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Abstract

Gastrointestinal microbiota has significant impact on the nutrition and health of monogastric

herbivores animals including donkey. However, so far the microbiota in different gastrointes-

tinal compartments of healthy donkey has not been described. Therefore, we investigated

the abundance and function of microbiota at different sites of the gastrointestinal tract (GIT)

(foregut: stomach, duodenum, jejunum and ileum; hindgut: cecum, ventral colon, dorsal

colon, and rectum) of healthy adult donkeys mainly based on 16S rRNA gene sequencing

and phylogenetic investigation of communities by reconstruction of unobserved states

(PICRUSt) analysis. Collectively, our results showed that donkey has a rich, diverse and

multi-functional microbiota along the GIT. In general, the richness and diversity of the micro-

biota are much higher in the hindgut relative to that in the foregut; at phylum level, the Firmi-

cutes is dominant in the foregut while both Firmicutes and Bacteroides are abundant in the

hindgut; at the genus level, Lactobacillus was dominant in the foregut while Streptococcus

was more dominant in the hindgut. Our further PICRUSt analysis showed that varying micro-

biota along the GIT is functionally compatible with the corresponding physiological function

of different GIT sites. For example, the microbes in the foregut are more active at carbohy-

drate metabolism, and in the hindgut are more active at amino acid metabolism. This work

at the first time characterized the donkey digestive system from the aspects of microbial

composition and function, provided an important basic data about donkey healthy gastroin-

testinal microbiota, which may be utilized to evaluate donkey health and also offer clues to

further investigate donkey digestive system, nutrition, even to develop the microbial

supplements.

PLOS ONE | https://doi.org/10.1371/journal.pone.0226186 December 13, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Liu G, Bou G, Su S, Xing J, Qu H, Zhang

X, et al. (2019) Microbial diversity within the

digestive tract contents of Dezhou donkeys. PLoS

ONE 14(12): e0226186. https://doi.org/10.1371/

journal.pone.0226186

Editor: Suzanne L. Ishaq, University of Maine,

UNITED STATES

Received: March 7, 2019

Accepted: November 22, 2019

Published: December 13, 2019

Copyright: © 2019 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All data files were

made publicly available in the NCBI database under

the accession number SPR217091.

Funding: Donkey innovation team of Shandong

modern agricultural industry technology system

(SDAIT-27) provided the funds of experimental

animal, Shandong university science and

technology project (J16LF10) provided the

expenditure of results analysis. This work was also

technically supported by Liaocheng university

donkey collaborative innovation centre of industrial

system for efficient breeding and ecological

http://orcid.org/0000-0002-6230-9885
https://doi.org/10.1371/journal.pone.0226186
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226186&domain=pdf&date_stamp=2019-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226186&domain=pdf&date_stamp=2019-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226186&domain=pdf&date_stamp=2019-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226186&domain=pdf&date_stamp=2019-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226186&domain=pdf&date_stamp=2019-12-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0226186&domain=pdf&date_stamp=2019-12-13
https://doi.org/10.1371/journal.pone.0226186
https://doi.org/10.1371/journal.pone.0226186
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Introduction

Different animal species have different characteristics of their digestive system. It is largely

related to their unique anatomical structure and diet type. Therefore, different input and pro-

cess result in different output, for example the amount of soluble carbohydrate or fiber reach-

ing the large intestine varies among different species [1]. All of these inevitably give rise to a

unique gastrointestinal tract (GIT) microbiota for each species. Among all digestive types,

monogastric herbivorous animals have been reported susceptible to the change of microbial

communities in their digestive tracts [2]. Unfortunately, only sparse data have been published

about healthy GIT microbiota of this kind of animals, even blank for donkey.

