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Simple Summary: Subtyping for meningioma is urgently required to stratify the patients with high
risks of recurrence and progression due to the intertumoral heterogeneity in meningioma. Here, we
performed a consensus clustering of 179 meningiomas and identified progressive subtype (subtype
3) based the transcriptome profiles. Loss of chromosome 1q along with Neurofibromin 2 (NF2)
mutation or loss of chromosome 22p is exclusively presented in subtype 3 meningioma. DNA
methylation analyses of meningioma subtypes also suggested hypermethylation was observed in
subtype 3 meningioma. Our findings identified low expression of Alkaline Phosphatase (ALPL) is
the most significant feature in progressive subtype of meningioma. We constructed and validated a
meningioma progression score (MPscore) to characterize the progressive phenotype in meningioma.
The predictive accuracy has also been validated in three independent cohorts. Therefore, MPscore
can be potentially useful for meningioma recurrence prediction and stratification.

Abstract: Meningioma is the most common tumor in central nervous system (CNS). Although most
cases of meningioma are benign (WHO grade I) and curable by surgical resection, a few tumors
remain diagnostically and therapeutically challenging due to the frequent recurrence and progression.
The heterogeneity of meningioma revealed by DNA methylation profiling suggests the demand
of subtyping for meningioma. Therefore, we performed a clustering analyses to characterize the
progressive features of meningioma and constructed a meningioma progression score to predict
the risk of the recurrence. A total of 179 meningioma transcriptome from RNA sequencing was
included for progression subtype clustering. Four biologically distinct subtypes (subtype 1, subtype
2, subtype 3 and subtype 4) were identified. Copy number alternation and genomewide DNA
methylation of each subtype was also characterized. Immune cell infiltration was examined by the
microenvironment cell populations counter. All anaplastic meningiomas (7/7) and most atypical
meningiomas (24/32) are enriched in subtype 3 while no WHO II or III meningioma presents in
subtype 1, suggesting subtype 3 meningioma is a progressive subtype. Stemness index and immune
response are also heterogeneous across four subtypes. Monocytic lineage is the most immune cell
type in all meningiomas, except for subtype 1. CD8 positive T cells are predominantly observed
in subtype 3. To extend the clinical utility of progressive meningioma subtyping, we constructed
the meningioma progression score (MPscore) by the signature genes in subtype 3. The predictive
accuracy and prognostic capacity of MPscore has also been validated in three independent cohort.
Our study uncovers four biologically distinct subtypes in meningioma and the MPscore is potentially
helpful in the recurrence risk prediction and response to treatments stratification in meningioma.

Keywords: meningioma; consensus clustering; subtype; ALPL; immune cells; transcriptome; random
forest; progression
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1. Introduction

Meningioma is the most common primary tumor in the central nervous system with
mesodermal-arachnoid origin. Around 80% of meningiomas are benign and curable by
surgical resection alone. However, 20% of meningioma will recur after initial surgical
operations and a further comprehensive treatment regimen is required [1]. Currently,
the histoimmunochemistry-based WHO pathology grade system is the main predictor
for patient outcomes with meningioma. WHO grade I meningiomas are usually defined
as “benign” tumors while grade II (atypical) and grade III (anaplastic) meningiomas
are more aggressive and to recur [2]. Meningiomas of high grade (grade II and III) are
considered as having higher risk of recurrence than that in grade I meningiomas. Although
the 2016 WHO classification of central nervous system tumors histologically subdivides
meningioma into 15 subtypes, it does not indicate the prognosis of patients precisely [3].
To precisely diagnose meningioma and complement the grade system, a few investigations
on the genetics and epigenetics of meningioma have been performed recently.

Precise cancer diagnoses are critical for the suitable treatment strategy for cancer
patients, therefore, a few studies were under investigation on the biological biomarkers
for meningioma. Neurofibromin 2 (NF2) mutation is the first characterized alteration in
meningioma and is observed in approximately 80% of high grade meningiomas, suggesting
that it is potentially a prognostic biomarker. Structural variants including loss of chromo-
somes 6q, 9p, 10q, 14, and 18q, as well as gains in 17q and 20q are also associated with
recurrence of meningioma [4,5]. Gene expression signature shows its association of patient
survivals and another panel of two gene (PTTG1 and LEPR) expressions demonstrates
association with the recurrent meningioma [6–8]. More recently, a DNA methylation-
based classification defining six distinct subtypes with clinical relevance reveals a stronger
association of clinical outcomes than conventional WHO classification. Unsupervised
clustering of DNA methylation profiles in meningiomas identifies two distinct subgroups
associated with distinct recurrence-free survival [9]. Similarly, Sahm et al. also identified
two major and six minor subgroups of meningioma from DNA methylation profile with
significantly different clinical behaviors and non-NF2 mutated meningiomas are clustered
in one “benign” subgroup [10]. In addition, a recent study displays a 64-CpG loci-based
predictor that indicates the risk of meningioma recurrence [11]. Overall, these studies
highlighted the significance of biological biomarkers for the purpose of precise diagnosis
and individualized management of meningioma.

The consensus clustering of cancer transcriptomes yields a robust and precise diag-
nosis for heterogeneous tumors, especially in brain tumors. Glioblastoma multiforme,
the most malignant glioma, is reclassified into four subtypes with distinct transcriptome
and clinical outcomes [12]. Similarly, children with wingless (WNT) subtype of medul-
loblastoma have the most favorable outcomes than children with others subtypes of medul-
loblastoma [13]. In addition, patients with posterior fossa group A or supratentorial
REL-associated protein (RELA)-positive ependymoma show dismal prognosis of all sub-
types of ependymoma and the risk stratification by comprehensive molecular subgrouping
is superior to histological grading [14]. These subtyping of heterogeneous tumors shed a
light on precision diagnosis and treatment in cancer patients. However, whether menin-
gioma could be robustly clustered into subtypes by transcriptomes with clinical disperse
behaviors remains unclear.

