk of non-fatal and lethal 
CVD events. LDL-C is subjected to oxidation, resulting in 
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the formation of oxidized LDL (oxLDL), which is thought 
to be more aggressive than non-oxidized LDL in inducing 
atherogenesis [6, 7].

Elevated oxidative stress characterized by an increased 
generation of radical oxygen species (ROS) is a common 
manifestation in patients with CVD, obesity, and diabetes 
mellitus. These highly reactive compounds can modify many 
biomarkers including LDL-C [8–10]. The modification of 
LDL-C by oxidation promotes the receptor-mediated uptake 
of oxLDL by macrophages, thereby causing cholesterol 
accumulation in the vasculature. Previous studies in humans 
and animals indicate that Western diet and physical inactiv-
ity induce free radical production, which may enhance the 
susceptibility of LDL to oxidation [3, 4, 11]. One of the 
principal pathways involved in the adaptation to exercise 
is nitric oxide (NO) signalling. NO triggers vasodilation 
and, thus, can mitigate the high shear stress during exercise. 
Furthermore, NO is involved in several other physiological 
and pathological processes, such as cell inflammation and 
adhesion as well as angiogenesis [12–15]. NO is synthe-
tised by three isoforms of the enzyme NO synthase (NOS), 
including neuronal (nNOS or NOS-1), inducible (iNOS or 
NOS-2), and endothelial isoform (eNOS or NOS-3). All of 
them are constitutively but not exclusively expressed in the 
cardiovascular system [10]. In particular, eNOS requires 
dimerization to maintain its normal function but under cer-
tain conditions the reduction of molecular oxygen by eNOS 
is not coupled anymore with the oxidation of the substrate 
L-arginine (L-arg), thus resulting in the production of 
superoxide instead of NO [10]. The main eNOS uncoupling 
motifs are the cofactor of NO synthesis, tetrahydrobiopterin 
(BH4), reduced bioavailability of L-arg, or high levels of the 
endogenous NOS inhibitor, asymmetrical dimethyl-arginine 
(ADMA) [8].

Although regular exercise is proven to reduce CVD risk 
and promote health benefits [12, 16–19], constant physical 
activity also increases the production of free radicals and 
oxidative stress [4, 9]. This raises the question as to whether 
exercise-induced oxidative stress is beneficial or detrimental. 
In this regard, obese and normal-weight human adults have 
reportedly comparable oxLDL concentrations [20], whereas 
other studies showed that body weight reduction after the 
bariatric surgery or regular moderate exercise decrease 
oxLDL [21, 22]. In contrast, a single intensive exercise ses-
sion appears to increase the susceptibility of LDL and other 
lipoproteins to oxidation in healthy adults [3, 4]. Thus far, a 
single in vivo study explored the effects of HFD and regu-
lar physical activity on plasma lipids, oxidative/nitrosative 
stress and LDL oxidation. Specifically, Elmas et al. showed 
that rats consuming a HFD exhibit increased oxidative stress 
in aortic and myocardial tissue [2]. Regular exercise appears 
to modify the balance of antioxidants and oxidants as well as 
NO metabolism in these tissues. However, it remains elusive 

whether constant moderate exercise is able to prevent or 
attenuate the oxidative/nitrosative stress, inflammation, and 
serum lipids in lean and obese rats.

In the present study, we investigated the impact of HFD 
and regular moderate exercise on the oxidative/nitrosative 
stress, serum lipids and cytokines. For this purpose, blood 
samples from young and old Sprague Dawley female rats 
that were subjected to forced treadmill exercise sessions for 
10 months in combination with a HFD or ND were analysed.

Materials and methods

Animal model

Four-month-old healthy female SD rats (n = 120) with an 
average body weight of approximately 300 g were purchased 
from Janvier Labs (France) and kept in groups of three ani-
mals per cage under constant conditions on a 12 h light and 
12 h dark cycle in the institutional animal facility. The deci-
sion to work with female animals aimed to avoid gender 
effects and to reduce the risk of dropouts due to aggressive 
behaviour between animals. After 1 week of acclimatization, 
the animals were randomly assigned to receive a standard 
diet (ND) (Altromin, Germany) with 3.23 kcal/kg and 11% 
fat or a custom-designed beef-tallow high-fat diet (HFD), 
rich in saturated fatty acids (SFA), in particular C16:0 and 
C18:0, with 5.15 kcal/kg and 60% fat (Table 1; ssniff, Ger-
many). Saturated fatty acids (SFA) and mono-unsaturated 
fatty acids (MUFA) are present in a ratio of 1:1. While 
the ratio of SFA and poly-unsaturated fatty acids (PUFA) 

