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Abstract RXRA regulates transcription as part of a heterodimer with 14 other nuclear receptors,

including the peroxisome proliferator-activated receptors (PPARs). Analysis from TCGA raised the

possibility that hyperactive PPAR signaling, either due to PPAR gamma gene amplification or RXRA

hot-spot mutation (S427F/Y) drives 20–25% of human bladder cancers. Here, we characterize

mutant RXRA, demonstrating it induces enhancer/promoter activity in the context of RXRA/PPAR

heterodimers in human bladder cancer cells. Structure-function studies indicate that the RXRA

substitution allosterically regulates the PPAR AF2 domain via an aromatic interaction with the

terminal tyrosine found in PPARs. In mouse urothelial organoids, PPAR agonism is sufficient to

drive growth-factor-independent growth in the context of concurrent tumor suppressor loss.

Similarly, mutant RXRA stimulates growth-factor-independent growth of Trp53/Kdm6a null bladder

organoids. Mutant RXRA-driven growth of urothelium is reversible by PPAR inhibition, supporting

PPARs as targetable drivers of bladder cancer.

DOI: https://doi.org/10.7554/eLife.30862.001

Introduction
Bladder cancer is the sixth most common cancer in the US and is predicted to cause ~17,000 deaths

in 2017 [The website of the National Cancer Institute (https://www.cancer.gov)]. In contrast to other

common malignancies, bladder cancer management has not yet benefited from molecularly targeted

therapies. Early phase clinical data with agents targeting FGFR3 or ERBB family members have

shown encouraging activity in the minority of patients with oncogenic versions of these kinases

(Nogova et al., 2017; Choudhury et al., 2016), but identification of new targetable genomic drivers

is needed to expand the armamentarium. Nuclear receptors are amongst the most successful thera-

peutic targets in oncology, with small molecule inhibitors of estrogen receptor (ER) and androgen

receptor (AR) improving survival in breast and prostate cancers (Fisher et al., 1996; Beer et al.,

2014). The established ability to modulate nuclear receptors with drugs makes them an attractive

class of targets for other cancer types when there is compelling evidence supporting their role as

tumor drivers.

RXRA is a nuclear receptor that regulates transcription as a homodimer or as an obligate hetero-

dimerization partner for 14 other nuclear receptors, including the three peroxisome proliferator-acti-

vated receptors PPARA, PPARD, and PPARG (Evans and Mangelsdorf, 2014). Exome analysis of
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bladder cancer samples across three independent cohorts identified mutations at RXRA S427 in 5–

8% of cases, always leading to an amino acid substitution with an aromatic amino acid, phenylalanine

(~5%) or tyrosine (~1%) (Cancer Genome Atlas Research Network, 2014; Guo et al., 2013;

Van Allen et al., 2014). Reported analysis from TCGA found evidence of up-regulated PPAR path-

way activity in RXRA hot-spot mutant cases (Cancer Genome Atlas Research Network, 2014).

Copy number analysis identified PPARG as amplified in 17% of bladder cancer cases

(Cancer Genome Atlas Research Network, 2014), with PPARG amplified cases being highly

enriched for PPARG mRNA expression (q value = 2.6 � 10-9) (Cerami et al., 2012). These data

raised the possibility that hyperactive PPAR signaling, either due to gene-amplification-driven hyper-

expression or RXRA hot-spot mutation may drive 20–25% of bladder cancers. Here, we characterize

structural and biological consequences of the RXRA hot-spot mutations.

Results

Mutant RXRA induces PPAR transcriptional signaling at the canonical
DR1 motif
To establish a causal role of RXRA hot-spot mutations in hyper-activation of PPAR singling, we used

retroviral transduction to introduce wild-type or mutant RXRA into two bladder cancer cell lines,

JMSU-1 and 575A. Equivalent RXRA expression levels were confirmed by qPCR and western blot

(Figure 1A). RNA-seq was used to compare transcriptomes in the wild-type and S427F RXRA

expressing cells. Gene transcripts robustly up-regulated by the mutation (twofold, FDR <0.05) were

analyzed using over-representation analysis (ORA) to identify enriched pathways. In both cell lines,

the PPAR signaling pathway (KEGG-hsa03320) was the top scoring hit. When the ORA was limited

to genes up-regulated by the mutation in both cell lines, again PPAR signaling was the top hit

(Figure 1B, Figure 1—source data 1). We also compared transcriptome changes induced by the

RXRA mutation to those induced after treating RXRAwt expressing cells with the PPARG agonist pio-

glitazone. There was robust correlation in both JMSU-1 and 575A (Pearson r = 0.72, p=1.4 � 10�34

or 3.1 � 10�105), confirming that the mutation drives expression changes similar to agonist-induced

PPAR activation (Figure 1C). Mutation-driven hyper-activation of PLIN2 and FABP3, two genes

eLife digest Bladder cancer is the sixth most common type of cancer in the United States. At

the moment, treatment options for advanced bladder cancer are limited to chemotherapy and

immunotherapy, both of which benefit only some patients. Many other types of cancer can be

treated with drugs that are specific to genetic mutations found in those cancer cells, often making

the treatments more efficient with fewer side effects.

Between 5–8% of people with bladder cancer have a mutation in the gene that produces a

protein called RXRA. This protein partners with itself or with other proteins to control gene activity.

However, it was not clear what mutant RXRA proteins do in bladder cancer cells.

Halstead et al. studied the RXRA mutation in human bladder cancer cells and “mini-bladders”

grown in the laboratory from mouse bladder cells. Biochemical experiments showed that the mutant

RXRA protein causes abnormally high activity in one group of its partner proteins, called peroxisome

proliferator-activated receptors (PPARs). The PPARs, in turn, switch on genes that help cancer cells

to grow and multiply. Computational simulations of the mutant RXRA binding to PPARs revealed, at

a molecular level, how this activation occurs. Lastly, Halstead et al. used chemicals that block the

activity of PPARs to stop the growth of cells in the mouse mini-bladders that contained the RXRA

mutation.

These findings suggest that bladder cancer patients with the RXRA mutation may benefit from

therapies that inhibit PPARs. Such therapies could also benefit the approximately 15–20% of people

with bladder cancer who do not have the RXRA mutation but who do have over-active PPARs.

Although there are chemicals that block the activity of PPARs, more research is needed to refine

them before they can be used to treat cancer.

DOI: https://doi.org/10.7554/eLife.30862.002
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Figure 1. RXRA hot-spot mutations induce the PPAR signaling pathway by activating enhancer/promoters with a canonical PPAR response element. (A)

JMSU-1 and 575A cells were transduced with pBABE retrovirus to express indicated RXRA alleles and expression confirmed by western blot (top) or RT-

qPCR in triplicate ± SD (data expressed as a fraction of actin signal). (B) Protein coding transcripts up-regulated greater than or equal to twofold

Figure 1 continued on next page
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found up-regulated in our RNA-seq analysis, also occured in the context of RXRAS427Y in JMSU-1

cells (Figure 1D), confirming gain-of-function with either aromatic substitution. Previous analysis of

human bladder cancer specimens identified a correlation between the presence of RXRAS427F/Y and

both the up-regulation of PLIN2 expression and PPAR signaling pathway activity (Cancer Genome

Atlas Research Network, 2014). Our data establishes a causal role of the RXRA mutations in driving

these expression changes.

Canonical RXRA-mediated gene regulation involves direct engagement of promoter/enhancers of

target genes in the context of homodimers or heterodimers. Specific partner-pairs preferentially

bind to direct repeats (DR) with defined spacer lengths. RXR homodimers and RXR/PPAR hetero-

dimers both show preference for DRs with a single nucleotide spacer (DR1) (Evans and Mangels-

dorf, 2014; Nielsen et al., 2008). Using ChIP-seq data for RXRA and acetylated H3K27 (H3K27ac),

we identified all active enhancer/promoters bound by RXRAwt and/or RXRAS427F in JMSU-1 (‘RXR-

bound Active Enhancer/promoters’ or RAEs). Differential mean peak height of the H3K27ac signal

was used as an indicator of relative activation status in the wild-type and mutant condition at each

RAE. ~12% of RAEs showed significant up-regulation in the mutant condition (FDR <0.05)

(Figure 1E, Figure 1—source data 2). HOMER motif finding was then performed to identify motifs

enriched at these hyper-activated RAEs, relative to the background of all RAEs. Consistent with acti-

vation of PPAR pathway genes, the canonical RXR/PPAR (DR1) motif was the only known motif found

to be enriched with significant q-value. The most statistically robust motif identified by de novo dis-

covery is shown in Figure 1E. Comparing the de novo identified motif to known motifs found it to

be most similar to a PPAR response element (DR1). These data demonstrate that hyper-activation of

enhancer/promoters driven by the RXRA hot-spot mutation occurs preferentially at canonical RXR/

PPAR response elements. Using transient transfection of a DR1-driven luciferase reporter, we con-

firmed relative hyper-activation of DR1 in the JMSU-1 cells expressing mutant RXRA compared to

wild-type (Figure 1F), with a degree of induction similar to that observed after pioglitazone

treatment.

Hot-spot mutation-driven transcriptional activity is dependent on
expression of PPARD or PPARG
Having established that mutant RXRA up-regulates PPAR target gene expression, we next tested if

this was dependent on PPARs. TCGA data were first queried to determine which of the three PPARs

are most highly expressed in bladder cancer specimens with mutant RXRA (Cerami et al., 2012).