Immunotherapy is recently emerging as a new hope for cancer treatment and manage-
ment. As vasculature is enriched in meningioma, peripheral and central system immune
cells are present in meningioma, which enable the application of immunotherapy. Ex-
clusion of cytotoxic CD8+ T cells and CD4+ helper T cells are observed in high-grade
meningioma, suggesting the enhanced T cells therapy is potentially treatment for recurrent
meningioma [15]. The abundance of PD-L1 expression in meningioma also suggests that
meningioma patients likely benefit from the immune checkpoint inhibition [16]. Therefore,
a few clinical trials are under investigation to explore the efficacy of checkpoint inhibition in
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high-grade and/or recurrent meningioma [17]. Despite that, we are still not clear whether
the immune infiltration has shared the same pattern across all types of meningioma.

In this study, we consolidated the total RNA sequencing results from 179 WHO I,
II or III meningiomas and identified four biologically distinct subtypes of meningioma
using consensus clustering. These subtypes of meningioma also have mutually different
frequency of DNA methylation pattern, gene fusion and infiltrating immune cell profiles.
Further, our results of random-forest-based machine learning identified Alkaline Phos-
phatase (ALPL) is the feature gene in the most aggressive subtype of meningioma. We
established and validated Meningioma Progression score (MPscore) to characterize the
risk of progression in meningioma. Our subclassification provides a further insight on the
understanding of biological behaviors in meningioma.

2. Materials and Methods
2.1. Data Preprocessing and Tissue Sample Validation

RNA sequencing profiles of 179 meningioma were included in this study [18,19]. The
raw reads were preprocessed prior to the transcriptome analysis. Trim-galore was utilized
to remove adapters and low-quality reads with the follow parameters (-q 25 –length 50 -e
0.1 –stringency 5). The trimmed reads were subjected to alignment against hg38 by STAR
2.5.3a with default settings. FeatureCounts of Subread 1.6.4 was utilized for quantifying
the counts of the RNA transcripts. Batch effects were corrected by removeBatchEffect. The
Transcripts per kilobase million (TPM) rate was calculated for normalization and subjected
to downstream analyses.

For DNA methylation array datasets, a cohort of 39 meningiomas from a previ-
ous study was utilized for the investigation of DNA methylation alteration between
subtypes [20]. Raw signals were quantile-normalized before the removal of the probes
located in sexual chromosomes and the single nucleotide polymorphisms (SNP). The
crossing-reactive probes were also removed before the downstream analyses. The M
values were used for statistical analyses while the beta values were used for the data
visualization and biological interpretation. We utilized the manifest “IlluminaHuman-
Methylation450kanno.ilmn12.hg19” for the CpG probes annotation.

A small cohort of six meningioma samples along with two independent datasets were
utilized for the meningioma progression scoring validation. The detailed methods were
described in the supplementary methods.

2.2. Consensus Clustering

Principal component analysis (PCA) was employed for dimension reduction explo-
ration. The distances of samples were determined by the root-mean-square deviation
(Euclidean distance) of the top 2000 genes. Hierarchical clustering with agglomerative
average linkage was performed in this study, as our basis for consensus clustering, to
detect the robust clusters. The distance metric 1-(Pearson’s correlation coefficient) was
used for variances detection between samples. SigClust was performed to establish the
significance of the clusters in a pairwise fashion. All subtype identification was performed
by the package “ConsensusClusterPlus”.

2.3. Differentially Expressed Gene (DEG) Analysis

Differentially expressed gene (DEG) analysis was performed for identification of
featured genes in each subtype. DEG was performed on linear modelling of indicated (co-)
variates on expression values by limma (Ritchie et al. 2015). p-values generated from limma
modelling were corrected for multiple hypothesis testing by Benjamini and Hochberg false
discovery rate (FDR) adjustments. Each subtype was tested against all other groups to
generate this subtype featured genes. The FDR-adjusted p-values < 0.05 and |log Fold
Change (FC)| > 2 were considered statistically significant. The DEGs between subtypes
were visualized by heatmaps.
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2.4. Stemness Index (SI) Prediction

A stemness index (SI) model utilizing an OCLR algorithm on pluripotent stem cells
was generated by Malta et al. to predict the proportion of stem cells per given can-
cer sample [21]. We applied this stemness index model to the 179 meningiomas using
Spearman correlation for RNA expressions. The whole workflow is available from:
https://bioinformaticsfmrp.github.io/PanCanStem_Web/ (accessed on 1 August 2020).

2.5. Copy Number Alteration (CNA) and DNA Methylation Analysis

The copy number alteration (CNA) was calculated by the package “conumee” using
DNA methylation dataset. All chromosomes alterations of each included samples were
calculated and plotted by “CNV.genomeplot” with default setting. For structural variation,
the chr1p or chr22q loss (mean of chromosomal arm less than 0.1) was selected by a
reduction of copy number in chr1q or chr22q [19]. The stemness index was predicted
for each meningioma. The CpG island methylation phenotype (CIMP) was defined as
that most variable CpG loci (a standard deviation larger than 0.2 in a certain subtype)
were hypermethylated. Subtype-specific CpG loci signatures were determined by the
package “limma” using M value in a pairwise fashion and the |logFC| > 2 and adjusted
p value < 0.05 was considered as the statistical significance.