As we know, donkey as an an Equus animal has a well-developed hindgut structure,

which has a potential length and volume over 4.5 meters and 110 liters, and about 15.95

times the volume of its foregut. Microbial fermentation always play important role in

equines, that along with small amounts of other organic compounds, such as methane, car-

bon dioxide, lactate, alcohol, and lots of volatile fatty acid were also produced in several

parts of their gastrointestinal tract[3]. On the aspect of energy provision, Bergman (1971)

reported that approximately 60–70% of equine energy needs are provided by organic acids

from microbial fermentation in their large intestine [4]. On the aspect of fiber digestion,

anaerobic fermentation by cellulosic bacteria can breakdown the structural carbohydrates

in their cecum and large colon [3, 5]. However, although microorganisms are very impor-

tant for equine digestion and metabolism, so far limited studies have been reported the

microbiota in rectal samples of healthy horses [6, 7], and only one study analyzed the fecal

microbiota composition in donkey [8]. A systematical investigation on healthy donkey GIT

microbiota is needed.

Studies in human and mice have shown that anatomic regions of GIT must function cor-

rectly and in concert with the other region to maintain the health and nutrition. These dif-

ferential functions of different regions more or less rely on microorganism in it. The

difference in the diet [9], pH [10], oxygen tension [11] and so on many factors leads to the

differential microbiota at different GIT regions. For example, due to the unique and strong

digestive function of rumen, it is inhabited by a dense, distinctive consortium of microor-

ganisms according to the reports in cows, sheep, yak, reindeer and sika deer [12–16]. A

large variation of microbial populations along the GIT was seen within horses [17]. From

these former studies, we could clearly found that healthy GIT microbiota should respond to

the function of different GIT sections. Thus, a study on GIT microbiota function would

improve our knowledge on gradient digestion and metabolism process in animal’s GIT and

the role of microbe in it.

Aimed to the current blank state of GIT microbiota study in donkey, we decided to charac-

terize and compare the microbiota compositions and functions at the different GIT regions

mainly based on 16s rRNA gene sequencing and phylogenetic investigation of communities by

reconstruction of unobserved states (PICRUSt) analysis results of luminal contents from stom-

ach, duodenum, jejunum and ileum, cecum, ventral colon, dorsal colon, and rectum of five

healthy China Dezhou donkeys.

Materials and methods

Experimental duration and venue

This study was carried out from May 26 to July 25, 2018 (60 days) at the National Breeding

Center of Dezhou Black Donkeys, Dong-E-E-Jiao Co., Ltd. (http://www.dongeejiao.com/)

(Shandong Province, China).
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Experimental animals

The Dezhou male donkeys (n = 5) used in this study were bred on the same farm and with an

average age of 2 years ± 3 months, an average body weight of 215 ± 10 kg. All donkeys were

fed in individual stalls (3×4 m) with a feeder (1.0 m long) and an automatic water dispenser.

The entire feeding process was carried out under outdoor natural lighting and by a specially

trained person. Supplementary feeding was administered at 1.5% of the bodyweight of each

experimental donkey twice daily (07:00 and 17:00). In addition, all donkeys were fed with

roughage (bean straw) four times a day (07:00, 11:00, 17:00, and 22:00) and with water

throughout the day.

The five donkeys at the end of the feeding were fasted for 12 h before slaughter. Donkeys

were stunned by an electrical stunner (about 280 V) and were then slaughtered at Dong-

E-E-Jiao Co., Ltd. During feeding and before slaughter, all donkeys were regularly examined

by a veterinarian to confirm that they were healthy and without any metabolic or gastrointesti-

nal disorder. These animal experiments were approved by the Animal Welfare Committee of

Liaocheng University, and all procedures were conducted in accordance with the guidelines of

the China Animal Protection Association.

Sample collection

The contents from various regions of the GIT of the five healthy Dezhou donkeys were col-

lected after slaughter. Sampling of the gastrointestinal contents in different donkeys was

conducted in a manner as consistent as possible. The sampling was as follows: stomach con-

tents were collected from the pylorus; duodenal contents were collected at the site 10 cm

after the gastroduodenal junction; jejunal contents were collected at the site 10 cm after the

duodeno-jejunal junction; ileal contents were collected at the site 10 cm before the ileo-

cecal orifice; cecal contents were collected from the tip of the cecum; ventral colonic con-

tents were collected from the middle of the ventral colon; dorsal colonic contents were col-

lected from the middle of the dorsal colon; and rectal contents were collected near the anus

(S1 Fig).