Figure 1 continued

(FDR < 0.05) in cells expressing RXRAS427F compared to cells expressing RXRAwt were identified and then subjected to over representation analysis

(ORA, GO-Elite) to discover enriched pathways relative to all other protein coding transcripts identified by RNA-seq. Experiment was done in two

bladder cancer cell lines, JMSU-1 or 575A, using three RNA samples, each purified from an independent cell well, for each condition. (See also source

data 1). (C) Transcriptome changes induced by RXRAS427F relative to RXRAwt were compared to expression changes of the same transcripts induced by

16 hr of pioglitazone (1 mM) treatment in the RXRAwt expressing cells. D) Relative expression of two PPAR targets with expression of indicated RXRA

alleles. RT-qPCR performed in triplicate ±SD. Comparison by Student’s t-test. (E) RAEs were defined by the presence of overlapping ChIP-seq signal for

RXRA and H3K27ac. RAEs identified by binding of RXRAwt and/or RXRAS427F are represented in grey. Hyperactive RAEs represented in red had

elevated H3K27ac mean peak height in the mutant expressing cells compared to the wild-type cells (FDR < 0.05). All ChIP-seq peak callings were based

on data from three independent immuno-precipitations, each utilizing input material from an independent cell plate. HOMER motif analysis was used

to identify motifs enriched in hyperactive RAEs relative to the background of non-hyperactive RAEs. Source data 2 specifies number of peaks in each

sector of the venn diagram. (F) Activity of a DR1 response element reporter (3X PPRE) transfected into JMSU-1 cells stably expressing either RXRAwt or

RXRAS427F. RXRAwt cells were also treated with pioglitazone (1 mM) for 16 hr. For all reporter assays, Firefly luciferase expressing reporter was co-

transfected with a constitutive Renilla luciferase expression vector to normalize for transfection efficiency. Data represents mean ± SEM of Firefly to

Renilla luciferase signal from three independent experiments done on different days, each performed using triplicate cell wells. Statistical comparisons

are by paired t-test.

DOI: https://doi.org/10.7554/eLife.30862.003

The following source data is available for figure 1:

Source data 1. GO Elite Over Representation Analysis complete results.

DOI: https://doi.org/10.7554/eLife.30862.004

Source data 2. ChIP-seq peak numbers used to generate venn diagram in Figure 1E.

DOI: https://doi.org/10.7554/eLife.30862.005
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Both PPARG and PPARD were significantly more highly expressed than PPARA, but the relative pro-

portion of PPARG and PPARD varied amongst the samples (Figure 2A,B). Using siRNA, we acutely

knocked-down PPARG and PPARD in the JMSU-1 and 575A cells transduced with wild-type or

mutant RXRA and used RT-qPCR to query the expression of PLIN2 and FABP3 (Figure 2C). In the

non-targeting control, both genes were again found up-regulated by mutant RXRA. PPARD knock-

down alone appeared to increase PPARG expression suggesting receptor cross talk and loss of neg-

ative feedback regulation. However, expression of neither PPAR target gene was significantly

reduced by PPARD knock-down alone. PPARG knock-down partially inhibited PLIN2 expression in

both cell lines, but did not have significant impact on FABP3. Combined knock-down of PPARD and

PPARG, however, strongly inhibited RXRAS427F-driven hyper-expression of both genes, to an extent

greater than knockdown of PPARG alone. Thus, both PPARD and PPARG contribute to mutant

RXRA-mediated transcriptional hyperactivity in human bladder cancer cells and appear to have

redundant function.

Since hyperactivity of mutant RXRA was dependent on PPAR expression, we reasoned that no

hyperactivity would be observed in the DR-1 luciferase reporter assay in a bladder cancer cell line

with low endogenous expression of PPARs. Treatment of UM-UC-3 with agonists to either PPARG or

PPARD did not have meaningful impact on reporter activity when RXRA was transfected without a

PPAR (Figure 2D), indicating a lack of relevant endogenous expression in this cell line. Similarly,

RXRAS427F/Y did not show increased activity relative to RXRAwt (Figure 2D). Since RXRA can drive

transcription as a homodimer with a preference for the DR1 motif, these data indicate that the muta-

tion does not confer gain-of-function in the homodimer context. We then examined reporter activity

with co-transfection of PPARG or PPARD. Expression of either PPAR was sufficient to elicit mutant

RXRA associated hyperactivity to an extent that approximated agonist induced activation of the

PPAR in the wild-type RXRA condition (Figure 2D). Similar to what was observed in the JMSU-1 sta-

ble cells, RXRAS427F appeared to have somewhat stronger activity than RXRAS427Y, but both were

hyperactive relative to RXRAwt (Figure 2D). Lastly, we tested reporter activity with co-transfection of

retinoic acid receptor alpha (RARA), which belongs to another family of RXRA heterodimerization

partners. Both the DR1 reporter and a reporter with the preferred RXR/RAR binding motif, DR5,

were induced by the RAR agonist all-trans-retinoic acid, but mutant RXRA did not elicit greater activ-

ity than wild-type RXRA (Figure 2—figure supplement 1). These data confirmed that RXRA hot-

spot mutations confer gain-of-function selectively in the context of PPAR expression.

Mutant RXRA activates the PPAR AF2 via an allosteric mechanism
Nuclear receptors share a conserved domain structure and are prototypically activated by agonist

binding to the ligand-binding domain (LBD). The activator function two domain (AF2) is then stabi-

lized in a conformation favoring recruitment of co-activators, initiating transcriptional regulation. In

the context of RXRA/PPAR heterodimers, activation can be induced with agonists to either receptor

(Evans and Mangelsdorf, 2014). Solved crystal structures of the RXRA/PPARG heterodimer reveal

that RXRA S427 resides in helix 10 at a heterodimerization interface (Figure 3A) (Chandra et al.,

2008; Gampe et al., 2000). Based on its location, we hypothesized that the RXRA mutation directly

activates the PPARG AF2, independent of PPAR ligand binding. To gain evidence, we determined

the inducibility of PPARG Q286P, a previously characterized substitution in the ligand-binding

pocket (Figure 3A) that prevented ligand activation by a panel of PPARG agonists (Walkey and

Spiegelman, 2008). The Q286P mutation completely blocked pioglitazone-driven receptor activa-

tion, but RXRA S427F-driven receptor hyperactivity was maintained (Figure 3B). In contrast, the

PPARG E471A mutation previously characterized to diminish the transactivation activity of the

PPARG AF2 (Chen et al., 2000), strongly reduced both pioglitazone and RXRA S427F-driven activity

(Figure 3B). The analogous AF2 mutation in RXRA, E453A, diminished activation by the RXRA ago-

nist SR11237, but had no impact on mutation-driven hyperactivity (Figure 3C). These data support a

model in which RXRAS427F hyperactivity relies primarily on the PPAR AF2, independent of PPAR ago-

nist binding.

To gain insight into how RXRAS427F/Y regulates the PPARG AF2, we performed long-time scale

molecular simulations of RXRA/PPARG heterodimers with wild-type RXRA or after the S427F substi-

tution. The starting structure was the agonist-bound crystal structure of the RXRA/PPARG LBDs

(PDB: 1FM6) (Gampe et al., 2000); however, the agonist compounds were deleted to reduce subse-

quent computational complexity and to enable drift toward the inactivated state. We next
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Figure 2. PPARG or PPARD expression is necessary and sufficient for mutant RXRA activity. A) PPAR RNA expression in RXRA hot-spot mutant clinical

samples from the TCGA dataset. Whisker plot shows 25th, median, and 75th percentile. (B) Data from panel A plotted per patient with hot-spot

mutation. (C) Effects of siRNA-mediated knock-down of PPARD and PPARG in JMSU-1 and 575A cell lines on two target genes (PLIN2 and FABP3) up-

regulated by mutant RXRA. Data by RT-qPCR in triplicate ±SD and indicated comparisons by Student’s t-test. (D) DR1 luciferase reporter activity in UM-

Figure 2 continued on next page
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constructed Markov State Models (MSMs) following the procedure from Hart et al. (2016) to quan-

tify the thermodynamics and kinetics of each heterodimer. First, conformations adopted by back-

bone-heavy atoms near the mutated site in RXRA and the PPARG AF2 (RXRA 425–429 and PPARG

445–477) from both wild-type and mutant simulations were clustered in the same state space. An

MSM was then constructed for each variant based on how often the corresponding simulations tran-

sitioned between every pair of clusters. The wild-type and mutant largely populate different clusters,

consistent with our hypothesis that mutant and wild-type RXRA differentially regulate the PPARG

AF2 region (Figure 3—figure supplement 1A)

We next inspected the three most frequently occupied clusters for wild-type and mutant by

superimposing the PPARG residues 445–459 on helix 11 as an anchor, enabling us to visualize rela-

tive displacement of the AF2 region located in helix 12 (Figure 3D). In the RXRA mutant condition,

PPARG E471 more closely approximated the agonist confirmation, in agreement with our mutational

studies showing the importance of this residue. The terminal tyrosine of PPARG (Y477) also

appeared in distinct spaces in the two conditions. Comparing the 5% most frequently occupied clus-

ters for wild type and mutant, we observed a significant difference in inter-residue distance between

RXRA 427 and PPARG 477 (Figure 3E). These data raised the possibility that an aromatic interaction

between RXRA S427F/Y and the terminal tyrosine found in all PPARs may underlie activation of

PPAR (Figure 3F). To test this, the terminal tyrosine was either deleted or mutated to serine in both

PPARG (Y477) and PPARD (Y441) and expression of the mutant PPARs was confirmed by western

blot (Figure 3—figure supplement 1B). Inducibility by RXRAS427F or agonist was then determined

(Figure 3B and G). In all cases, inducibility by agonist was maintained, but RXRA S427F-mediated

hyperactivity was eliminated. We conclude that S427F/Y initiates an allosteric relay via an aromatic

interaction with the terminal tyrosine on PPAR, leading to PPAR AF2 activation. No other RXR dimer-

ization partners have an aromatic amino acid at the corresponding position, providing a structural

basis for the selective activation of PPARs (Figure 3F).