Table 1  Composition of the high-fat diet

Fatty acids and antioxidant vitamins content

Fatty acids Vitamins

Saturated fatty acids % Antioxidant Per kg

C 12:0 0.04 Vitamin A 15,000 IU
C 14:0 1.18 Vitamin E 150 mg
C 16:0 8.27
C 17:0 0.38 Others
C 18:0 6.06 Vitamin  D3 1500 IU
C 20:0 0.04 Vitamin K (as MNB) 20 mg

Thiamine  (B1) 25 mg
Mono-unsaturated fatty acids Riboflavin  (B2) 16 mg
 C 16:1 1.33 Pyridoxine  (B6) 16 mg
 C 18:1 12.29 Cobalamin  (B12) 30 µg

Nicotinic acid 47 mg
Poly-unsaturated fatty acids Pantothenic acid 55 mg
 C 18:2 2.53 Folic acid 16 mg
 C 18:3 0.34 Biotin 300 µg

Choline 920 mg
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is close to 5:1. The HFD composition was based on pre-
vious studies [23–25]. Food and tap water were provided 
ad libitum.

Experimental design and treatment

Animals were randomly allocated to 5 groups, each consist-
ing of 24 animals. The rats in group 1 were sacrificed after 
the acclimatization period and served as a baseline control 
(BL). Ninety-six animals were divided in a 1:1 ratio, fed ND 
or HFD and subjected to the 10-month study protocol as 
follows: half of the rats fed ND or HFD performed 30-min 
running exercise sessions on a treadmill (Panlab, Spain) on 
5 consecutive days (indicate at what time of the day) fol-
lowed by 2 days of rest. The running speed was constant 
and set at 30 cm/s. The training protocol was based on pre-
vious experimental studies [26–29]. The animals that did 
not exercise throughout the entire study period were used as 
sedentary controls.

Euthanasia and sample preparation

At the end of the 10-month study period, blood was drawn 
by heart puncture under deep isoflurane anaesthesia (Forane, 
Abbott, Austria). Also for the baseline animals, the blood 
was collected only once at the time of sacrification. Blood 
and plasma were collected using S-Monovette Serum-Gel 
tubes and S-Monovette Plasma-EDTA tubes (Sarstedt, 
Nümbrecht, Germany), respectively. Samples were centri-
fuged at 2000 g for 12 min at room temperature, aliquoted 
and stored at − 80 °C until the analysis. Blood collections 
and consequently serum analyses were performed in a non-
fasting state.

Evaluation of the oxidative/nitrosative stress

The circulating oxLDL concentration was determined in 
serum (100 µl) with a rat-specific commercial Sandwich 
ELISA kit (USCN Life Sciences, Texas) according to the 
manufacturer’s instructions. This assay uses rat polyclonal 
antibodies against oxLDL and has a measurement range 
between 31.2 and 2000 pg/ml. In this range, intra- and inter-
assay imprecision is below < 12%. NO was estimated in 
serum (100 µl) by measuring the degradation products nitrite 
 (NO2

−) and nitrate  (NO3
−) using a commercial photometric 

method (NO quantification kit, Active Motif, California) on 
a FlexStation3 (Molecular devices, California). In addition, 
plasma concentrations of homo-arginine (h-arg), ADMA 
and symmetrical dimethyl-arginine (SDMA) were quanti-
fied by a reverse-phase high-pressure liquid chromatography 
(HPLC) method as described previously [30, 31].

Assessment of systemic inflammatory markers

A profile of 22 inflammatory markers and chemokines, 
including Regulated and Normal T-cell Expressed and 
Secreted (RANTES), eotaxin, macrophage inflamma-
tory protein 1α (MIP-1 α), monocyte chemoattractant 
proteins 1 and 3 (MCP-1 and 3), tumour necrosis factor 
α (TNF-α), interferon γ (IFN-γ), IFN-γ-inducible protein 
(IP-10), and interleukins (IL-1β, IL-2, IL-5, IL-6, IL-10, 
IL-12, IL-17) were determined in 25 µl of serum with a 
preconfigured multiplex immunoassay kit (ThermoFisher 
Scientific, Austria) using the BioPlexTM 200 detection 
system (Bio-Rad, Austria). The activity of matrix metal-
loproteinases (MMPs) was measured through an enzymatic 
reaction using a Mca-PLGL-Dpa-AR-NH2-fluorogenic 
peptide substrate (R&D Systems, Canada). Serum (90 µl) 
was incubated with the diluted working solution (10 µl) 
for 20 min at room temperature. The fluorescent signal 
was detected at 320 nm excitation and 405 emission wave-
length using the photometer FLUOstar OPTIMA (BMG 
Labtech, Germany).