2.6. Immune Cell Infiltration Prediction

By applying the Microenvironment Cell Populations-counter (MCPcounter) method,
the abundances of eight immune cells infiltrating meningioma were predicted to explore
the feasibility of immunotherapy in meningioma [22]. Eight immune cell proportions
were compared in each subtype of meningiomas. PD-L1 expression in each subtype of
meningiomas was also compared.

2.7. Fusion Genes Identification

We employed the STAR-Fusion 1.8.1 against hg38 to detect the fusion genes in menin-
giomas with default settings. The most common fusions in all and subtypes of meningiomas
were compared to uncover the subtype featured fusion. Fusions spanning two mutually
different chromosomes were considered as the interchromosomal fusions.

2.8. Random Forest Model

The most importance of transcripts in subtype of meningiomas were identified by
random forest (RF) using the “randomForest” package with default settings. The cross-
validated prediction performance of this model was iterated by the function “rfcv” with
10-fold cross-validation and a removal of 1.5 variables in each step. The discrimination of
the most important gene (variable) for meningioma in the given subtype was predicted
“pROC” against all other subtypes. The area under the curve (AUC) was utilized here as
the accuracy for subtype prediction.

2.9. Meningioma Progression Score (MPscore)

The R package “ssGSEA” was utilized to construct the meningioma progression score
(MPscore) per given sample using the “GSVA” package [23]. Prior to MPscore construction,
we selected DEGs of subtype 3 meningioma as the progressive gene signature and reference.
For accurately surrogating the progressive phenotype, we sub-divided the gene list into
up- or down-regulated gene lists in subtype 3, calculated the scores through ssGSEA,
respectively. The MPscore was the sum of the difference of ssGSEA-predicted scores from
up- or downregulated gene list.

MPscore = ∑ ssGSEA(upregulated signatures)− ssGSEA(downregulated signatures)

https://bioinformaticsfmrp.github.io/PanCanStem_Web/
https://bioinformaticsfmrp.github.io/PanCanStem_Web/
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2.10. Statistical Analysis

R software version 3.5.1 (R Core Team, Vienna, Austria) was used for all statistical
analyses. Student’s t test was used for the statistical comparison of two groups. ANOVA
was performed to test the statistical significance between more than three groups and
Tukey’s honestly significant difference (HSD) test was conducted as a post hoc test when
the results of ANOVA indicated significance. A p value less than 0.05 was considered
statistically significant.

3. Results
3.1. Transcriptome Profiling Unravels Four Distinct Subtypes in Meningiomas

A total of 179 meningiomas composed from two cohorts was included in this study.
Seven of 179 are WHO III meningioma, 32 are WHO II meningioma while the rest are WHO
I meningioma. The detailed clinical and pathological information are listed in Table 1.
After normalization and batch correction by remove Batch Effect, TPM of gene level count
was utilized for all RNA sequencing samples. PCA identified there was a heterogeneity
of meningioma that was not caused by the batches on transcriptome level (Figure S1).
To explore the heterogeneity of meningiomas, we performed consensus clustering on all
179 samples after integration of all 179 meningiomas in one unified dataset. Consensus
average linkage hierarchical clustering of 179 samples identified four robust subtypes
with clustering stability increasing for k = 2 to k = 6, but not for k > 4 (Figure 1). Cluster
significance was evaluated using SigClust and all pairwise cluster significance tests were
statistically significant (Figure S2). Notably, all grade III anaplastic meningiomas (7/7)
and most grade II atypical meningiomas (24/32) were clustered in subtype 3, suggesting
subtype 3 meningioma was most malignant subtype (Figure 1C and Figure S2). No atypical
or anaplastic meningiomas were clustered in subtype 1, suggesting meningiomas in this
subtype have mild progression (Figure 1C, Table 1). To further explore the key feature genes
in each subtype, we conducted the differentially expressed gene (DEG) analysis of four
subtypes. The DEGs of each subtype against all other subtypes was determined by limma
package. A total of 263 genes were identified as DEGs between subtypes of meningiomas
and four subtypes demonstrated distinct expression pattern of these 263 DEGs (Table S1,
Figure 1C). More interestingly, variety of somatic mutations were presented in subtype
1 meningioma, except for NF2 mutation and chromosome 1p and chromosome 22q loss.
NF2 mutation with chromosome 22q loss was only detected in subtype 2 while almost all
meningiomas containing chromosome 1p loss with NF2 mutation or chromosome 22q loss
were clustered in subtype 3 (Figure 1C). These results demonstrated our transcriptome
distinct clustering surrogated the genetic variation in meningioma. The Sankey plot
revealed the change of meningioma subtypes from WHO classification to the clustering
subtype (Figure 1D), suggesting some WHO I meningioma had a similar biological behavior
to the high grade meningioma and conventional histopathology-based classification might
not surrogate the malignancy of meningioma.

Table 1. Characteristics of each clustering subtype in this study.

Items Subtype 1 Subtype 2 Subtype 3 Subtype 4

Age (median, 25–75% quantile) 61, 47.5–68 61, 50–66 61,49.5–72 61, 58–68.5
Gender (Male:Female) 53:12 24:14 20:27 10:4

WHO Grade
I 67 32 28 13
II 0 6 24 2
III 0 0 7 0
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Figure 1. Consensus clustering of 179 meningiomas on gene expression. (A) Consensus matrix plot display consensus
(k = 4) is the best number for subgrouping. (B) Clustering significance of each subtype is indicated by silhouette plot.
(C) Heatmaps of the upregulated genes in each subtype highlights the heterogeneity of meningioma. Somatic mutation and
copy number alteration of each sample is labelled in the top. no, no alteration is detected in given sample. (D) Sankey plot
displays the change of classification of each sample from WHO grade to transcriptome subtypes.