PPARD activation induces growth-factor-independent growth of
urothelial organoids in the context of tumor suppressor loss
We next sought to determine if PPAR activation drives proliferation of urothelial cells. To culture pri-

mary urothelial cells, we developed a mouse urothelial organoid culture system. Similar organoid

systems have proven successful at identifying pro-tumorigenic phenotypes driven by cancer-associ-

ated mutations in multiple tissue types (Sachs and Clevers, 2014; Karthaus et al., 2014;

Drost et al., 2015; Hwang et al., 2016; Boj et al., 2015). With our urothelial approach, hollow

spherical epithelial structures can reliably be grown and passaged from primary mouse bladder epi-

thelium, utilizing epidermal growth factor (EGF) as the primary growth factor (Figure 4—figure sup-

plement 1A). Because growth-factor-independent growth is a classical hallmark of transformed cells,

we asked if stimulation with PPAR agonists could confer growth in the absence of EGF. As expected,

there was no growth of three independently derived wild-type organoids in the absence of growth

factor. Treatment with the PPARD agonist GW0742 or the PPARG agonist pioglitazone had no sig-

nificant effect on growth in these conditions, suggesting that PPAR activation is not sufficient to

drive growth in normal urothelial organoids (Figure 4A).

Bladder cancer genomes typically harbor mutations in several genes recognized as recurrently

altered in bladder cancers (Cancer Genome Atlas Research Network, 2014). We speculated that

pro-tumorigenic activities of PPAR signaling may only be apparent in the context of tumor suppres-

sor loss. For our analysis, we focused on TP53 and KDM6A which are amongst the most frequently

Figure 2 continued

UC-3 cells transfected with RXRA ±PPARD or PPARG. Cells were treated with 1 mM of the PPARG agonist pioglitazone or the PPARD agonist GW0742

for 16 hr. Data represents mean ±SEM of Firefly to Renilla luciferase signal from three independent experiments done on different days, each

performed using triplicate cell wells. Statistical comparisons are by paired t-test.

DOI: https://doi.org/10.7554/eLife.30862.006

The following figure supplement is available for figure 2:

Figure supplement 1. RARA expression is not sufficient for mutant RXRA hyperactivity.

DOI: https://doi.org/10.7554/eLife.30862.007
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Figure 3. Mutant RXRA induces allosteric activation of PPARs through their terminal tyrosine. A) RXRA S427 and other amino acids mutated for

structure-function studies highlighted in green on a published full-length crystal structure of a RXRA/PPARG heterodimer. (B) DR1 reporter assay in UM-

UC-3 co-transfecting indicated RXRA and PPARG alleles. Cells were treated with vehicle (DMSO) or pioglitazone 1 mM for 16 hr. Data represents mean

normalized signal ±SEM of three independent experiments done on different days, each performed in triplicate, with data from each experiment

Figure 3 continued on next page
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mutated tumor suppressors in bladder cancer, mutated in ~50% and~25% of bladder cancer cases,

respectively (Cancer Genome Atlas Research Network, 2014; Guo et al., 2013; Van Allen et al.,

2014). Of 16 patient samples identified with an RXRA hot-spot mutation across three cohorts, four

had mutations in both TP53 and KDM6A, five had mutations in TP53 only, three had mutations in

KDM6A only, and four had mutations in neither (Cerami et al., 2012). To determine if loss of tumor

suppressor function would enable pro-tumorigenic activities of PPAR activation, we generated con-

ditional knock-out bladder organoids from mice with the following three genotypes: (1) Trp53F/F, (2)

Kdm6aF, and (3) Trp53F/F;Kdm6aF. Three independent organoid lines (each from a distinct mouse

bladder) were generated with each genotype. These organoid lines were then all infected with

Adeno-cre and complete deletion of the conditional alleles was confirmed by genotyping PCR (not

shown). The wild-type organoids utilized in Figure 4A were generated from the littermates of these

mice and also were infected with Adeno-Cre to control for Cre exposure.

We then determined growth of the organoids in EGF deplete media after treatment with PPAR

agonists (Figure 4B, Figure 4—figure supplement 1B). No genotype showed consistent positive

growth in the vehicle condition. Elimination of Trp53, but not Kdm6a, was sufficient for GW0742 to

drive proliferation. With combined knock-out of Trp53 and Kdm6a, growth induction by GW0742

was even more robust than with Trp53 knock-out alone. These data suggest that loss of tumor sup-

pressors creates a context permissive for PPARD-driven proliferation. Even though responsiveness

to GW0742 was consistent across all of the dual knock-out organoids, we reasoned that utilizing a

clonal sub-line might minimize variation due to random clonal skewing in later experiments involving

retroviral infection and drug selection. Therefore, we established DKO 431.A from a single organoid

picked from the DKO 431 line and assessed its responsiveness to PPAR agonists. DKO 431.A

showed strong, dose-dependent, enhanced growth when treated with GW0742, but not pioglita-

zone (Figure 4C). To assess transcriptional activation by the same PPAR agonists, DKO 431.A orga-

noids were plated in standard media for 7 days and then treated with two doses of GW0742 or

pioglitazone for 48 hr. Expression of two PPAR target genes, Plin2 and Fabp4 was then determined

by RT-qPCR. GW0742 strongly induced both genes, while pioglitazone and little to no effect

(Figure 4D, Figure 4—figure supplement 1C). These findings confirm that the ability of PPAR ago-

nists to induce target genes in DKO 431.A correlates with their ability to promote growth-factor-

independent growth. The apparent lack of response to PPARG agonist in these experiments is likely

simply due to its lower expression in these mouse organoids relative to 575A and JMSU-1, the two

cells lines in which we had established induction of PPAR target genes with pioglitazone in Figure 1

(Figure 4—figure supplement 1D).

Mutant RXRA drives sustained growth-factor-independent growth in
urothelial organoids with concurrent loss of Kdm6a and Trp53
We then asked if RXRAS427F would promote growth-factor-independent growth. DKO 431.A was

infected with retrovirus bearing empty vector, RXRAwt, or RXRAS427F and similar expression levels of

RXRA between the wild-type and mutant condition was confirmed by western blot and qPCR

(Figure 4E). Growth of the organoids in EGF deplete media was then assessed. Mutant RXRA-

Figure 3 continued

normalized to the RXRAwt vehicle condition for each section. Statistical comparisons are by unpaired t-test. (C) Left, reporter assay performed with

indicated RXRA alleles only and drug treatment with the RXRA agonist SR11237 (100 nM) for 16 hr. Right, reporter assay with wild-type PPARG co-

transfected. Data represent mean ±SEM of Firefly to Renilla luciferase signal from three independent experiments done on different days, each

performed using triplicate cell wells. Statistical comparisons are by paired t-test. (D) Published agonist structure of RXRA/PPARG heterodimer (PDB:

1FM6) in red and blue with key residues highlighted in bright green. Top three occupied microstate clusters from simulation experiments are

superimposed. (E) Distance from starting agonist structure between alpha carbons of RXR 427 and PPARG 477 in the top 5% most-occupied

microstates for wild-type and mutant RXRA. Mean ±SD, comparison is by Student’s t test. (F) Alignment of the AF2 region and C-terminus of all RXRA

dimerization partners. Terminal tyrosine unique to PPARs is indicated. (G) Reporter assay similar to B, but using PPARD and the PPARD agonist

GW0742.

DOI: https://doi.org/10.7554/eLife.30862.008

The following figure supplement is available for figure 3:

Figure supplement 1.

DOI: https://doi.org/10.7554/eLife.30862.009
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Figure 4. PPARD agonist and mutant RXRA confer growth-factor-independent growth to urothelium in the context of tumor suppressor loss. (A)

Organoids were derived from three independent wild-type mouse bladders and infected with Adeno-Cre. Growth was determined for each line in

organoid media without EGF using CellTiter-Glo after treatment with vehicle, GW0742 (100 nM), or pioglitazone (100 nM). Data represent mean ±SEM

from three independent experiments, each performed in triplicate cell wells. Statistical comparison is by unpaired t-test. (B) Similar to A but organoids

Figure 4 continued on next page
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expressing organoids grew significantly faster than empty vector or wild-type expressing organoids

(Figure 4F). However, growth was also observed in the wild-type condition. To ensure that the dif-

ference between mutant and wild-type growth was robust, we passaged wild-type and mutant-

expressing organoids with tyrpsinization weekly, always plating an identical number of cells and then

counting the number of cells present at time of each passage. The total number of doublings over

six passages was then determined. Mutant RXRA organoids showed consistent growth throughout

the experiment, while the wild-type condition appeared to plateau (Figure 4G). Comparing the

number of doublings per passage between the two conditions, we found the difference to be highly

significant (paired t test p=0.0003), confirming gain-of-function with the mutant allele.

Mutant RXRA-driven proliferation of urothelial organoids is dependent
on PPARD activity
Having established that RXRAS427F phenocopies GW0742 induced growth in the organoid growth

assay, we next looked for transcriptional evidence that RXRAS427F was activating PPARD. Organoids

were cultured in standard media for seven days and then treated with PPAR antagonists for an addi-

tional two days. We then determined mRNA expression levels of two PPAR target genes by RT-

qPCR. Comparing vehicle-treated samples, Plin2 and Fabp4 were found significantly up-regulated in

the mutant condition compared to the empty vector or wild-type organoids, confirming that mutant

RXRA up-regulates expected PPAR targets in the organoid system (Figure 5A). Treatment of the

mutant expressing organoids with either of two PPARD inverse agonists, ST247 and GSK0660,

blunted up-regulation of the target genes (Figure 5A, Figure 5—figure supplement 1)

(Naruhn et al., 2011; Shearer et al., 2008). The PPARG antagonist T0070907 did not show any

inhibitory activity. These findings confirm that mutant RXRA drives PPARD hyper-activity in the orga-

noid system.