Assessment of lipid metabolism and adipocytokines

The serum lipid profile was determined on fully automated 
Olympus AU640 analyser (Olympus, Hamburg, Germany) 
using commercial assays. Briefly, total cholesterol (TC), 
triglycerides (TG), phospholipids (PL), non-esterified fatty 
acids (NEFA), and HDL cholesterol (HDL-C; homogeneous 
assay) were measured using enzymatic methods and reagents 
from Diasys (Holzheim, Germany). The instrument was cali-
brated using secondary standards from Roche Diagnostics 
(Mannheim, Germany; for TC, TG) and Dyasis (Holzheim, 
Germany; for FC, PL). Insulin growth factor-1 (IGF-1), lep-
tin and adiponectin were evaluated in serum by commercial 
sandwich ELISAs (Demeditec Diagnostics Gmbh, Germany) 
according to the manufacturer’s instructions. Finally, resis-
tin was quantified using a sandwich enzyme immunoassay 
from BioVendor—Laboratorní medicína a.s. (Brno, Czech 
Republic).

Statistical analyses

Data are presented as means ± standard deviations. The dif-
ferences between groups were assessed using two-tailed 
Student’s t test for dependent or independent samples or 
Mann–Whitney U test depending on the distribution of the 
data. Correlations between variables were determined by 
linear regression analysis according to Pearson (r, Pear-
son correlation coefficient; p, univariate ANOVA). p value 
of < 0.05 was considered statistically significant. Analyses 
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were performed by explorative data analyses using SPSS for 
Windows  (IBM©  SPSS© Statistics, version 25).

Results

Exclusion criteria and body weight

From the 120 rats included in the study, 6 rats had to be 
sacrificed before the end of exercise protocol because of ill-
ness, while additional 18 animals developed tumours and, 
thus, were excluded from the analysis (Fig. 1) [32]. Tumours 
were more frequent in animals fed high-fat than standard 
diet (16 vs. 2 rats). At the end of the study, 96 animals 
were included in the analysis. All animals had significantly 
increased body weight as compared to the baseline group 
(Fig. 2a, p < 0.001). However, this increase in body weight 
was markedly higher in response to HFD than ND feeding. 
Also organ weights increased with age and HFD (Table 2).

The exercise protocol was well tolerated in all animals 
and reduced the weight gain in the ND animals (p < 0.01), 
but not in HFD animals. Moreover, regular moderate 

exercise induced an increase of myocardial and hepatic 
weight in HFD animals, but not in ND animals.

Lipid profile

Serum lipids are established risk factors of atherosclerosis 
and CVD that are affected by lifestyle factors, such as diet 
and physical activity [3–5]. Therefore, we first explored 
the effects of HFD and exercise on serum lipids. After 
10 months of intervention, average TC and TG concen-
trations were significantly higher compared to baseline, 
regardless of diet and exercise (Fig. 2b, c). HFD animals 
showed additional alterations of the lipid profile beyond 
simple age-related changes. TG and NEFA were signifi-
cantly higher than in ND animals, whereas non-HDL-C was 
lower (Fig. 2c, d, f). Exercise induced a decrease of TC and 
HDL-C in HFD, but not ND animals (Fig. 2b, e). All other 
lipid parameters were comparable between sedentary and 
exercising animals in both diet groups.