3.2. Stemness Indexes Reveal the Different Progressive Potentials between Subtypes

Stemness is regarded as the key factor of carcinogenesis and resistance to chemother-
apy. Malta et al. established an index based on the stemness markers indicating the
cancer stem cell proportion in the given tumor sample [21]. Although the cancer stem
cells are yet to be isolated from meningioma, cancer stem cell and embryonic stem cell
markers have been widely identified from meningiomas and strongly associated with
patients outcomes [24,25]. To infer the proportion of cancer stem cells between subtypes
of meningiomas, we utilized a reference-based matrix to generate stemness indexes (SIs)
for each meningioma in our study. There was a significant difference of SIs between low
grade and high-grade meningioma (ANOVA, p = 0.00195). As expected, the SIs were
correlated with the grade of meningiomas and anaplastic meningioma revealed the highest
SIs of all grades meningiomas (Figure S3), suggesting SI was likely associated with the
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malignancy of meningioma. We also observed a remarkable difference of SIs between
subtypes of meningiomas and subtype 3 and 4 had higher SIs than the other two subtypes
(ANOVA, p = 6.79 × 10−13), suggesting meningiomas in subtype 3 and 4 are likely to have
higher proportion of cancer stem cells. Notably, SI of subtype 3 was not the highest of all
subtypes, though subtype 3 is the most progressive subtype, suggesting cancer stem cells
were probably not the driven force during meningioma progression. Taken together, our
results suggested the malignancy of meningioma rather than meningioma recurrence was
associated with high levels of SIs.

3.3. Epigenetic Alterations Recapitulate the Subtyping of Meningioma

As distinct DNA methylation levels have been observed in nonrecurrent meningioma
but not in recurrent meningioma, we then test whether the subtyping of meningioma could
be reflected by DNA methylation. To achieve this, we formed the meningioma cohort of
DNA methylation by utilizing a DNA methylation array dataset containing 39 meningioma
samples. We first determined the Copy Number Alteration (CNA) of each sample using
the package “conumee” because chromosome 1p/22q codeletion and chromosome 22q loss
alone were the featured events in the subtype 3 and subtype 2 meningioma, respectively
(Figure S4A). Secondly, as we found subtype 4 meningioma has the highest SI of all
subtypes, we utilized the DNA methylation version of the same SI prediction tool to
predict the SI for the cohorts of DNA methylation profiling. The average SI of subtype
4 meningioma was larger than 0.5 (Figure S3), therefore, the samples with the SIs of higher
than 0.5 were considered as the subtype 4 meningioma in DNA. Finally, we assigned the
samples having no chromosome 1p or 22q loss into the subtype 1 meningioma from the rest
samples of this cohort (Figure S4A). A total of 33 meningioma with subtyping was included
in this study and a large variation of the DNA methylation levels across subtypes were
observed in the PCA plot (Figure S4B). To further uncover the DNA methylation pattern in
each subtype, especially in the subtype 3 meningioma, we then explored whether the CpG
island methylation phenotype (CIMP) presented in the subtypes of meningioma. Notably,
the most variable CpG loci (with the standard deviation larger than 0.2 of all meningioma)
in the subtype 3 meningioma were hypermethylated (Figure 2A), suggesting the association
of CIMP with the subtype 3 meningioma. We then hypothesized the hypermethylated CpG
loci signatures of the subtype 3 meningioma were located in the promoter areas as we found
the majority of DEGs in the subtype 3 were downregulated. To address this, we identified
the subtype specific CpG loci signatures by a pairwise approach (Figure S4C). The density
plots of DNA methylation levels in the promoter area revealed a hypermethylated CpG loci
signature in the subtype 3 meningioma (Figure 2B). In addition, the subtype 3 meningioma
had a significantly higher DNA methylation level in the CpG island than the other subtypes
(Figure S4D). These results suggested DNA hypermethylation was probably the featured
event during the progression of meningioma.

Because long non-coding RNAs and microRNAs are associated with biological status
and specific biomarkers in cancers, we calculated the transcript abundance for 2531 lncR-
NAs and 1715 miRNAs, respectively. A total of 25 lncRNAs were identified as differentially
expressed lncRNAs. The cluster of lncRNAs were concordant with mRNA clustering.
Unsupervised clustering of these 25 lncRNAs revealed the significant lncRNA expres-
sion features in subtype 3. Specifically, RN7SL1, RN7SK, FOXP1-IT1, KCNMA1-AS3,
KCNMA1-AS2, ATP1B3-AS1, GPC6-AS2, GPC6-AS1, MALAT1, PRINS, LINC01397, XIST,
MEG3, LINC00485, GPC5-AS1, and LINC01436 were downregulated in subtype 3 while
the expression of LMO7DN-IT1, LINC00460, MIAT, H19, and HIF1A-AS2 was higher
than these in other subtypes (Table S2, Figure 2C). For miRNAs, unsupervised clustering
of differentially expressed miRNAs subdivided meningiomas. In subtype 1, subtype 2
and subtype 3, each subtype could be subdivided into two subgroups based on miRNAs
expression (Table S2, Figure 2C). These results suggested ncRNAs played critical roles in
distinct subtypes of meningiomas.
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  Figure 2. The epigenetic landscape of the subtypes of meningioma. (A) Heatmap showing the most variable CpG loci across
all subtypes of meningioma. Majority of CpG loci in the subtype 3 meningioma is hypermethylated. (B) Density plots
showing the methylation levels of subtype specific CpG loci signatures across all subtypes. (C) long non-coding RNA (left)
and miRNA (right) expression subdivide the subtypes of meningiomas. The differentially expressed long non-coding RNAs
or microRNAs were utilized for heatmap clustering.