We next sought to determine if mutant RXRA-driven growth could be reversed with PPAR inhibi-

tion. When treated with either of the two PPARD antagonists, the mutant expressing organoids

showed significant, dose-dependent growth inhibition (Figure 5B.) To determine if the proliferative

effects of PPARD inhibitors was specific to the RXRA-mutant-driven proliferation, we utilized an

organoid line we established from a carcinogen-induced bladder tumor, called MCB6C, which shows

robust growth in EGF deplete media, but does not harbor the RXRA mutation (not shown). Treat-

ment of MCB6C with the PPARD inhibitors in EGF deplete media did not inhibit their growth across

the identical doses (Figure 5C). As expected based on the gene expression analysis, the PPARG

antagonist T0070907 also had no antiproliferative effects on 431.A.RXRAS427F (Figure 5D). Lastly,

431.A.RXRwt organoids in EGF-containing media were treated with the same PPAR antagonists,

none of which significantly inhibited growth of this organoid line (Figure 5E), confirming PPAR

dependence is specific to mutant RXRA-driven proliferation.

Figure 4 continued

were derived from Trp53flox/flox; Kdm6aflox mice. (C) CellTiter-Glo growth assay in media without EGF of a sub-clone from DKO431 (DKO 431.A) treated

with GW0742 (10, 100 nM) or pioglitazone (100, 1000 nM). Mean values ± SEM from three independent experiments, each performed using triplicate

organoid wells. Comparison is by paired t-test. (D) DKO 431.A organoids were plated in standard organoid media and then treated with, vehicle,

GW0742 (10, 100 nM)) or pioglitazone (100, 1000 nM) for an additional 48 hr. Induction of PPAR target genes was determined by RT-qPCR in

triplicate ± SD. (See also Figure 4—figure supplement 1C.) (E) DKO 431.A organoids were infected with a retroviral vector that was empty, expresses

RXRAwt, or expresses RXRAS427F and expression of total RXRA (western blot) and human RXRA (RT-qPCR, triplicate +/SD) was determined. (F) Mean

CellTiter-Glo signal ±SEM from three identical experiments, each performed using triplicate organoid wells. Comparison of D10 data is by paired t-test.

(G) Identical number of indicated organoid cells were plated in media without EGF and then harvested with trypsin weekly and counted in duplicate

using a BioRad TC20. Identical numbers of cells were then re-plated and this was repeated for 6 weeks. Total cell number doublings were calculated

and plotted. Comparison of doublings is by paired t-test.

DOI: https://doi.org/10.7554/eLife.30862.010

The following figure supplement is available for figure 4:

Figure supplement 1.

DOI: https://doi.org/10.7554/eLife.30862.011
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Figure 5. RXRA S427F generates PPARD-dependent urothelial growth. (A) Retrovirally transduced organoids from Figure 4 were plated for 7 days in

standard media and then treated with the indicated PPARD antagonists (1000 nM ST-247, GSK0660) or PPARG antagonist (100 nM T0070907) for 2 days.

Expression of PPAR targets was determined by RT-qPCR in triplicate ±SD and comparison is by Student’s t-test to the RXRAS427F DMSO condition. (See

also Figure 5—figure supplement 1)) (B-E) CellTiter-Glo growth assay of indicated organoid lines treated with indicated drugs. Plotted is mean

Figure 5 continued on next page
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Discussion
A role for PPAR activity in promoting bladder cancer is supported by the presence of a PPARG gene

amplification in 17% of cases (Cancer Genome Atlas Research Network, 2014). Intriguingly, piogli-

tazone use in patients with diabetes appears to increase bladder cancer risk, further hinting that

PPARG activation can promote bladder cancer growth (Lewis et al., 2011). Our studies identified

RXRA point mutations as a second genomic mechanism by which PPARs can be hyperactivated.

These data, along with our direct functional evidence that PPAR activation by agonist or mutant

RXRA drives urothelial proliferation, build on a growing body of data credentialing PPARs as bladder

cancer drivers. Importantly, human bladder cancer samples appear to express both PPARD and

PPARG and our data suggest both are activated by mutant RXRA and play a role in transcriptional

hyperactivity in human bladder cancer cells. In order to guide drug development, future studies will

be needed with a broad panel of human-derived tissue to determine if one PPAR isoform is of

greater clinical relevance to RXRA mutation-driven disease. We speculate co-targeting of PPARD

and PPARG will be necessary, perhaps even in PPARG amplified cases, as functional redundancy of

homologous nuclear receptors or kinases is known to be exploited by tumors, in some cases underly-

ing treatment resistance to therapeutics targeting only one homologue (Arora et al., 2013;

Juric et al., 2015).

Heyman and colleagues showed two decades ago that RXR agonists can induce activation of

RXR/PPAR heterodimers, independent of the RXR AF2, by inducing conformational changes in PPAR

(Schulman et al., 1998). The RXRA hot-spot mutations appear to co-opt a similar, although mecha-

nistically distinct, activation principle, relying on the introduction of an aromatic interaction that

drives ligand-independent activation of PPARs. While this manuscript was under preparation, Korpal

et al. reported biophysical data characterizing the mutant RXRA/PPARG heterodimer (Korpal et al.,

2017). Those in vitro findings align with our modeling predictions, which we further functionally vali-

dated with cell-based mutational studies, both with PPARG and PPARD. This allosteric activation

mechanism of the PPAR AF2 by mutant RXRA raises unique challenges with regard to inhibitor

design. In our study, we utilized inverse agonists which bind the LBD and stabilize interactions with

co-repressors. While they are effective at reversing mutant RXRA-driven activity, we suspect chemi-

cal screens using assays in which PPARs are activated through the mutation-based mechanism may

identify optimal inverse agonists capable of more complete target inhibition.

Inverse agonists binding the PPAR LBD remain the most characterized strategy to inhibit PPAR

activity, but may not prove to be the most effective approach for blocking ligand independent activ-

ity driven by RXRA mutations. A potentially more effective strategy might be through the identifica-

tion of small molecules that induce PPAR degradation. Supporting the concept, ligands that induce

destabilizing conformations in ER have been identified (Wu et al., 2005), and the clinical utility of

the ER degrader fluvestrant has been validated in breast cancer clinical trials (Howell et al., 2002;

Osborne et al., 2002). Similar to ER, PPARs undergo agonist-induced degradation, suggesting ther-

apeutic ligand-induced degradation of PPARs might also be feasible (Hauser et al., 2000). Perhaps,

a more rational approach to inducing PPAR degradation would be to engineer PPAR ligands linked

to a chemical tag (e.g. PROTAC) that targets proteins to the proteasome. Such approaches have

been used in preclinical systems to degrade other nuclear receptors (Rodriguez-Gonzalez et al.,

2008), although the clinical utility of the approach is not yet established. Lastly, the identification of

biologically active small molecules that disrupt co-regulator binding to the ER AF2 raises yet another

possible paradigm for targeting ligand-independent activation through the identification of small

Figure 5 continued

signal ±SEM from three independent experiments, each performed using triplicate organoid wells. MCB6C is an organoid line we derived from a

carcinogen-induced bladder tumor and lacks RXRA mutation. Organoids were cultured in media without EGF except for panel E where inclusion of

EGF is indicated. Comparison is to DMSO condition using paired t-test.

DOI: https://doi.org/10.7554/eLife.30862.012

The following figure supplement is available for figure 5:

Figure supplement 1. Aggregated RT-qPCR from three distinct experiments as described in Figure 5A with each data point from each experiment

plotted with mean indicated.

DOI: https://doi.org/10.7554/eLife.30862.013
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molecules that recognize the activated PPAR AF2 (Raj et al., 2017). Our work here should encour-

age such approaches with the goal of identifying inhibitors that effectively overcome PPAR tumori-

genic activity due to PPARG amplification and RXRA mutation.

The organoid system provided us with a unique capability to assay epithelial autonomous effects

of PPAR activity in defined genetic contexts, including normal urothelium. In contrast to classical

growth factors such as EGF which stimulate proliferation of wild-type organoids, we found that

PPARD activation is only sufficient to drive growth with concurrent tumor suppressor loss. One possi-

ble explanation is that tumor suppressor loss alters PPARD-driven transcriptional regulation. Studies

with AR in prostate cancer suggest that the AR cistrome is broadly reprogrammed during tumori-

genesis (Pomerantz et al., 2015), supporting a model in which nuclear receptors take on de novo

target regulation in transformed cells. Alternatively, tumor suppressor loss may alter the cellular

response to PPARD activation and/or provide complementary pro-tumorigenic signals. These possi-

bilities will be explored in future studies and should help elucidate the cellular mechanisms by which

PPAR signaling can drive urothelial proliferation. Regardless of the underlying mechanisms, however,

our findings, along with recent work from others demonstrating PPARG orchestrates an immunosup-

pressive micro-environment to enhance tumor growth in vivo (Korpal et al., 2017), provide an

increasingly compelling rationale for the development of a new class of molecularly targeted drugs

with potential relevance to at least a quarter of bladder cancer cases.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

gene (Homo sapiens) RXRA NA NCBI Gene ID:6256;
NM_002957

gene (H. sapiens) PPARG NA NCBI Gene ID:5468;
NM_138711

gene (H. sapiens) PPARD NA NCBI Gene ID:5467;
NM_006238

strain, strain background
(Mus musculus)

Kdm6aF other Generated by Dr. Lukas Wartman
(Washington University School of
Medicine) with ES cells obtained
from EUCOMM with the Kdm6atm1a

(EUCOMM)Wtsi allele
(manuscript in preparation)

strain, strain background
(M. musculus)