In an attempt to explore potential mechanism that 
mediate the changes in plasma lipids, correlation anal-
yses have been performed. At study end, body weight 
was positively correlated with TG (r = 0.598; p < 0.001), 

Fig. 1  The experimental design. One-hundred and twenty young 
female Sprague Dawley rats were randomly allocated into 5 groups, 
each consisting of 24 animals. The animals in the baseline control 
group were euthanized after the acclimatization period. The remain 
of ninety-six animals were divided in a 1:1 ratio and fed ND or HFD 
and subjected to a 10-month study protocol as follows: half of the 

rats fed ND or HFD performed 30-min running exercise sessions on 
a treadmill. Six animals (2 vs. 4 rats fed ND and HFD, respectively) 
died prior to the end of the study and eighteen more (2 vs. 16 rats 
under ND and HFD) had to be excluded due to the development of 
tumours
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NEFA (r = 0.238; p = 0.025) and non-HDL-C (r = 0.271; 
p = 0.010), whereas TC (r =  − 0.291; p = 0.006) and 
HDL-C (r =  − 0.365; p < 0.001) were inversely correlated 
to adiponectin.

Oxidative/nitrosative stress

Advanced age, obesity and physical inactivity are known to 
modulate the equilibrium between oxidant and antioxidant 

Fig. 2  Box and Whisker Blot of the body weight (a) and the lipid 
profile (b–f) after the 10  months study period. **p < 0.01 com-
pared to appropriate sedentary control group; #p < 0.05, ##p < 0.01, 
###p < 0.001 compared to appropriate normal diet control group; 

£££p < 0.001 compared to baseline control group. The study groups 
have been abbreviated as follows: baseline group (BL), control nor-
mal diet (coND), exercise normal diet (exeND), control high fat diet 
(coHFD) and exercise high-fat diet (exeHFD)
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compounds, with consequent alterations of lipid peroxida-
tion and NOS function [8–10]. Therefore, we analysed the 
effects of HFD and exercise on oxLDL and NOx. Figure 3 
shows that age and diet had a substantial effect neither on 
oxLDL nor on NOx (Fig. 3a, b). Exercise instead altered 
both biomarkers significantly. After 10 months of regular 
training, oxLDL was increased in ND and HFD by 44% and 
68%, respectively. In contrast, NOx was markedly lower in 
exercising animals with the lowest concentrations in the 
HFD group.

To corroborate the NOx results, we also measured the 
non-proteogenic amino acid h-arg, a substrate of NOS for 
the production of NO, and ADMA, a competitive inhibitor of 
NOS. h-arg was significantly higher in HFD animals than in 
ND and baseline controls (Fig. 3c). Exercise increased h-arg 
in ND animals, but not in HFD animals. The serum concen-
trations of ADMA were highest at baseline and decreased 
with age. This decrease was less pronounced in HFD than 

in ND animals. Exercise reduced ADMA in the HFD group, 
but not in the ND group (Fig. 3d, p < 0.001).

Considering that oxidative stress and NOS function are 
linked with each other, we performed linear regression analy-
ses that showed a strong inverse association between oxLDL 
and NOx (Fig. 4a). An inverse relationship was also found 
between h-arg and NOx (Fig. 4b, r = − 0.453; p < 0.001). 
ADMA and SDMA were positively related to NOx with 
(ADMA vs. NOx, r = 0.401; p < 0.001) and (SDMA vs. NOx, 
r = 0.459; p < 0.001), but inversely associated with oxLDL 
with (r = − 0.338; p < 0.001) and (r = − 0.274; p = 0.009), 
respectively.

Effects of physical activity and diet on cytokines 
and chemokines

Dyslipidaemia and oxidative/nitrosative stress are estab-
lished drivers of chronic systemic inflammation, an 

Fig. 3  Box and Whisker Blot of oxidized LDL (a). ***p < 0.001 
compared to appropriate sedentary control group; £££p < 0.001 com-
pared to baseline control group. Box and Whisker Blot of nitric 
oxide metabolites (b). ***p < 0.001 compared to appropriate sed-
entary control group; ##p < 0.01, ###p < 0.001 compared to appropri-

ate normal diet control group; £££p < 0.001 compared to baseline 
control group. Box and Whisker Blot of homo-arginine and ADMA 
(c–d). ***p < 0.001 compared to appropriate sedentary control group; 
#p < 0.05, ##p < 0.01 compared to appropriate normal diet control 
group; £££p < 0.001 compared to baseline control group
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important factor in the pathogenesis of atherosclerosis [6, 
7]. To study the immunological response of HFD and physi-
cal activity, we analysed a broad panel of pro- and anti-
inflammatory cytokines (Fig. 5). Regular treadmill exercise 
reduced the serum concentrations of the pro-inflammatory 
cytokines, such as TNF-α, IL-1β and IL-2 in rats consum-
ing HFD, but not those fed ND (Fig. 5b, e, f). All other 
cytokines were not significantly affected by exercise. Age 
and diet alone had no significant effects on the serum con-
centrations of the measured pro-and anti-inflammatory 
cytokines (Table 2).