3.4. Novel Fusion Genes were Identified between Subtypes

A small cohort uncovered NF2 gene fusion is strongly associated with meningioma
progression [26], however, a comprehensive landscape of gene fusions in meningioma and
whether subtypes of meningiomas had distinct gene fusions features were still unclear.
We utilized STAR-fusion 1.8.1 to investigate the novel gene fusions between subtypes of
meningiomas. Grade I and subtype 1 meningiomas had higher fusion frequency than
higher grade or other subtype meningiomas, though the fusion frequencies were not sig-
nificantly different between subtypes (ANOVA, p = 0.115) and grades (ANOVA, p = 0.13),
which was consistent with previous findings (Figure 3A and Figure S5). The most common
gene fusion in this study is RP11-1102P16.1–EYA1 (195/1489, 13.10%), followed by RP11-
680G10.1–GSE1 (148/1489, 9.94%) and CTC-786C10.1–RP11-680G10.1 (124/1489, 8.33%),
which of all were yet to be fully described before. The most frequent fusion was RP11-
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1102P16.1–EYA1 (101), MIR100HG–RP11-166D19.1 (33), RP11-680G10.1–GSE1 (49) and
RP11-1102P16.1–EYA1 (21) for subtype 1, subtype 2, subtype 3 and subtype 4, respectively
(Table S3). In addition, we also identified novel NF2-related fusions: NF2–LUZP4 (chro-
mosomes 22q and chromosomes Xq), TAOK1–NF2 (chromosomes 17q and chromosomes
22q), DENR–NF2 (chromosomes 12q and chromosomes 22q), NF2–MIF-AS1 (chromosomes
22q and chromosomes 22q), NF2–TTC28 (chromosomes 22q and chromosomes 22q) and
NF2–SPATA13 (chromosomes 22q and chromosomes 13q). Notably, most fusion identified
here are intrachromosomal fusion. To characterize the interchromosomal fusion, we then
subset the fusions that were composed of two different chromosomes. A total of 91 fusions
were shortlisted and more importantly, the fusion frequency (per Geta Base) of subtype
3 meningioma was highest of all subtypes (Figure 3B). Of the 91 interchromosomal fusions,
PSPH is the most frequent fused gene and the most frequent fusion RP11-206L10.9 – PSPH
(35/91) presented in all subtypes (Figure 3C). We also uncovered subtype 3 specific fusions
such as LPA–CAMSAP3 and MYO6–NSUN3, which were only found in subtype 3. More
interestingly, almost all NF2 fusions were enriched in subtype 3, suggesting that NF2 was
associated with meningioma progression, which is consistent with the previous study.

 

2 

 
Figure 3. The landscape of fusion genes in meningiomas. (A) Gene fusion frequency between WHO grades; right, ANOVA
test, p = 0.115. (B) Bar plot showing the interchromosomal gene fusion frequency of each subtypes. (C) Circus plots showing
the interchromosomal gene fusion in all meningioma (left) and subtype 3 meningioma (right).
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3.5. Different Types of Enriched Immune Cells between Subtypes Demonstrates the Disparate Level
of Immune Cell Infiltration

Since the immunotherapy including immune checkpoint inhibitor (PD-L1/PD-1 in-
hibitor) and CAR-T have demonstrated their antitumor efficacy in solid tumors, we next
investigated the immune cell infiltration and PD-L1 expression in meningiomas. MCPcount
was utilized for immune cells infiltration calculation. The heatmap of each immune cell
lineage demonstrated the difference of immune cell response to subtype of meningiomas
(Figure 4A). There was significant difference of cytotoxic lymphocytes infiltration between
subtypes (ANOVA, p = 3.76 × 10−12), where subtype 3 had the highest cytotoxic lympho-
cytes infiltration of all meningioma subtypes (Figure 4B). We also observed more natural
killer (NK) cells were likely to be presented in subtype 4 of meningioma, suggesting NK
cell infiltration likely happen in one subtype of meningioma (Figure 4B).
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Figure 4. The levels of immune cell infiltration inferred by MCPcounter are distinct between subtypes of meningiomas.
(A) Heatmap of immune cells infiltration highlights the enriched gene expression signature of distinct immune cells infiltration
pattern between subtypes of meningiomas. Cytotoxic lymphocytes are enriched in subtype 3. Natural killer (NK) cells are
enriched in subtype 4. Neutrophils are enriched in subtype 1. (B) Meningioma of subtype 3 has higher cytotoxic lymphocytes
infiltration than others. Violin plots shows the immune cells infiltration between subtypes. (C) Subtypes have different PD-L1
expressions. ANOVA test, more than three groups comparison. Tukey’s HSD post hoc test. * p < 0.05; *** p < 0.001.
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Although a previous study revealed the PDL1 positive were rare in meningioma (4/58)
and PDL1 expression is not associated with WHO grades [27], whether the transcripts of
PDL1 was enriched in some subtypes remains unclear. The PDL1 expression in subtype 2
was significantly lower than the other three subtypes (ANOVA, p = 0.000891), suggesting
patients with subtypes 1, 3 and 4 of meningioma likely benefit from immune checkpoint
blockade (Figure 4C).