Trp53Flox; B6.129P2-
Trp53tm1brn/J

The Jackson Laboratory The Jackson
Laboratory:008462;
RRID:IMSR_JAX:008462

genetic reagent Ad5CMVCre-eGFP
adenovirus

University of Iowa
Viral Vector Core

VVC-U of Iowa:1174

cell line (M. musculus) MCB6C this paper Clonal organoid line generated
from tumor bearing bladder of male
C57BL/6 mouse treated with BBN

cell line (M. musculus) DKO 431.A this paper clonal organoid line generated
from the urothelium of a male
Trp53Flox/Flox;Kdm6aFlox mouse

cell line (M. musculus) WT this paper Organoid lines generated from the
urothelium of wild-type male mice
resulting from cross between
Trp53Flox/+ and Kdm6aFlox/+ mice

cell line (M. musculus) "Trp53-/-;
Kdm6a-"; DKO

this paper Organoid lines were generated
from the urothelium of Trp53Flox/Flox;
Kdm6aFlox male mice and then
infected with Ad5CMVCre-eGFP
adenovirus in vitro

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

cell line (M. musculus) "Kdm6a-"; KKO this paper Organoid lines were generated
from the urothelium of Kdm6aFlox

male mice and then infected with
Ad5CMVCre-eGFP adenovirus in vitro

cell line (M. musculus) "Trp53-/-"; PKO this paper Organoid lines were generated
from the urothelium of Trp53Flox/Flox

male mice and then infected with
Ad5CMVCre-eGFP adenovirus in vitro

cell line (M. musculus) DKO 431.A.EV this paper DKO 431.A organoid line infected
with retrovirus carrying
pBABE puro empty vector

cell line (M. musculus) DKO 431.
A.RXRAwt

this paper DKO 431.A organoid line infected
with retrovirus
carrying pBABE puro RXRA

cell line (M. musculus) DKO 431.A.RXRAS427F this paper DKO 431.A organoid line infected
with retrovirus carrying
pBABE puro RXRA S427F

cell line (H. sapiens) JMSU-1 other RRID:CVCL_2081 obtained from Dr. David
Solit (MSKCC)

cell line (H. sapiens) 575A other RRID:CVCL_7941 obtained from Dr. David
Solit (MSKCC)

cell line (H. sapiens) UM-UC-3 other RRID:CVCL_1783 obtained from Dr. David
Solit (MSKCC)

cell line (H. sapiens) Lenti-X 293T Clontech Clontech:632180

cell line (H. sapiens) JMSU-1 RXRA WT this paper JMSU-1 cell line infected with
retrovirus carrying
pBABE puro RXRA

cell line (H. sapiens) JMSU-1 RXRA S427F this paper JMSU-1 cell line infected
with retrovirus carrying
pBABE puro RXRA S427F

cell line (H. sapiens) JMSU-1 RXRA S427Y this paper JMSU-1 cell line infected with
retrovirus carrying
pBABE puro RXRA S427Y

cell line (H. sapiens) 575A RXRA WT this paper 575A cell line infected with
retrovirus carrying
pBABE puro RXRA

cell line (H. sapiens) 575A RXRA S427F this paper 575A cell line infected with
retrovirus carrying
pBABE puro RXRA S427F

antibody anti-PPARG (81B8)
(rabbit monoclonal)

Cell Signaling Technology Cell Signaling
Technology:2443;
RRID:AB_823598

(1:1000)

antibody anti-PPARD
(rabbit monoclonal)

Abcam Abcam:ab178866 (1:5000)

antibody anti-RXRA (D6H10)
(rabbit monoclonal)

Cell Signaling Technology Cell Signaling
Technology:3085

(1:1200)

antibody anti-beta-Actin
(mouse monoclonal)

Sigma-Aldrich Sigma-Aldrich:A5441;
RRID:AB_476744

(1:50000)

antibody anti-GAPDH (D16H11)
(rabbit monoclonal)

Cell Signaling Technology Cell Signaling
Technology:5174;
RRID:AB_10622025

(1:1000)

antibody anti-rabbit IgG,
HRP (goat)

Cell Signaling Technology Cell Signaling
Technology:7074;
RRID:AB_2099233

(1:7500)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

antibody anti-mouse IgG,
HRP (horse)

Cell Signaling Technology Cell Signaling
Technology:7076;
RRID:AB_330924

(1:7500)

antibody anti-RXRA (K8508)
(mouse monoclonal)

R&D Systems R&D Systems:
PP-K8508-00;
RRID:AB_2182738

(5 mg)

antibody anti-H3K27Ac
(rabbit polyclonal)

Abcam Abcam:ab4729;
RRID:AB_2118291

(0.4 mg)

recombinant DNA reagent PPRE X3-TK-luc;
DR1 reporter
(plasmid)

Addgene; PMID 9539737 Addgene:1015 plasmid was deposited
by Bruce Spiegelman

recombinant DNA reagent pGL3-RARE-luciferase;
DR5 reporter (plasmid)

Addgene; PMID 16818722 Addgene:13458 plasmid was deposited
by T. Michael Underhill

recombinant DNA reagent pRL-SV40 (plasmid) Promega Promega:E2231

recombinant DNA reagent pCL-ampho (plasmid) other obtained from
Dr. Charles Sawyers (MSKCC)

recombinant DNA reagent VSVG (plasmid) other obtained from
Dr. Charles Sawyers (MSKCC)

recombinant DNA reagent pCMV6-XL4 RARA
(plasmid)

OriGene OriGene:SC119566

recombinant DNA reagent pCMV6-XL4 PPARG
(plasmid)

OriGene OriGene:SC108192

recombinant DNA reagent pCMV6-XL4 PPARG
Q286P (plasmid)

this paper Q286 was mutated via site-directed
mutagenesis of pCMV6-XL4 PPARG

recombinant DNA reagent pCMV6-XL4 PPARG
E471A (plasmid)

this paper E471 was mutated via site-directed
mutagenesis of pCMV6-XL4 PPARG

recombinant DNA reagent pCMV6-XL4 PPARG
Y477S (plasmid)

this paper Y477 was mutated via site-directed
mutagenesis of pCMV6-XL4 PPARG

recombinant DNA reagent pCMV6-XL4 PPARG
Y477X (plasmid)

this paper Y477 was deleted via site-directed
mutagenesis of pCMV6-XL4 PPARG

recombinant DNA reagent pCMV6-XL4 empty
vector (plasmid)

this paper generated by digesting pCMV6-XL4
PPARG with NotI to remove PPARG
and by ligating the plasmid ends
with T4 DNA ligase

recombinant DNA reagent pBABE puro
RXRA (plasmid)

Addgene Addgene:11441 deposited by Ronald Kahn

recombinant DNA reagent pBABE puro RXRA
S427F (plasmid)

this paper S427 was mutated via site-directed
mutagenesis of pBABE puro empty vector

recombinant DNA reagent pBABE puro RXRA
S427Y (plasmid)

this paper S427 was mutated via site-directed
mutagenesis of pBABE puro empty vector

recombinant DNA reagent pBABE puro RXRA
E453A (plasmid)

this paper E453 was mutated via site-directed
mutagenesis of pBABE puro empty vector

recombinant DNA reagent pBABE puro RXRA
S427F/E453A (plasmid)

this paper E453 was mutated via site-directed
mutagenesis of pBABE puro RXRA S427F

recombinant DNA reagent pBABE puro empty
vector (plasmid)

this paper generated by digesting pBABE
puro RXRA with EcoRI to remove
RXRA and by ligating the plasmid
ends with T4 DNA ligase

recombinant DNA reagent pCMV6-XL4 PPARD
(plasmid)

this paper Human PPARD was cloned
from JMSU-1 epithelial bladder
cancer cells and inserted
into the pCMV6-XL4

recombinant DNA reagent pCMV6-XL4 PPARD
Y441S (plasmid)

this paper Y441 was mutated via site-directed
mutagenesis of pCMV6-XL4 PPARD

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

recombinant DNA reagent pCMV6-XL4 PPARD
Y441X (plasmid)

this paper Y441 was deleted via site-directed
mutagenesis of pCMV6-XL4 PPARD

sequence-based reagent ON-TARGETplus
Non-targeting
Pool (siRNA)

Dharmacon Dharmacon:
D-001810-10-20

sequence-based reagent ON-TARGETplus Human
PPARG siRNA

Dharmacon Dharmacon:
L-003436-00-0005

sequence-based reagent ON-TARGETplus Human
PPARD siRNA

Dharmacon Dharmacon:
L-003435-00-0005

commercial assay or kit Dual-Glo Luciferase
Assay System

Promega Promega:E2940

commercial assay or kit CellTiter-Glo Promega Promega:G7571

commercial assay or kit Ovation Ultraflow
System V2

NuGen NuGen:0344-32

chemical compound, drug Pioglitazone Sigma-Aldrich Sigma-Aldrich:E6910

chemical compound, drug GW 0742 Tocris Tocris:2229

chemical compound, drug SR 11237 Tocris Tocris:3411

chemical compound, drug all-trans-Retinoic
Acid (ATRA)

Sigma-Aldrich Sigma-Aldrich:R2625

chemical compound, drug GSK 0660 Tocris Tocris:3433

chemical compound, drug ST247 Sigma-Aldrich Sigma-Aldrich:SML0424

chemical compound, drug T0070907 Cayman Chemical Cayman Chemical:10026

software, algorithm GROMACS 5.1.3 DOI: 10.1016/j.softx.
2015.06.001

RRID:SCR_014565

software, algorithm MSMBuilder 2.8 PMID: 22125474

software, algorithm Chimera PMID: 15264254;
http://www.rbvi.ucsf.
edu/chimera

RRID:SCR_004097

sequence-based reagent
mKDM6A Forward
(primer)

this paper 5’ CGAGAAAGGAAATGTG
AGAGCAAGG 3’

sequence-based reagent
mKDM6A Reverse 4
(primer)

this paper 5’ CTGGCAGGATATGATA
GCAATGTG 3’

sequence-based reagent

oIMR8543 (primer) The Jackson Laboratory;
https://www2.jax.org/
protocolsdb/f?p=116:
2:0::NO:2:P2_MASTER_
PROTOCOL_ID,P2_JRS_
CODE:3226,008462