Chemokines are secreted signalling proteins that mediate 
the migration of immune cells in response to pro-inflam-
matory cytokines [33]. In the present study, several pro-
inflammatory chemokines, including RANTES, MCP-1 
and 3, were measured. In 14-month-old sedentary ND and 
HFD animals, the average serum concentrations of RANTES 
and MCP-3 were significantly higher than in young baseline 
controls (Fig. 5a, d). Regular exercise attenuated this age-
related increase irrespective of diet. MCP-1 showed similar 
trends, but due to a greater inter-individual variability of 
this marker, significant effects were present only in HFD 
animals (Fig. 5c).

Adipocytokines

Adipocytokines, such as adiponectin, leptin, and IGF-1 
are key regulators of energy metabolism and fat stores that 
are centrally involved in the pathomechanistic sequaele of 
adipositas and obesity [34, 35]. Furthermore, they have 
immune-modulatory effects [36]. In the present study, age, 
diet, and exercise had profound effects on the serum con-
centrations of IGF-1, adiponectin, and leptin (Fig. 6). At 
the end of the 10-month protocol, IGF-1 concentration was 

approximately 50% lower than in young baseline controls, 
irrespective of diet (Fig. 6a). Exercising animals fed HFD, 
had slightly higher IGF-1 concentrations than their respec-
tive controls. In contrast, leptin was markedly higher in old 
than in young animals (Fig. 6c). The age-related increase in 
serum leptin was substantially amplified by HFD. Exercise 
reduced serum leptin concentrations slightly in both diet 
groups. Adiponectin was not affected by age and exercise in 
ND animals, but increased in HFD animals (Fig. 6b). This 
increase was greater in exercising HFD animals. Resistin 
decreased with age in HFD and ND animals (p < 0.001). 
In both dietary groups, exercising animals had even lower 
resistin serum concentrations than sedentary counterparts.

Discussion

The present study shows that long-term moderate exercise 
reduces the body weight gain and NOx but increases oxLDL 
in normal-weight and obese rats. Administering HFD to sed-
entary animals resulted in a marked increase in body weight 
gain and triglycerides; however, it failed to systematically 
alter oxLDL, NOx or any other lipid profile parameter.

In the SD rats used in this project, long-term moderate 
running exercise did not change TC, HDL-C, and non-
HDL-C. In HFD fed animals, TG was slightly reduced by 
exercise. Furthermore, exercise increased oxLDL in both 
dietary groups. These results are in contrast to most previ-
ous studies in humans and rodents where regular moderate 
endurance exercise reduced TG, TC and LDL-C, whereas 
HDL-C increased [2, 26, 37–39]. However, the results of 
individual studies may vary substantially [4, 37, 40] and 
comparability between studies is limited by different exper-
imental settings. For example, Elmas et al. analysed the 

Fig. 4  Simple Scatter Dot Plot of the linear regression analysis with r = − 0.640 and p = 0.000 between oxidized LDL-C and nitric oxide metabo-
lites (a) and r = − 0.453 and p = 0.000 between h-arg and nitric oxide metabolites (b)
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effects of a 6-week exercise intervention in SD rats where 
animals were forced to swim for 1 h/d on 5 days/week [2]. 
Animals that received a high-fat diet showed a decrease in 
TC and TG when compared to sedentary controls. In our 
study, the administration of a HFD increased TG, but not 
TC. Furthermore, exercise did not show a modulatory effect 
on TG, TC, or non-HDL-C. When compared to the present 
results, the lipid concentrations reported by Elmas et al. are 

quite different. These contrasting results may be explained 
the use of male animals that were considerably younger at 
the time of sacrification. Furthermore, the present study used 
a HFD with a different lipid composition and a less vigor-
ous exercise intervention. Analytical differences may also 
have contributed to the different results. In our laboratory, 
all methods are strictly controlled by internal and external 
quality controls. Furthermore, the lipid concentrations that 

Fig. 5  Box and Whisker Blot of the panel of cytokines and chemokines (a–f). *p < 0.05, **p < 0.01 compared to appropriate sedentary control 
group; #p < 0.05 compared to appropriate normal diet control group. £p < 0.05, ££p < 0.01, £££p < 0.001 compared to baseline control group
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we obtained in young and old control animals are in line 
with a previous study in SD rats [11].