The gastrointestinal contents were collected, handled, and stored as aseptically as possible

in order to prevent contamination in any manner. The contents were stored in 50 mL sterile

cryopreservation tubes that were immediately placed in liquid nitrogen, and then transported

to laboratory to store in a -80˚C freezer.

Total DNA extraction, purification, and library construction

Genomic DNA was extracted using a QIAamp DNA Stool Mini Kit (QIAGEN, Valencia, CA)

following the manufacturer’s instructions. The DNA was then checked by gel electrophoresis

to determine its purity and quantity. Equal amounts of sample DNA were placed in a centri-

fuge tube and diluted to 1 ng/μL with sterile water. The diluted genomic DNA was used as the

DNA template, and the V3–V4 region of the bacterial 16S ribosomal RNA (rRNA) gene was

amplified using primers 341F (5-’CCTAYGGGRBGCASCAG-3’) and 806R (5’-GGACTACN
NGGGTATCTAAT-3’) [9] for all samples.

The Ion Plus Fragment Library Kit (48 reactions, Thermo Fisher Scientific, Waltham, MA,

USA) was used for library construction. The constructed library was subjected to Qubit quan-

titation and library testing, followed by sequencing using an Ion S5TM XL system (Thermo

Fisher Scientific). Total DNA extraction, PCR, and sequencing using an Ion S5TM XL system

were completed by Novogene Co. Ltd. (Beijing, China).

Microbial diversity of Dezhou donkeys

PLOS ONE | https://doi.org/10.1371/journal.pone.0226186 December 13, 2019 3 / 14

https://doi.org/10.1371/journal.pone.0226186


Bioinformatics analysis

According to the methodology described by Martin [18], the Cutadapt (V1.9.1, http://

cutadapt.readthedocs.io/en/stable/) server was used to remove low-quality reads. Different

sample data were separated from the obtained reads according to the barcodes. Initial quality

control was carried out by removing barcode and primer sequences to obtain raw data (raw

reads), which were required to remove chimeric sequences using the following website (http://

www.drive5.com/usearch/manual/chimera_formation.html). The read sequences were aligned

with species annotation databases through the UCHIME Algorithm (http://www.drive5.com/

usearch/manual/uchime_algo.html) [19]in order to identify chimeric sequences. The chimeric

sequences were then removed to obtain the final valid data (clean reads) [20].

All clean reads were clustered using Uparse v7.0.1001 software (http://drive5.com/uparse/)

[21]. By default, the sequences were clustered into operational taxonomic units (OTUs) with

97% identity. The representative sequences of OTUs were subjected to species annotation

(threshold was defaulted as 0.8–1) using the Mothur method and SILVA SSU rRNA database

(http://www.drive5.com/usearch/manual/uchime_algo.html) [22] to obtain taxonomic infor-

mation and to count the microbiota compositions of different samples at various taxonomic

levels: kingdom, phylum, class, order, family, genus, and species. Rapid multiple sequence

alignments were performed using MUSCLE Version 3.8.31 [23] (http://www.drive5.com/

muscle/) to obtain the phylogenetic relationships of all representative OTUs. Finally, the data

from different samples were normalized, and the sample with the least amount of data was

used as the standard for data normalization. Subsequently, alpha diversity was analyzed based

on the data after normalization. Data were made publicly available at the NCBI Sequence Read

Archive under the accession number PRJNA556136.

The average abundance and alpha diversity of the microbiota were calculated using Qiime

(Version 1.9.1). The evaluation indices selected for this analysis included Chao1, Shannon,

and Observed species. Chao1 and Observed species were used to calculate the community

abundance, and the ecological diversity of each sample was assessed by the Shannon diversity

index. The abundance and diversity of species in the samples were counted at two taxonomic

levels: phylum and genus. R software (Version 2.15.3) was used to prepare a dilution curve and

analyze the differences in alpha diversity indices between groups.