5’ GGTTAAACCCAGCT
TGACCA 3’

sequence-based reagent

oIMR8544 (primer) The Jackson Laboratory;
https://www2.jax.org/
protocolsdb/f?p=116:
2:0::NO:2:P2_MASTER_
PROTOCOL_ID,P2_JRS_
CODE:3226,008462

5’ GGAGGCAGAGACA
GTTGGAG 3’

sequence-based reagent
PPARD.qPCR.Fwd.1
(primer)

this paper 5’ ATGCACCAACGA
GGCTGATG 3’

sequence-based reagent
PPARD.qPCR.Rev.1
(primer)

this paper 5’ CTGCTCCATGGCT
GATCTCC 3’

sequence-based reagent
PPARG fwd1 (primer) this paper 5’ ATGCCTTGCAGT

GGGGATGTC 3’

sequence-based reagent
PPARG rev1 (primer) this paper 5’ GAGGTCAGCGGA

CTCTGGATTC 3’

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

sequence-based reagent
hPLIN2 fwd1 (primer) this paper 5’ AGTGCTCTGCCC

ATCATCCAG 3’

sequence-based reagent
hPLIN2 rev1 (primer) this paper 5’ TCACAGCGCCTT

TGGCAT TG 3’

sequence-based reagent
FABP4 fwd1 (primer) this paper 5’ ACTGCAGCTTCCT

TCTCACCTTG 3’

sequence-based reagent
FABP4 rev1 (primer) this paper 5’ TGCCAGCCACTT

TCCTGGTG 3’

sequence-based reagent
mPlin2 Fwd1 (primer) this paper 5’ GTGCCCTGCCC

ATCATCC 3’

sequence-based reagent
mPlin2 Rev1 (primer) this paper 5’ TTACGGCACCTCT

GGCACTG 3’

sequence-based reagent
mFabp4 Fwd1 (primer) this paper 5’ TGCAGCCTTTCTCA

CCTGGAAG 3’

sequence-based reagent
mFabp4 Rev1 (primer) this paper 5’ GCCTGCCACTTTCC

TTGTGG 3’

sequence-based reagent
RXRA fwd1 (primer) this paper 5’ ACAAGACGGAGC

TGGGCTG 3’

sequence-based reagent
RXRA rev2 (primer) this paper 5’ GGCTGCTCTGGGT

ACTTGTGC 3’

sequence-based reagent
RXRA E453A SDM For
(primer)

this paper 5’ acaccttccttatggccat
gctggaggcgccg 3’

sequence-based reagent
RXRA E453A SDM Rev
(primer)

this paper 5’ cggcgcctccagcatggcc
ataaggaaggtgt 3’

sequence-based reagent RXRa S427F-F (primer)
this paper 5’ CCG GCT CTG CGC TTT

ATC GGG CTC AAA T 3’

sequence-based reagent
RXRa S427F-R (primer) this paper 5’ CAT TTG AGC CCG ATA

AAG CGC AGA GCC G 3’

sequence-based reagent
RXRa S427Y-F (primer) this paper 5’ CCG GCT CTG CGC TAT

ATC GGG CTC AAA T 3’

sequence-based reagent
RXRa S427Y-R (primer) this paper 5’ CAT TTG AGC CCG ATA

TAG CGC AGA GCC G 3’

sequence-based reagent
F hPPARGQ286P (primer) this paper 5’ ccacggagcgaaacgg

gcagccctgaaag 3’

sequence-based reagent
R hPPARGQ286P (primer) this paper 5’ ctttcagggctgcccgttt

cgctccgtgg 3’

sequence-based reagent
F hPPARGE471A (primer) this paper 5’ agtccttgtagatcgcctg

caggagcggg 3’

sequence-based reagent
R hPPARGE471A (primer) this paper 5’ cccgctcctgcaggcgat

ctacaaggact 3’

sequence-based reagent
PPARG Y477S For SDM
(primer)

this paper 5’ GAGATCTACAAGGACTTGAG
CTAGCAGAGAGTCCTGAGC 3’

sequence-based reagent
PPARG Y477S Rev SDM
(primer)

this paper 5’ GCTCAGGACTCTCTGCTAGCT
CAAGTCCTTGTAGATCTC 3’

sequence-based reagent
PPARG Y477X For SDM
(primer)

this paper 5’ GATCTACAAGGACTTGTAG
TAGCAGAGAGTCCTGA 3’

sequence-based reagent
PPARG Y477X Rev SDM
(primer)

this paper 5’ TCAGGACTCTCTGCTACTAC
AAGTCCTTGTAGATC 3’

sequence-based reagent
PPARD Y441S For (primer) this paper 5’ AGATCTACAAGGACATGAG

CTAACGGCGGCACCCAG 3’

sequence-based reagent
PPARD Y441S Rev (primer) this paper 5’ CTGGGTGCCGCCGTTA

GCTCATGTCCTTGTAGATCT 3’

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

sequence-based reagent
PPARD Y441X For (primer) this paper 5’ GATCTACAAGGACATGTGA

TAACGGCGGCACCCAGG 3’

sequence-based reagent
PPARD Y441X Rev (primer) this paper 5’ CCTGGGTGCCGCCGTTATC

ACATGTCCTTGTAGATC 3’

Mouse Bladder Organoid Generation and Culturing: Urothelium was dissected from bladders col-

lected from 6- to 8-week-old male mice, minced into smaller pieces with scissors, and digested with

collagenase type II (17101015 Gibco) re-suspended at 5 mg/mL in Advanced DMEM/F12++

+ medium (advanced DMEM/F-12 medium (12634028 Gibco) supplemented with 1% penicillin-strep-

tomycin and 1% HEPES (MT25060CI Corning)), 5 mM ROCK1/2 inhibitor Y-27632 (72302 Stemcell

Technologies), and 0.2 mg/mL elastase (E7885 Sigma) for 4 hr at 37˚C while shaking at 700 rpm.

After digestion with collagenase, cells were pelleted at 500 x g for 5 min and digested with TrypLE

(12605010 Gibco) for 30 min at 37˚C with shaking at 700 rpm. Cells were washed with Advanced

DMEM/F12+++ medium and re-suspended in growth factor reduced Matrigel (356231 Corning) at

10,000 cells per a 50 mL Matrigel tab. Tabs were incubated at 37˚C for 15 min to allow Matrigel to

harden. Once hardened, tabs were cultured in organoid medium prepared as described in

Gao et al. (2014) except for the following changes: final concentration of EGF was 5 ng/mL, final

concentration of A83-01 was 20 nM, and FGF10, FGF2, dihydrotestosterone, Y-27632, SB202190,

and primocin were omitted. Organoids were split approximately every 7 days. Tabs were homoge-

nized by pipetting. Organoids were digested with TrypLE for approximately 20 min at 37˚C with

periodic vortexing. Cells were washed with Advanced DMEM/F12+++ medium and re-suspended at

10,000 cells per a 50 mL Matrigel tab. To generate MCB6C, mice were treated with BBN 0.1% via

drinking water for 22 weeks. Bladders were harvested and a polyclonal organoid line (MCB6) was

generated from a tumor-bearing bladder. A single organoid was isolated to generate MCB6C.

Mice
Animals were handled and housed according to protocols approved by the Washington University

School of Medicine Institutional Animal Care and Use Committee. Kdm6aF mice were generated by

Dr. Lukas Wartman (Washington University School of Medicine) with ES cells obtained from

EUCOMM with the Kdm6atm1a(EUCOMM)Wtsi allele (manuscript in preparation) and maintained on the

C57BL6/J background. B6.129P2-Trp53tm1brn/J (Trp53Flox) mice were purchased from Jackson Labo-

ratory (stock # 008462). Mice were genotyped via PCR (Kdm6a 5’ CGAGAAAGGAAATGTGAGAG-

CAAGG 3’ and 5’ CTGGCAGGATATGATAGCAATGTG 3’; Trp53 5’ GGTTAAACCCAGCTTGACCA

3’ and 5’ GGAGGCAGAGACAGTTGGAG 3’). Experimental animals resulted from crosses between

Kdm6aFlox/+ and Trp53Flox/+ mice.

Adenovirus infection of organoids
To generate Trp53-/-, Kdm6a-, and Trp53-/-;Kdm6a- organoids, Trp53Flox/Flox, Kdm6aFlox, and

Trp53Flox/Flox;Kdm6aFlox organoids were infected with Ad5CMVCre-eGFP adenovirus (University of

Iowa Viral Vector Core) in vitro. Organoids were trypsinized into single cells. 500,000 cells were pel-

leted in a 1.5-mL tube and re-suspended in 100 mL of organoid medium supplemented with a final

concentration of 5 mg/mL polybrene (TR-1003-G Millipore) with or without virus at a MOI of 50. Cells

were incubated at 32˚C with shaking at 700 rpm on an Eppendorf ThermoMixer for 1 hr. Cells were

then incubated at 37˚C without shaking for approximately 2.5 hr. Cells were pelleted and re-sus-

pended in 650 mL Matrigel to make twelve 50 mL Matrigel tabs. Tabs were hardened at 37˚C for 15

min and organoid medium was added. To verify recombination of floxed alleles, DNA was isolated

from organoid cell pellets using the DNeasy Blood and Tissue Kit (69506 Qiagen, Germany) and gen-

otyped via PCR using the primers listed in Key Resources.