3.6. Random Forest (RF) Identifies Downregulated ALPL as the Feature Genes in Subtypes 3

Our study identified subtype 3 was the most progressive meningioma subtypes,
therefore, one biomarker differentiating subtype 3 meningioma from others could identify
the risks of meningioma progression. A random forest (RF) algorithm was utilized for
subtype 3 featured genes identification. RF calculated the importance of each gene (variable)
to the subtyping (feature) and the top important genes were listed in Figure 5A. As noted,
ALPL was identified as the top featured gene for subtype 3 meningioma by RF (Figure 5B
and Figure S6). To further explore whether ALPL could be used for the predictive biomarker
of meningioma progression, we performed the prediction capacity analysis by the receiver
operation curve (ROC). The ROC displayed ALPL had a remarkable prediction ability with
accuracy of 0.886 (Figure 5C).
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genes (variables) are ranked by Random Forest model. (B) ALPL in subtype 3 is significantly lower than that in the other
subtypes of meningioma (One-way ANOVA: p < 2 × 10−16; post hoc, Tukey’s HSD test; * p < 0.05; *** p < 0.001). (C) The
receiver operation curve shows the discrimination of subtype 3 over other subtypes of meningioma by ALPL expression.



Cancers 2021, 13, 1113 12 of 19

3.7. Meningioma Progression Score (MPscore) Discriminates the Progression of Meningioma

To generalize the discriminative capacity of the clustering by the progressive features
and quantify the likelihood of progression in meningioma, we constructed a meningioma
progression score (MPscore). As subtype 3 meningioma was identified as the progressive
meningioma, we selected the significantly differentially expressed genes of subtype 3
as meningioma progressive signatures (Table S1). Based on the ssGSEA algorithm, we
summarized the scores of subtype 3 signatures as the MPscore for given samples. Our
MPscore of subtype 3 was significantly higher than other three subtypes, suggesting our
MPscore was a suitable surrogate for subtype 3 and meningioma progression (Figure 6A).
To validate the clinical utility of MPscore, we first utilized a microarray dataset (GSE74385)
from a cohort containing a total of 62 meningiomas in grade I, II and III meningioma [6].
Unsupervised clustering of DEGs in these 62 meningioma samples revealed a clear sepa-
ration of grade I nonrecurrent meningioma from recurrent or high-grade meningioma by
our subtype gene signatures (Figure 6B), suggesting the clinical utility of our clustering. To
validate the predictive utility of MPscore, we compared the MPscore between nonrecurrent
and recurrent meningioma and found MPscore in metastatic or recurrent meningioma
was significantly higher than that of non-recurrent meningioma (Figure S7). Then, we
tested our MPscore in our own and another two independent cohorts of gene expression
microarrays (Supplementary Methods, Table S4). All of them showed a significant higher
MPscore was observed in the recurrent (or anaplastic) meningiomas as compared with
nonrecurrent (or grade I) meningioma (p = 0.002376, p < 2.2 × 10−16 and p = 1.928 × 10−5)
(Figure S7). To further demonstrate the prognostic ability of MPscore, we then examined
the overall and recurrent free survival in meningioma. Although the overall survival of
meningioma patients with low MPscore was not statistically better than that with high
MPscore (p = 0.15), patients with low MPscore had a significantly better recurrent free
survival (p = 0.04), suggesting MPscore could be a prognostic biomarker for meningioma
recurrence (Figure 6C,D). Multivariable Cox proportion hazard regression model revealed
MPscore was significantly associated with the recurrence free survival in meningioma
(Table 2). Taken together, these results highlighted that our MPscore could surrogate the
meningioma progression.

Table 2. Multivariable Cox proportion regression analysis.

Variables Sub-Variables Coefficient Lower 95% CI Upper 95% CI p Value

MPscore 1.63762 2.00798 13.1721 0.000643
Location

Convexity −0.19415 0.18135 3.7398 0.801446
Falx −0.44845 0.13599 2.9991 0.569863

Intraventricular 0.59538 0.25013 13.1514 0.555854
Olfactory groove 0.45279 0.32038 7.7202 0.576995

Optic nerve −0.50801 0.08373 4.3237 0.613643
Parasagittal −0.0126 0.2065 4.7222 0.987409

Posterior fossa 0.55699 0.37301 8.1672 0.479293
Sphenoid wing −0.22505 0.17501 3.643 0.771353

Supresellar −1.27342 0.05222 1.5 0.137122
Gender −0.34111 0.40969 1.2338 0.225178
MIB-1 −0.06811 0.87729 0.9947 0.033544

3.8. Small Molecules were Predicted to Target the Subtype 3 Meningioma

Lastly, we queried the Connectivity Map 2 (https://clue.io, accessed on 1 August 2020)
to predict which compound was potentially the therapeutics for subtype 3 meningioma.
We applied the differentially expressed genes of subtype 3 into the Connectivity Map 2 and
1309 compounds were screened. Of them, 16 compounds were identified as the potential
therapeutic targets for subtype 3 meningioma (Table S5).

https://clue.io
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Figure 6. Validation of meningioma progression score. (A) Boxplot showing the MPscore in Subtype 3 was significantly
higher than other subtypes. (B) Heatmap showing our clustering is also observed in validation cohort. Kaplan-Meier
Curves showing the overall survival (C) and recurrent free survival (D) stratified by MPscore. Log-rank test was performed
to examine the statistical difference. Red, high MPscore; blue, low MPscore. *** p < 0.001.