The HFD used in this study is particularly rich in SFA 
and MUFA and thus induces an imbalance of lipoprotein 
metabolism with consequent alterations of plasma lipopro-
teins. According to the manufacturer, this diet aims to mimic 
the situation in humans who follow a typical Western-type 
dietary regimen and live in an obesogenic environment. 
Furthermore, it reliably induces obesity and metabolic 
syndrome in mice and rats. Differences in the dietary lipid 
composition may explain differences in plasma lipoproteins 
and oxidative–nitrosative stress markers observed in other 
HFD intervention studies in rodents [2, 23, 41, 42]. The 
current National Cholesterol Education Program (NCEP) 
and American Heart Association (AHA) dietary guidelines 
recommend limiting fat intake to 30–40% of the total dietary 
calories [43]. However, increasing fat intake inside the rec-
ommended range may already have adverse effects on the 
lipid profile with increasing TC and LDL-C concentrations 
[43]. In contrast, reducing fat intake to 20% or less can also 
be troublesome due to a reduction of LDL-C and HDL-C 
and a contemporary rise in TG. This combination is typi-
cally associated with the formation of small and dense LDL 
particles with a high atherogenic potential [43]. With the aim 
to promote a healthier LDL/HDL ratio, the original AHA 
Step I fat recommendation advices for a 1:1:1 proportion of 
SFA: MUFA: PUFA in the diet.

In old animals the lipid profile was substantially differ-
ent from that of young animals with markedly higher TC 
and TG concentrations. Moreover, HDL-C, non-HDL-C and 
NEFA were higher in old than in young animals. Such age-
related changes of the lipid profile are expected and have 
been described by others before [44]. With the HFD used in 
this study, the concentrations of TG and NEFA increased, 
whereas all other parameters of the lipid profile remained 
unchanged. Previous studies that treated rodents with HFD 
reported mixed results. While some studies found increasing 

concentrations of TC, TG and LDL-C [2, 25, 41, 44] others 
did not [11]. However, a direct comparison of these stud-
ies is limited due to differences in study design and com-
position of the diets. For example, in 4–8-week-old Wistar 
rats the administration of HFD for 4–8 weeks resulted in 
increased body weight and adipose tissue weight, TC, TG, 
LDL-C concentrations [23, 42]. However, both studies did 
not include baseline measurements, which impedes a longi-
tudinal evaluation of age-related effects. Zelzer et al. treated 
adult female SD rats for 12 weeks with a HFD comparable 
to the one used in the present study [11]. This intervention 
did not result in different TC or TG concentrations. Also, 
HDL-C and non-HDL-C were comparable between controls 
and HFD-treated animals. The limited comparability of dif-
ferent animal models is not surprising and has already been 
shown before [44]. Similar to animal models, also human 
studies that compared the lipid profile of obese and non-
obese individuals yielded heterogeneous results [20, 21, 
45]. Most existing studies showed higher TC, TG, LDL-C, 
and small dense LDL-C (sdLDL-C) concentrations in obese 
individuals when compared to normal weight controls. How-
ever, for HDL-C, inconsistent results have been reported [21, 
45]. A controlled dietary intervention study by Egert et al. 
demonstrated that the substitution of a high-fat diet rich in 
saturated fatty acids with either a high-fat or a low-fat diet 
rich in mono-unsaturated fatty acids ameliorated the lipid 
profile, reducing TC, LDL-C/HDL-C ratio, LDL-C size and 
its susceptibility to oxidation [46].

A main finding of our study is the exercise-induced 
increase in oxLDL that is accompanied by a reduction of 
NO. Elevated oxidative stress is a common condition in sed-
entary and obese individuals that increases the generation 
of ROS and leads to the modification of many biochemical 
targets [8–10] including LDL-C. OxLDL is supposed to be 
more aggressive than non-oxidized LDL in driving inflam-
mation, atherogenesis, and ultimately the risk of CVD events 
[5–7]. Nevertheless, exercise-induced ROS production 