PICRUSt analysis include three steps: first, "Closed-reference OTU picking" was performed

on the 16S rRNA gene sequences obtained by sequencing, and through comparison with the

Greengenes database, the "nearest neighbor of the reference sequence" of each sequencing

sequence was found and classified as the reference OTU; second, according to the rRNA copy

number of the nearest neighbor of the reference sequence, the obtained OTU abundance matrix

was corrected; the third, according to the functional genes data of KEGG (Kyoto Encyclopedia

of Genes and Genomes) or eggNOG (evolutionary genealogy of genes: Non-supervised Ortho-

logous Groups) and other genes corresponding to the "nearest neighbor of reference sequence",

the overall metabolic function of the bacterial community was predicted by conversion. In this

work, the function predicted of all samples were analyzed using PICRUSt. The closed OTU-

table obtained by QIIME (Version 1.9.1) was compared with eggnog and KEGG databases to

obtain different database function prediction information. The specific analysis steps were

based on the online analysis platform (http://picrust.github.io/picrust/) [24].

Data analysis

SPSS19.0 (IBM SPSS, Chicago, IL) software was used for statistical analysis of numbers of met-

abolic functional genes among GIT sites. For this case one-way ANOVA was conducted and

data was showed as the mean ± SD, with significance level at P < 0.05.
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Results

OTUs distribution along the donkey GIT

For 8 GIT sites’ content samples of 5 donkeys, 16s rRNA gene sequencing obtained a total of

3,106,234 effective sequences, with an average of 77,656 ± 7,582 sequences per sample (S1

Table). Then, all effective sequences underwent species annotation at different taxonomic lev-

els, which yielded a total of 7,459 OTUs belonging to 35 phyla, 55 classes, 118 orders, 222 fami-

lies, and 401 genera.

Rarefaction curves directly reflect the rationality of sequencing quantity and the richness of

species in samples. When the curve flattens out, it means that the number of sequences is rea-

sonable, and more data can only produce a few new species. Fig 1 shows the rarefaction curves

of samples collected from different parts of the GIT. The rarefaction curves of different sam-

ples eventually came to be flat, indicating that the majority of gastrointestinal microbes were

covered in every sample under the sequencing depth (reads = 43,384) of this study.

To show the distribution of both the common and unique OTUs among samples, a flower

diagram was drawn (Fig 2). The microbial species from intestinal samples showed high rich-

ness and diversity, that the number of common OTUs in all samples was 274, and plenty of

unique OTUs were found in stomach (109), duodenum (98), jejunum (37), ileum (86), cecum

(80), ventral colon (239), dorsal colon (70), and rectum (141) (Fig 2).

Microbiota richness and diversity along the donkey GIT

Further we analyzed the bacterial richness and diversity in the different GIT regions of don-

keys when the sequencing depth was 43,384 (Table 1). As shown in Table 1, significant differ-

ences in the species richness (Observed species: 1171, 501–1845; Chao1: 1343, 71–2105) and

Fig 1. Rarefaction curves of samples. In the rarefaction curve, the X-axis is the number of sequencing strips which

were randomly extracted from a sample, and the Y-axis is the number of OTU constructed based on the number of

sequencing strips, which is used to reflect the sequencing depth. Different samples are represented by different color

curves. S = stomach, D = duodenum, J = jejunum, I = ileum, C = cecum, VC = ventral colon, DC = dorsal colon,

R = rectal. These abbreviations are same in all figures.

https://doi.org/10.1371/journal.pone.0226186.g001
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species diversity (Shannon: 6.6, 3.87–8.69) were found among GIT sites. All indices showed

that microbiota along the GIT could be divided into 3 levels: lower in foregut (stomach, duode-

num, jejunum, ileum), medium in cecum and higher in hindgut except cecum.