4. Discussion

Accumulating evidence has indicated meningioma is a heterogeneous tumor but the
feature of clinical recurrent meningioma is still unclear. Through the consensus clustering
of meningioma transcriptomes, we identified four mutually distinct subtypes of menin-
gioma and all grade III and most grade II are clustered in subtype 3 of meningioma. This
result suggests that the characterization of the differentially expressed genes in subtype
3 will uncover the biological features of meningioma progression (malignancy and recur-
rence). Meningioma in subtype 3 has distinct gene expression pattern to other subtypes,
which confirms the heterogeneity of meningioma. Our analyses of noncoding RNAs and
DNA methylation also further confirms the biological complexity of the tumorigenesis and
progression in meningioma. As machine learning is widely used for biomarker discovery
and potential therapeutic targets screening in cancer research [28,29] and random forest
(RF)-based classification and featured variable identification has demonstrated the advan-
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tages of non-overfitting and robustness over the conventional differentially expressed gene
analysis [30], we employed RF for integration of feature gene in subtype 3.

ALPL is identified as the top featured gene of all subtype 3 DEGs contributing to the
features in subtype 3 of meningioma. The product of ALPL is a membrane bound glycosy-
lated enzyme that broadly participating in phosphatase activity and alkaline phosphatase
activity, therefore, the alteration of ALPL is found to be associated with hypophosphatasia
and prostate cancer bone metastasis [31,32]. Our results suggest ALPL is likely a subtyping
and recurrence diagnostic biomarker with a significant accuracy, which is consistent with
the previous studies [33,34]. Although RF predicts TIMP3, INMT and SLC16A1 followed
by ALPL as the important feature genes in subtype 3, the expressions of these three genes
are not consistently lower or higher than all other subtypes of meningioma, which restricts
their potent of being biomarkers for meningioma. The molecular pathway alterations
caused by the reduced ALPL in meningioma is still needed to be investigated further
though a few studies uncover the association of ALPL and NOTCH1 regulation in human
epithelial cells and ALPL is one of the key hub genes in glioblastoma [35,36].

In order to identify the progressive subtype in meningioma, we constructed MPscore
based on the featured genes in subtype 3. Our MPscore demonstrates a remarkably discrim-
inative capacity for progressive meningioma in two independent cohorts. A few attempts
have been made to explore the recurrence or progression related genes in meningioma.
However, there is an inconsistence of meningioma progressive gene lists between stud-
ies [6,37–39]. Direct comparison between grade I and anaplastic or atypical meningioma
unlikely provides the generic progressive genes because high-grade transformation has
already occurred in grade I meningioma in early stage [40,41]. We construct a reference-
based MPscore for the prediction of meningioma progression. We also validated our
MPscore in three independent cohorts, highlighting the clinical utility of MPscore across
different profiling sources (RNA seq or microarray). A total of 53 genes are included as the
progressively phenotypic references in our study. In our MPscore gene reference, LEPR is
another well-characterized prognostic biomarker and independent predictive biomarker
for meningioma. Loss of function of LEPR is associated with the elevated leptin levels and
obesity, showing its participating in adipose biogenesis [42]. Although the biological regu-
lation of LEPR in meningioma is still unclear, a few observative studies uncover patients
with meningioma are prone to be obese [43,44]. Our clustering is consistent with the main
findings of previous studies, which also suggests the robustness of our analyses. Patel
et al. find a subgroup of meningioma has a shorter recurrence-free survival by clustering of
WHO grade I and II meningioma while the other two subgroups have relatively low risks of
recurrence. Our results of clustering echo their findings where a few grade I meningiomas
(subtype 3) have similar transcriptome pattern to the recurrent meningioma while most
grade I meningiomas are clustered into two distinct subtypes (subtype 1 and 2). Notably,
our results further reveal these grade I meningiomas that likely recur share similar tran-
scriptome patterns with grade III meningioma, confirming that progressive transformation
happens in grade I meningioma. Another clustering of WHO grade I meningioma indicates
there are five subgroups in meningioma but four of five subgroups are enriched in the
WNT pathway. In our analyses, WNT-pathway-related genes such as DKK2 are involved in
subtype 1 signature gene. Together with previous studies, the clustering by transcriptomes
highlights the heterogeneity and the genetic variation in meningioma and subtyping of
meningioma enable us to identify the meningioma with high risk of recurrence.

One previous study found some novel gene fusions involved in NF2, the most com-
mon mutation in meningioma. However, the NF2 gene fusion-based biomarker for the
prediction of meningioma progression or recurrence might not be reliable in clinical practice
as radiation therapy could induce new NF2 mutations or structural variants in menin-
gioma [10,20]. Patients may not benefit from these biomarkers targeting postradiation NF2
gene fusions as these NF2 genes do not predict the risk of recurrence in the initial diagnosis
of meningioma. Although our study fails to identify the subtype or recurrence specific
biomarkers, we discovered that gene fusion with EYA1 is the most common fusion across
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all subtypes of meningioma, indicating EYA1 fusion is likely an early event in tumorigen-
esis in meningioma. EYA1 is a protein phosphatase and a transcriptional coactivator for
SIX1 that regulates gene expression and cellular proliferation. In meningioma, EYA1 is also
a key molecule by regulating the cell viability and cell cycle [45]. Compared with other
types of brain tumor, meningioma has significantly higher expression of EYA1. Our results
support the critical role of EYA1 in meningioma though further investigation is required to
validate altered activated pathways caused by EYA1 fusion. These results shed a light on
the tumor formation and potential therapeutic targets for meningioma.