Fig. 6  Box and Whisker Blot of IGF-1 (a), adiponectin (b) and leptin (c). *p < 0.05 compared to appropriate sedentary control group; #p < 0.05, 
##p < 0.01, ###p < 0.001 compared to appropriate normal diet control group. £p < 0.05, £££p < 0.001 compared to baseline control group
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seems to protect cells against oxidation by maintaining the 
cellular oxidant-antioxidant homeostasis [47, 48]. Further-
more, regular physical activity improves blood pressure 
control through an increased production of NO and other 
vasoactive substances [10]. In the present study, however, 
long-term moderate running exercise was associated with 
an increase in oxLDL and a reduction in NOx. While the 
increase in oxLDL was comparable in both dietary groups, 
the reduction in NOx was more pronounced in HFD ani-
mals. These results are in agreement with previous studies 
demonstrating an increased susceptibility of LDL-C and 
other lipoproteins to oxidation after a single intensive exer-
cise session [3, 4]. Furthermore, in another study by Zelzer 
et al., the administration of a similar HFD to rats increased 
several markers of oxidative stress, such as malondialde-
hyde, but not oxLDL [11]. While Zelzer et al. measured 
oxLDL by ELISA, the other studies analysed lipoprotein 
oxidation indirectly [3, 4], which limits the comparability 
of results. When interpreting the modification of oxidative 
stress biomarkers by physical activity, it should be consid-
ered that chronic exercise as well as high-intensity training 
can increase oxidative stress through several mechanisms 
including increased mitochondrial oxygen consumption and 
activation of oxidase enzymes such as nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase, a major source of 
ROS [9]. This might at least partially explain the exercise-
induced increase in oxLDL that we observed in the present 
study. Additional support for this hypothesis comes from 
the reduction in NOx by regular exercise. Under normal cir-
cumstances, the potent vasodilator NO is released during 
the conversion of L-arginine to L-citrulline. This reaction is 
catalysed by NOS. However, under certain circumstances, 
NOS can also produce superoxide (O2*−), which reacts 
avidly with vascular  NO· to form peroxynitrite  (ONOO−). 
This metabolite is capable of impairing NOS dimerization 
and function [8, 49], which is called NOS-uncoupling. Such 
an uncoupling of NOS can occur in the absence of either 
L-arg or BH4, and increased concentrations of ADMA, a 
competitive inhibitor of NOS. In the present study, HFD and 
regular exercise increased h-arg, another substrate of NOS 
for the production of NO. Although h-arg competes with 
L-arg for NOS-binding sites, it seems to be a less efficient 
substrate for NO synthesis. According to März et al., the role 
of h-arg in NO metabolism is still insufficiently understood 
[50]. Some studies support the hypothesis that h-arg might 
increase arginine bioavailability by inhibition of the enzyme 
arginase, which competes with NOS for the utilization of the 
key substrate L-arg [50, 51]. If this is correct, the substantial 
increase in h-arg is likely to exert a protective effect under 
HFD. This concept is supported by a previous study show-
ing that h-arg supplementation ameliorates blood glucose 
in mice on HFD [52]. The reduction of ADMA and SDMA 
observed in the present study further supports the beneficial 

effect of h-arg in HFD animals. However, h-arg competes 
with L-arg in more than one way. They both utilize the same 
transport system for cell entry, and high extracellular h-arg 
concentrations will result in reduced L-arg uptake [53]. This 
might at least partially explain the exercise-induced reduc-
tion of NOx. The inverse relationship between oxLDL and 
NOx strongly supports the concept of NOS uncoupling in 
exercising animals. Considering that NOx levels were lower 
in non-exercising HFD animals than in non-exercising ND 
animals, HFD consumption seems to have an independent 
NO-reducing effect, which is amplified by regular exercise. 
The very low NOx concentration in exercising HFD animals 
further supports the concept of an additive NO-reducing 
effect of HFD and exercise.

In this project, we also investigated the influence of regu-
lar exercise on the adipokine, cytokine and chemokine pro-
file in both dietary groups. Obesity is typically associated 
with an increased secretion of adipokines and a mild tissue 
inflammation [36]. As expected, our HFD animals showed 
markedly higher leptin and adiponectin serum concentra-
tions than ND animals regardless of exercise, whereas IGF-1 
and resistin were comparable in both dietary groups. Insu-
lin was not considered as blood was collected non-fasting. 
Exercise was effective in reducing leptin in ND, but not 
HFD, animals suggesting that the HFD overwhelmed the 
effect of exercise. The mild increase in serum adiponectin 
in exeHFD animals might simply reflect the weight loss in 
these animals. Interestingly, the HFD used in this study had 
only minor pro-inflammatory effects inducing increased 
serum concentrations only for MCP-1 and IL-5. Other pro-
inflammatory cytokines, such as TNF-α, IFN-γ or IL-6 were 
comparable between the two dietary groups.