Relative abundance of gastrointestinal microbiota at the phylum and the

genus level along the donkey GIT

To contrast similarities and difference in the community structures in different GIT sites, we

analyzed the relative abundance of gastrointestinal microbiota at the phylum and genus level

respectively.

At the phylum level, as shown in Fig 3 and S2 Table, Firmicutes is dominant in the foregut,

while both Firmicutes and Bacteroides are abundant (both accounting for>40%) in the hindgut.

At the genus level, after regrouping the relatively less abundant genera (< 1%) as “others”,

we selected the top 10 abundant genera among the 401 genera of gastrointestinal microbes

Fig 2. Flower Diagram of OTUs distribution in GIT. Each petal in the diagram represents a sample, and different

colors represent different samples. The core number in the middle represents the total number of mutual OTUs in all

samples, and the number on the petal represents the number of unique OTU in this sample.

https://doi.org/10.1371/journal.pone.0226186.g002

Table 1. Comparison of the diversity indices of bacterial communities in different GIT sites of donkeys at a sequencing depth of 4,3384.

Items Chao1 Shannon Observed species

Stomach 741.56±80.95C 3.87±0.40D 537.25±103.61C

Duodenum 71.35±318.04C 4.42±0.68CD 606.25±313.52C

Jejunum 641.78±93.83C 4.53±0.36CD 501.33±123.54C

Ileum 769.34±92.74C 4.64±0.33C 586.5±39.12C

Cecum 1416.30±90.73B 8.11±0.47B 1314.80±90.98B

Ventral colon 1856.95±280.68A 8.61±0.38A 1670.40±276.55A

Dorsal colon 1982.87±58.56A 8.69±0.24A 1814.25±61.70A

Rectum 2105.08±166.22A 8.37±0.51A 1845.80±97.75A

Notes: (1) Analysis of different samples under the threshold of 97% identity. (2) Different uppercase letters means the significance at P < 0.05, and same letters in the

superscripts represent P > 0.05.

https://doi.org/10.1371/journal.pone.0226186.t001
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respectively for foregut and hindgut. As shown in Fig 4 and S3 Table, Lactobacillus (accounting

for up to 82.27%) was dominant genus in the foregut, Streptococcus was the most abundant

one (1.86–9.45%) in the hindgut, especially in rectum and dorsal colon, while unidentified

Spirochaetaceae (7.63%) was higher in the cecum than in the other gastrointestinal regions

(P<0.05). More than 75% of “others” genera in all parts of hindgut also implied their rich

diversity of microbiota.

Fig 3. The relative abundance of bacterial communities at the phylum level in the different site GIT luminal

contents of five donkeys (top 10 most abundant phyla).

https://doi.org/10.1371/journal.pone.0226186.g003

Fig 4. The relative abundance of bacterial communities at genus level in the different site GIT luminal contents of

five donkeys. Bar charts showing the relative abundance detected in foregut (A, top 10 genera for foregut) and hindgut

(B, top 10 genera for hindgut) samples.

https://doi.org/10.1371/journal.pone.0226186.g004
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Functional prediction of microbiota along the GIT using PICRUSt

approach

Based on the 16S rRNA of bacteria and the OTU informations, we used KEGG, PICRUSt

approach to predict the gene functions of GIT microbiota. As shown in Fig 5A, although mic-

tobiota from all GIT sites share a large number (5022) of functional genes, there were a total

number of 183 functional genes that specifically present in different sites. Among them, the

cecum and rectum are lack of unique functional genes.

Then principle component analysis (PCA) on these functional genes at the KEGG orthol-

ogy (KO) level showed that all GIT sites could be clustered into 2 groups, foregut group and

hindgut group (Fig 5B), in which the samples from hindgut showed higher homogeneity, espe-

cially cecum samples.