The four subtypes of meningioma we identified also have different immune cell infil-
tration and PD-L1 expression. Previous small-scale studies display T cells and B cells infil-
trated in meningiomas are antigen-experienced and monocytes are also present in menin-
gioma, indicating the feasibility of immunotherapy application in meningioma [46,47].
Our results show that a broad spectrum of immune cells infiltration in meningioma, and
moreover, we show monocytic lineage is the most predominant of all immune cell types. Of
all subtypes, subtype 1 has the least immune cells (including monocytes, T cells and B cells)
infiltration. That is likely because all subtype 1 meningiomas are benign and composed
from WHO grade I meningioma. As noted, subtype 3 has the highest cytotoxic T cells
infiltration of all subtypes, suggesting the enhanced T cells could be a potential therapeutic
for patients in subtype 3 while NK-cell-based therapeutics may benefit patients in subtype
4 [48]. Our analysis of PD-L1 in meningioma is partially consistent with previous study
where higher grade meningioma has higher levels of PD-L1 [45]. Our results show the lev-
els of PD-L1 in subtype 3 and 4 are higher than that in subtype 2. However, we also found
subtype 1 composed from WHO grade I meningioma has relatively higher level of PD-L1.
We presume there probably is a post-transcriptional modification or regulation of PD-L1 in
meningioma so it is rarely detected by antibody-based immunohistochemistry [27,45,49,50].

We noticed there are a few limitations in this study. Firstly, due to the accessibility
to the materials and datasets, we do not crossvalidate our subtype clustering with the
clustering by DNA methylation and mutation information. A comprehensive landscape
of meningioma integrating mutation, structural variant, DNA methylation, RNA (mRNA
and ncRNA) transcripts and proteomics will help us understand the biological behaviors
of meningioma recurrence. Histopathological analyses of immune cells infiltration and
cell cycle markers will also complement the microenvironment landscape of meningioma.
Secondly, although we demonstrated that grade II meningiomas is likely presented in
Subtype 3 and Subtype 3 meningiomas usually have a high expression level of mitotic genes,
the association of biological subtypes with histopathological types remains unclear [51].
More studies on the distinct biological features within different histopathological types are
under investigation. Thirdly, the prediction capacity of ALPL for meningioma recurrence
needs to be validated externally. In this study, the high-grade meningioma surrogates the
recurrent meningioma, which might be a selection bias. Therefore, prior to the clinical
application, the assay designed for ALPL also should be elaborately tested for clinical
utility in a large perspective cohort where meningioma patients developing to recurrence
are recruited.

5. Conclusions

Our study provides the landscape of transcriptome in meningioma and identifies the
recurrence of relevant subtypes of meningioma (subtype 3 meningioma) by consensus
clustering. Loss of chromosome 1q with NF2 mutation or chromosome 22q loss is one
of the genetic features in subtype 3. Hypermethylated CpG loci of the promoter areas
spread the subtype 3 meningioma. Enhanced T cells therapy is likely the most promising
immunotherapy for meningioma recurrence. Reference-based MPscore is potentially a
predictive and prognostic biomarker for the recurrence in meningioma.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/5/1113/s1, Table S1: The differentially expressed gene (DEG) between subtypes, Table S2:
The differentially expressed lncRNA between subtypes, Table S3: The fusion genes are identified
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in this study, Table S4: The characteristics of three validation cohorts, Table S5. Compounds were
significantly predicted as the therapeutic targets for subtype 3 meningioma, Figure S1: PCA identifies
the heterogeneity of meningiomas after batch effect correction, Figure S2: Meningiomas are clustered
into four subtypes by the transcriptomes. The cumulative distribution function (CDF) curve (A) and
the changed area under CDF curve (B) suggests k = 4 is the best number of subtype for clustering.
(C), SigClust p-values for all pair wise comparisons of clusters. (D), the consensus clustering matrix
plot showing the subtypes of meningioma when consensus k = 3 and 5, Figure S3: The levels of
stemness indexes for meningiomas are distinct between WHO grades (left) and subtypes (right).
Stemness Indexes in grade I meningioma is significantly lower than high grade meningioma. One-
way ANOVA test for multiple group comparison; post hoc, Tukey’s HSD. * p < 0.05; ** p < 0.01;
*** p < 0.001, Figure S4: Hypermethylated DNA is mostly observed in the subtype 3 meningioma. (A),
typical CNA of subtype 1 (top panel), 2 (middle panel) and 3 (bottom panel) of meningioma. (B), the
PCA plot showing the top 2000 variance of DNA methylation levels of the DNA methylation cohort.
C, the weheatmap showing the CpG loci signatures of each subtype. D, the boxplot showing that the
subtype 3 meningioma had the significantly highest methylation level of all the subtypes, Figure S5:
The gene fusion in each subtype of meningioma. (A), the gene fusion frequency between subtypes.
ANOVA test, p = 0.13. (B), Circus plots of subtype 1 (upper), 2 (bottom left) and 4 (bottom right)
meningioma, Figure S6: Three genes are potentially the biomarker for subtype 3 of meningioma. (A),
the expression of TIMP3, INMT and SLC16A1 between subtypes. (B), the ROCs of TIMP3, INMT and
SLC16A for identification of subtype 3 against other subtypes. One-way ANOVA test for multiple
group comparison; post hoc, Tukey’s HSD. * p < 0.05; ** p < 0.01; *** p < 0.001, Figure S7: The clinical
utility of MPscore is validated in four independent cohorts. 1M, grade I metastatic meningioma;
1NR, grade I non-recurrent meningioma; 1R, grade I recurrent menigioma; 2M, grade II metastatic
meningioma; 2NR, grade II non-recurrent meningioma; 2R, grade II recurrent meningioma; 3NA,
grade III meningioma; 3NR, grade III non-recurrent meningoma; 3R, grade III recurrent meningioma.
The statistical significance was performed by Student’s t test. * p < 0.05; ** p < 0.01; *** p < 0.001.
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