Consistent with previous studies [26, 54], our exercise 
protocol significantly reduced the serum concentrations of 
TNF-α, IL-1β, IL-2, MCP-1, MCP-3 and RANTES in HFD 
animals. MCP-3 and RANTES were also decreased in the 
exeND group. Both chemokines regulate the migration and 
infiltration of monocytes and macrophage into solid tissues 
[33]. The present results are in line with recent findings from 
Rocha-Rodrigues et al. showing that regular physical activ-
ity reduces inflammation in response to HFD administration 
[26]. Borst et al. have shown that in the context of obesity, 
visceral fat derived resistin, TNF-α and several other inter-
leukins contribute to insulin resistance [35], whereas weight 
loss or visceral fat removal decrease serum IL-6 and increase 
the insulin sensitizing hormone adiponectin [34, 35]. The 
exercise-induced increase of IP-10, IL-12, and MMP activ-
ity in ND animals might reflect a mild activation of cellular 
immunity and tissue remodelling in response to exercise, 
which is masked in the HFD animals.

The present study has several strengths and limitations 
that should be considered when interpreting the results. The 
rather long intervention period with sufficiently sized groups 
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allows robust conclusions about the effects of the different 
diets and physical activity as important modifiable lifestyle 
factors that impact CVD risk. Furthermore, our exercise 
protocol was well controlled and imitated a realistic activ-
ity regimen that would normally be considered as healthy. 
Another strength of this study is the use of validated and 
strictly quality controlled methods for the measurement of 
serum lipids. The unlimited access of the animals to food 
allowed them to compensate the exercise-related increase in 
energy expenditure through higher food consumption. Due 
to the unlimited access to food, we cannot account for natu-
ral occurring differences in food intake. Furthermore, we 
lack metabolic studies and blood collections were performed 
in a non-fasting state. Although this may have an impact on 
the results of several metabolic biomarkers, we intentionally 
decided to perform non-fasting blood collections to avoid 
unwanted psychological stress in the animals. It should also 
be mentioned that our method for the measurement of TG 
does not distinguish between TG and free glycerol. However, 
the blood concentration of free glycerol is < 1 mg/dL, which 
accounts for approximately 10 mg/dl of triglycerides [55]. 
Considering that in the SD rats used in this study TG con-
centrations ranged between 100 and 400 mg/dl, the uninten-
tional detection of free glycerol does not represent a relevant 
confounder of our results.

Another weakness of our study is the lack of mechanis-
tic information on the effects of exercise on plasma lipids. 
Considering that body weight was strongly correlated with 
TG, it can be speculated that the higher fatty acid intake in 
HFD animals, was the main driver of differences in plasma 
TG. The HFD used in this study contains approximately 60% 
of SFA and MUFA, which are incorporated into TG. Exer-
cise instead, induced only minor differences in body weight 
and plasma lipids. This is not surprising, as our exercise 
regimen was rather moderate. Previous studies have shown 
that exercise induces beneficial effects on plasma lipids and 
lipoprotein lipase activity only above a certain threshold 
of energy expenditure [56, 57]. Another putative mediator 
of plasma lipids could be adiponectin, which is known to 
increase energy expenditure through fatty acid oxidation in 
target organs, such as liver and skeletal muscle [58]. This 
theory is supported by the inverse correlations of TC and 
HDL-C with adiponectin.

Conclusion

In summary, long-term moderate exercise may alter the 
delicate equilibrium between oxidative and anti-oxidative 
compounds leading to an uncoupling of NOS with higher 
oxLDL and lower NOx concentrations.

However, these metabolic effects do not necessarily 
compromise the beneficial reduction of pro-inflammatory 

cytokines, such as TNF-α, IL-1β, IL-2, MCP-1, MCP-3 and 
RANTES. This conundrum adds to the controversial role 
of oxLDL in pathologic developments like atherosclerosis 
and CVD and should trigger additional research that helps 
to understand lipoprotein oxidation and NO production in 
response to exercise and different dietary habits.
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