After relating the functional genes with metabolism process, we found that in terms of

metabolism process of amino acid, energy, cofactors and vitamins, and biosynthesis of other

secondary metabolite, the number of the related functional genes were significantly higher in

hindgut than in foregut (P< 0.05), whereas in terms of carbohydrate and other amino acids

metabolism process, the number of the related functional genes function genes were signifi-

cantly higher in foregut than in hindgut (P< 0.05) (Fig 5C). At last, we analyzed the gene

expression level of top 35 functional genes in different GIT sites and showed it in a heatmap

(Fig 5D). The expression profiles of different GIT sites confirmed the metabolism bias of dif-

ferent GIT sites seen in Fig 5B and 5C. From the heatmap we could see that there was an obvi-

ous difference in the functional gene expression profiles between the foregut and hindgut.

Discussion

This is the first work reporting the microbiota and their function along the GIT of healthy

donkeys. Previous research on gastrointestinal microbes has mainly focused on cecum [25],

and fecal samples [26]of horses. However, there is a great significance to understand the full

picture of health microbial communities in the entire GIT of donkey.

Our results show that there are great variations of microbiota along the donkeys GIT, not

only the diversity but also the abundance. These results agree with lots of previous findings in

horses [27], mice [28], human [29] and dog [30]. This shift may correspond to the physiologi-

cal function of the digestive tract, which physical and chemical parameters were various along

the GIT, such as pH, diet etc. Furthermore, the present data shows that donkeys have two dis-

tinct regions along the GIT in microbial communities, which agree with previous findings of

horses [31], that the difference between foregut and hindgut are significant (P < 0.05), how-

ever, there are no difference among GIT sites within foregut or within hindgut (except cecum)

(P>0.05). In equine, the foregut is chiefly responsible for food digestion and absorption, and

the hindgut is related to microbial fermentation [32]. The slight gastric fermentation has been

confirmed in stomach and small intestine of equine, but still large intestine is the most impor-

tant part for fermentation of forage [3, 33]. Our study shows that the species and the distribu-

tion of microbes vary among different gastrointestinal regions, and their significant difference

reflected at Shannon indices (alpha-diversity) was consistent with the previous results of

healthy horses [17]. Microbial diversity and abundance indices of the hindgut were also signifi-

cantly higher than that of the foregut, suggesting greater complexity of microbial communities

in the hindgut.

Moreover, here we shows that Firmicutes was the most common phylum in all gastrointes-

tinal regions (> 50% relative abundance), except the cecum, where both Firmicutes and Bac-

teroidetes were abundant (Fig 3). The relative abundance of Proteobacteria was high in the

foregut, and the relative abundance of Bacteroidetes was high in the hindgut. The phylum
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Fig 5. Analysis of the functional genes of microbiota in GIT at KO level. (A): Flower diagram of function gene at

KEGG KO level, each petal in the diagram represents a sample, and different colors represent different samples, and

the core number in the middle represents the total number of mutual functional gene in all samples, and the number

on the petal represents the unique genes in this sample. (B): Principal component analysis (PCA) based on KO level.

On the aspects of functional genes, GIT sites are clustered into 2 big groups that respectively included in 2 circles. (C):

Statistical analysis of the metabolic functional genes’ numbers along donkey GIT. Different uppercase letters means the

significance at P< 0.05. CHO: Carbohydrate; AA: Amino Acid; ENG: Energy; Vit: Cofactors and Vitamins; Enz:

Enzyme Families; Gly: Glycan Biosynthesis and Metabolism; Xen: Xenobiotics Biodegradation and Metabolism; Ter:

Terpenoids and Polyketides; OAA: Other Amino Acids; Bos: Biosynthesis of Other Secondary Metabolites. (D):

Heatmap showing the expressional abundances of genes related to various metabolisms.

https://doi.org/10.1371/journal.pone.0226186.g005
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Proteobacteria includes many pathogenic bacteria, which might indicate an increased chance of

Dezhou donkeys contracting gastrointestinal infection from the microbes in the foregut. Previ-

ous studies have shown that Firmicutes and Bacteroidetes are the dominant microbial commu-

nities in the GIT of rodents, swine, horses, and cattle [34–36]. Firmicutes is the main microbial

phylum that promotes fiber decomposition in the gastrointestinal tract of herbivores [37], and

Bacteroidetes is the main microbial phylum that metabolizes carbohydrates in herbivores [38].