Expression vector construction
Wild-type human RXRA was expressed from pBABE puro RXRA (plasmid #11441 Addgene). Point

mutations were introduced via the QuikChange Site-Directed Mutagenesis protocol (Agilent
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Technologies). pBABE puro empty vector was generated by digesting pBABE puro RXRA with EcoRI

to remove RXRA and by ligating the plasmid ends together with T4 DNA ligase (M0202S New Eng-

land BioLabs). Wild-type human PPARG1 was expressed from pCMV6-XL4 PPARG (SC108192 Ori-

gene). Point mutations were introduced via the QuikChange Site-Directed Mutagenesis protocol.

pCMV6-XL4 empty vector was generated by digesting pCMV6-XL4 PPARG with NotI to remove

PPARG and by ligating the plasmid ends together with T4 DNA ligase. Human PPARD was cloned

from JMSU-1 epithelial bladder cancer cells. Cells were harvested upon reaching 80–90% confluency

and total RNA was isolated using the RNeasy Mini Kit. JMSU-1 cDNA was generated using a First-

Strand cDNA Synthesis Kit (27-9261-01 GE Healthcare Life Sciences) with random hexameric primers

and 5 mg total RNA. Primers targeting the 5’ and 3’ UTRs were used to amplify PPARD. PPARD was

inserted into the pCMV6-XL4 expression vector using the In-Fusion HD Cloning System (639646

Clontech). Point mutations were introduced via the QuikChange Site-Directed Mutagenesis protocol.

See Key Resources for primer sequences.

Cell lines
JMSU-1, 575A, and UM-UC-3 were obtained from Dr. David Solit (MSKCC). 293 Lenti-X cells were

obtained from Clonetech. Cells were cultured in recommended medium supplemented with 10%

fetal bovine serum (FBS; FB-11 Omega Scientific), 1% penicillin-streptomycin (15140122 Gibco), and

1x GlutaMAX Supplement (35050061 Gibco). Cells were grown at 37˚C in 5% CO2.

Retroviral infections
Retrovirus was produced by using LipoD293 DNA In Vitro Transfection Reagent (SL100668 SignaGen

Laboratories) to transiently transfect 293 Lenti-X cells with 0.45 mg VSVG, 2.27 mg pCL-ampho, and

2.27 mg pBABE puro empty vector, RXRA WT, RXRA S427F, or RXRA S427Y in a 100 mm TC-treated

tissue culture dish. Medium was replaced with recommended culturing medium approximately 6 hr

post-transfection. Retrovirus was collected 48 hr post-transfection and was filtered through a 0.45-m

M filter. Stable cells lines were generated by seeding cells in a 100 mm TC-treated tissue culture

dish 18–24 hr before adding virus so that cell confluency was 50–70% when virus was added. The

next day, medium was removed and retrovirus diluted 1:4 in the recommended culturing medium

and supplemented with a final concentration of 8 mg/mL polybrene (TR-1003-G Millipore) was added

to the cells. After approximately 24 hr, the virus-containing medium was replaced with fresh

medium. Cells were cultured for an additional 36 hr, at which time puromycin (P8833 Sigma-Aldrich)

was added at a predetermined concentration to select for transduced cells. To generate stable orga-

noid lines, organoids were trypsinized into single cells. 500,000 cells were pelleted in a 1.5-mL tube

and resuspended in 500 mL of 1:1 organoid medium:retrovirus mixture supplemented with a final

concentration of 8 mg/mL polybrene. Cells were incubated at 32˚C with shaking at 600 rpm on an

Eppendorf ThermoMixer for 1.5 hr. Cells were then incubated at 37˚C without shaking for approxi-

mately 5 hr. Cells were pelleted and resuspended in enough Matrigel to make three 50 mL Matrigel

tabs. Tabs were hardened at 37˚C for 15 min and organoid medium was added. 48 hr after infection,

puromycin was added at a predetermined concentration to select for transduced cells.

siRNA knockdown
Cells were seeded in a 12-well cell culture plate 18–24 hr before transfection so that cell confluency

was 50–70% at time of transfection. PepMute siRNA Transfection Reagent (SL100566 SignaGen Lab-

oratories) was used to transiently transfect cells with ON-TARGETplus Non-targeting Pool (D-

001810-10-20 Dharmacon), ON-TARGETplus Human PPARG siRNA (L-003436-00-0005 Dharmacon),

and/or ON-TARGETplus Human PPARD siRNA (L-003435-00-0005 Dharmacon). PepMute/siRNA

complex-containing medium was replaced with recommended culturing medium approximately 24

hr post transfection. Cells were collected 72 hr post transfection.

Western blotting
Cells and organoids were lysed in M-PER (78501 Thermo Scientific) supplemented with 1x Halt Pro-

tease Inhibitor Cocktail (87786 ThermoFisher Scientific) and 0.45 M NaCl for 10 min on ice with peri-

odic vortexing. Lysates were cleared by centrifugation at 18,000 x g for 15 min. Protein

concentration was determined with Pierce BCA Protein Assay (23224/23228 ThermoFisher Scientific).
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Protein lysates were denatured by boiling in 1x Bolt LDS Sample Buffer (B0008 Invitrogen) and 1x

NuPAGE Sample Reducing Reagent (NP0004 Invitrogen) for 10 min. Proteins were separated on

Bolt 4–12% Bis-Tris Plus Gels (NW04122BOX Invitrogen), transferred onto Immobilon-P Membrane,

PVDF, 0.45 mM (IPVH00010 Millipore), and blocked according to antibody specifications. Blots were

incubated with primary antibody in blocking solution overnight at 4˚C. Blots were washed with 1x

TBS plus 0.1% Tween and primary antibodies were detected with HRP-conjugated secondary anti-

bodies. Amersham ECL Prime western blotting detection reagent (RPN2232 GE Healthcare Life Sci-

ences) or Clarity Western ECL Substrate (170–5060 Bio-Rad) was used for chemiluminescence and

luminescence was detected with the Bio-Rad ChemiDoc XRS + System. Antibodies and concentra-

tion list in Key Resources

RNA isolation, cDNA synthesis, and RT-qPCR
RNeasy Mini Kit (74106 Qiagen) was used to isolate RNA from organoid and cell pellets. iScript

cDNA Synthesis Kit (1708891 Bio-Rad) was used to synthesize cDNA from 0.5 to 1 mg of RNA. RT-

qPCR was performed according to package instructions for SsoFast EvaGreen Supermix with low

ROX (172–5211 Bio-Rad) on the Applied Biosystems QuantStudio 3 Real-Time PCR system. See Key

Resources for primer sequences used.

Reporter assays
Cells were seeded in a 48-well cell culture plate 18–24 hr before transfection so that cell density was

approximately 70% at time of transfection. LipoD293 DNA In Vitro Transfection Reagent (SL100668

SignaGen Laboratories) was used to transiently transfect cells with a reporter plasmid, expression

vectors, and a plasmid expressing Renilla luciferase. LipoD293/DNA complex-containing medium

was replaced with recommended culturing medium supplemented with 1% FBS 16–18 hr post-trans-

fection. Drugs were added to cells 48 hr post transfection. Drug-containing medium was removed

16 hr later and cells were washed with 1x PBS. Luciferase activity was assayed using Dual-Glo Lucifer-

ase Assay System (E2940 Promega) and in accordance with the Dual-Glo protocol except that a 1:1

mixture of 1xPBS:Dual-Glo Reagent was added to the cells. Luminescence was measured on the

SpectraMax i3 Platform (Molecular Devices). See Key Resources for list of plasmids.

Growth assays
Organoids were plated at 1000 or 1500 cells per tab and cultured in normal or EGF deplete orga-

noid medium, respectively, for 8–10 days. Drugs or DMSO were added to medium at time of plat-

ing. Medium was changed every 4 days post-plating. Cell viability was measured day 1 (baseline

measurement) and at indicated days post-plating using CellTiter-Glo (G7571 Promega). Briefly, tabs

were homogenized in 1:1 mixture of 1xPBS:CellTiter-Glo reagent and incubated at room tempera-

ture for 10 min with shaking. Homogenate was transferred to a white, 96-well plate and lumines-

cence was measured on the SpectraMax i3 Platform. For organoid counting assay, organoids were

digested into a single-cell suspension with trypsin and the counted in duplicate using a Bio-rad

TC20.

RNA-seq sample preparation
Cells were seeded in biological triplicate in 6-well tissue culture plates at 300,000 cells (JMSU-1) or

125,000 (575A) cells per well. 48 hr later, 0.1% DMSO or 1 mM pioglitazone (E6910 Sigma-Aldrich)

was added to cells. RNA was isolated with the RNeasy Mini Kit (74106 Qiagen) 16–18 hr after addi-

tion of drugs. RNA library prep and sequencing were done by the Genome Technology Access Cen-

ter in the Department of Genetics at Washington University School of Medicine. Briefly, Ribosomal

RNA was removed by poly-A selection using Oligo-dT beads. mRNA was then fragmented and

reverse transcribed to yield double stranded cDNA using random hexamers. cDNA was blunt ended,

had an A base added to the 3’ ends, and then had Illumina sequencing adapters ligated to the ends.

Ligated fragments were then amplified for 12 cycles using primers incorporating unique index tags.