Thus, this indicates that in terms of phylum level bacterial composition Dezhou donkeys has a

good basis of the crude feed tolerance. In addition, the larger proportion of Bacteroidetes in the

hindgut of Dezhou donkeys suggests that the hindgut plays a role in energy supply, which

energy metabolism genes was highly significant higher in hindgut (Fig 5C). And it is consistent

with previous results in horse that the large intestine supplies 60%-70% energy needs [4].

When we look at the bacterial composition at the genus level, our study shows that Lactoba-
cillus was the main genus in the foregut. Lactobacillus is comprised of mostly mutualistic bacte-

ria that have a strong tolerance to acid and can selectively kill pathogenic microbes,

deconstruct bile acids and produce free bile acids to promote fat metabolism [39]. In consis-

tent with it, the number and expression of genes related to lipid metabolism were found

extremely higher in the foregut (Fig 5C and 5D). In the hindgut, the relative abundances of

most of the genera are < 1%, and unidentified Spirochaetaceae is the most common in the

cecum. The unidentified Spirochaetaceae family is closely involved in fiber degradation, such

as cellobiose, by producing cellulase, an enzyme found in typical cellulose-metabolizing strains

[40]. Studies by Patra et al. [41] and Zhao et al. [42] have shown that the number of Spirochae-
taceae is closely related to cellulose digestion and utilization. The cellulolytic bacteria inhabit

the cecum more often than the colon [3]. The function genes abundant in Fig 5C and 5D also

show that cecum has a strong cellulolytic microbial basis in donkey. However, one study

reported that Ruminococcus flavefaciens was the predominant species in the equine cecum

[43]. This discrepancy maybe caused by the feeding conditions. In contrast, Streptococcus had

the highest abundance in donkey dorsal colon and rectum (Fig 4B), which can be induced by

arginine and subjected to carbon catabolite repression [44]. Some reports indicated that Strep-
tococcus was an important cause of infectious diseases. These results also clearly show us that

fecal microbiota cannot represent other GIT microbiota [45]. Noteworthy, at both the phylum

and genus levels, the microbial communities of various sections were similar within the hind-

gut than within the foregut, which might be caused by complicated physiological condition

along the foregut due to the gradient effect of gastric acid.

As we know, clear differences in function and metabolism bias exist between the foregut

and hindgut. This point is confirmed by our PICRUSt functional prediction analysis of donkey

intestinal microbes. The functional genes in the stomach and duodenum, genes in the ileum

and jejunum, genes in the dorsal colon and the ventral colon respectively show similar bias to

metabolism and this result is consistent with the analysis of microbial diversity along the GIT.

In detail our study show that the metabolism process related to amino acid, energy, enzyme

families, cofactors/vitamins, and biosynthesis of other amino acids are more active in hindgut

than in foregut, while carbohydrate and other amino acids metabolism process are more active

in foregut than in hindgut. Our result that the majority of metabolisms are active in donkey

hindgut may well explain why previous study found that large intestine supplies 60%-70%

energy needs in equine [4].

Conclusions

The present study mainly based on 16S rRNA gene high-throughput sequencing and PICRUSt

approach provided new insight into bacterial communities and function along the GIT of
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healthy Dezhou donkeys. The following conclusions could be drawn: (1) Microbial communi-

ties in the donkey GIT are abundant in diversity and population. (2) Because of the different

microbial compositions, the predicted microbiota functions of different GIT sections are var-

ied. (3) Based on the microbial compositions and functions, doneky GIT could be divided into

2 big groups: foregut and hindgut. (4) The microbiota in rectum (feces) samples is only similar

to it in colon, hard to represent the microbiota in other intestinal compartments.
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