Fragments were sequenced on an Illumina HiSeq-2500 or HiSeq-3000 using single reads extending

50 bases.
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RNA-seq data acquisition, quality control, and processing
RNA-seq reads were aligned to the Ensembl release 76 top-level assembly with STAR version

2.0.4b. Gene counts were derived from the number of uniquely aligned unambiguous reads by Sub-

read:featureCount version 1.4.5. Transcript counts were produced by Sailfish version 0.6.3. Sequenc-

ing performance was assessed for total number of aligned reads, total number of uniquely aligned

reads, genes and transcripts detected, ribosomal fraction known junction saturation and read distri-

bution over known gene models with RSeQC version 2.3. All gene-level and transcript counts were

then imported into the R/Bioconductor package EdgeR and TMM normalization size factors were

calculated to adjust for samples for differences in library size. Genes or transcripts not expressed in

any sample were excluded from further analysis. The TMM size factors and the matrix of counts were

then imported into R/Bioconductor package Limma and weighted likelihoods based on the observed

mean-variance relationship of every gene/transcript and sample were then calculated for all samples

with the voomWithQualityWeights function. Performance of the samples was assessed with a spear-

man correlation matrix and multidimensional scaling plots. Gene/transcript performance was

assessed with plots of residual standard deviation of every gene to their average log-count with a

robustly fitted trend line of the residuals. Generalized linear models were then created to test for

gene/transcript level differential expression. Differentially expressed genes and transcripts were

then filtered for FDR adjusted p-values less than or equal to 0.05. Go-Elite version 1.2 was used to

identify over-represented pathways curated by KEGG.

ChIP-seq sample preparation
JMSU-1 cells stably expressing RXRAwt or RXRAS427F were seeded in biological triplicate in 150 mm

TC-treated culture dish and collected when 70–90% confluency was reached. Crosslinking and ChIP

were performed as described for adherent cells in the ENCODE experiment summary for

ENCSR000BJW (https://www.encodeproject.org/experiments/ENCSR000BJW/). Chromatin was son-

icated using the Diagenode Pico Bioruptor. DNA-protein complexes were precipitated with antibod-

ies against RXRA (PP-K8508-00 R and D Systems) and H3K27Ac (ab4729 Abcam). Ovation Ultralow

System V2 (0344–32 NuGen) was used to generate the sequencing library. The library was

sequenced by the Genome Technology Access Center in the Department of Genetics at Washington

University School of Medicine.

ChIP-seq data analysis
Reads were aligned to hg19 using NovoAlign version 3.04.06 with the command novoalign -r None

-l 30 -e 100 -i 230 140 –H. For the RXRA and H3K27ac IPs, peaks were called for each phenotype

using the IDR (Li et al., 2011) pipeline described here (Kundaje, 2012) with MACS version 2.1.1

(Zhang et al., 2008) as the peak caller. RAE regions were defined for each phenotype by running

bedtools intersect on the H3K27ac and RXRA IDR peak lists. Differential binding analysis was per-

formed on the H3K27ac signal using DiffBind (Ross-Innes et al., 2012) comparing mutant to wild-

type with the IDR peak lists as input and an FDR cutoff of 0.05. Motif analysis of the RAE regions

was performed using HOMER version 4.9 (Heinz et al., 2010) with the command findMotifsGe-

nome.pl –h –bg <Background> <Peaklist> hg19. Peaklist was the RAE regions found by DiffBind to

have higher H3K27ac binding in mutant. Background was the list of all RAE regions minus the ones

found in peaklist.

Preparation of structures for molecular dynamics simulations
The published structure of complexed RXRA/PPARG LBDs bound to agonist (PDB: 1FM6)

(Gampe et al., 2000) was used as the starting conformation for simulations. To reduce subsequent

computational complexity and enable drift towards an inactive state during simulations, the respec-

tive agonist structures binding RXRA and PPARG were removed. The small peads were aligned to

hg19 usptide nuclear receptor coactivator 1 (NCOA1) bound to both RXRA and PPARG AF2

domains was also removed with the same purpose. The Chimera molecular visualization tool

(Pettersen et al., 2004) was used to mutate RXRA serine 427 to phenylalanine (RXRA S427F), creat-

ing wild-type and mutant structures for subsequent simulations.
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Molecular dynamics simulations
The protocol described by Hart et. al. was used for molecular dynamics simulations (Hart et al.,

2016). Briefly, simulations were performed using the molecular dynamics package GROMACS 5.1.3

(Abraham et al., 2015). The Amber03 force field (Duan et al., 2003) was used and hydrogen atoms

in each structure were replaced with virtual sites. The protein structure was solvated within a

dodecahedron whose border was at least 10 Å away from the protein in all directions. Chlorine

counterions were added to neutralize the system’s overall positive charge. To ensure the system

contains no steric clashes or inappropriate geometry, energy minimization was used to relax the sys-

tem below a 1000 kJ/mol/nm threshold. To equilibrate solvent and ions around the structure, the

system underwent position-restrained molecular dynamics simulation for one nanosecond using a

step size of 4 fs. After relaxation and equilibration, each system was subjected to long-timescale

molecular simulations. Simulations took place using the NPT ensemble at 1 bar and 300 K. Parri-

nello-Rahman pressure coupling (Parrinello and Rahman, 1981) and the V-rescale thermostat

(Bussi et al., 2007) were used during simulations. The LINCS method (Hess, 2008) constrained

hydrogen bonds and allowed the use of virtual sites. The cutoffs for electrostatic and van der Waals

interactions was 9 Å. Periodic boundary conditions were applied during simulation and the particle-

mesh Ewald summation reconstituted any long-distance electrostatic interactions. Each simulation

lasted 100 nanoseconds with conformations stored every 10 picoseconds. Ten simulations were run

to produce an aggregate 1 microsecond of simulation for both wild-type and mutant conditions.

Markov state modeling
MSMBuilder 2.8 (Beauchamp et al., 2011) was used to analyze conformations adopted during

molecular simulation. Wild-type and mutant structures were clustered in overlapping state space

using the hybrid k-centers/k-medoids technique. Clustering was based on the RMSD of between

backbone-heavy atoms from PPARG 445–477 and RXRA 425–429. The inter-cluster distance cutoff

was 1 Å and 50 iterations were performed to refine cluster assignment. A microstate Markov state

model (MSM) was constructed using the Transpose method for symmetric counts matrix estimation

and without applying an ergodic trim. The 5% most frequently occupied microstates during wild-

type and mutant conformations were selected. Distance between alpha carbons of RXRA 427 and

PPARG 477 was calculated for comparison between microstate structures from wild-type and mutant

simulations. The inter-residue distances were normalized to the respective distance in the agonist-

bound crystal structure. The Chimera molecular visualization tool was used to generate representa-

tive figures.

Statistics
All statistical tests are as indicated in figure legends. Analysis was done in GraphPad Prism with the

exception of pearson coefficients which were calculated using Microsoft Excel. All statistical compar-

isons are two-tailed. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Naruhn S, Toth PM, Adhikary T, Kaddatz K, Pape V, Dörr S, Klebe G, Müller-Brüsselbach S, Diederich WE, Müller
R. 2011. High-affinity peroxisome proliferator-activated receptor b/d-specific ligands with pure antagonistic or
inverse agonistic properties. Molecular Pharmacology 80:828–838. DOI: https://doi.org/10.1124/mol.111.
074039, PMID: 21862691

Nielsen R, Pedersen TA, Hagenbeek D, Moulos P, Siersbaek R, Megens E, Denissov S, Børgesen M, Francoijs KJ,
Mandrup S, Stunnenberg HG. 2008. Genome-wide profiling of PPARgamma:RXR and RNA polymerase II
occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition
during adipogenesis. Genes & Development 22:2953–2967. DOI: https://doi.org/10.1101/gad.501108, PMID: 1
8981474

Nogova L, Sequist LV, Perez Garcia JM, Andre F, Delord JP, Hidalgo M, Schellens JH, Cassier PA, Camidge DR,
Schuler M, Vaishampayan U, Burris H, Tian GG, Campone M, Wainberg ZA, Lim WT, LoRusso P, Shapiro GI,
Parker K, Chen X, et al. 2017. Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor,
in Patients With Advanced Solid Tumors Harboring Genetic Alterations in Fibroblast Growth Factor Receptors:
Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study. Journal of Clinical Oncology 35:157–
165. DOI: https://doi.org/10.1200/JCO.2016.67.2048, PMID: 27870574

Osborne CK, Pippen J, Jones SE, Parker LM, Ellis M, Come S, Gertler SZ, May JT, Burton G, Dimery I, Webster
A, Morris C, Elledge R, Buzdar A. 2002. Double-blind, randomized trial comparing the efficacy and tolerability
of fulvestrant versus anastrozole in postmenopausal women with advanced breast cancer progressing on prior
endocrine therapy: results of a North American trial. Journal of Clinical Oncology 20:3386–3395. DOI: https://
doi.org/10.1200/JCO.2002.10.058, PMID: 12177098

Parrinello M, Rahman A. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method.
Journal of Applied Physics 52:7182–7190. DOI: https://doi.org/10.1063/1.328693

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera–a
visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612.
DOI: https://doi.org/10.1002/jcc.20084, PMID: 15264254

Pomerantz MM, Li F, Takeda DY, Lenci R, Chonkar A, Chabot M, Cejas P, Vazquez F, Cook J, Shivdasani RA,
Bowden M, Lis R, Hahn WC, Kantoff PW, Brown M, Loda M, Long HW, Freedman ML. 2015. The androgen
receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nature Genetics 47:1346–
1351. DOI: https://doi.org/10.1038/ng.3419, PMID: 26457646

Halstead et al. eLife 2017;6:e30862. DOI: https://doi.org/10.7554/eLife.30862 26 of 27

Research article Cancer Biology

https://doi.org/10.1038/ncomms12965
http://www.ncbi.nlm.nih.gov/pubmed/27708258
https://doi.org/10.1074/jbc.M001297200
http://www.ncbi.nlm.nih.gov/pubmed/10748014
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
http://www.ncbi.nlm.nih.gov/pubmed/20513432
https://doi.org/10.1021/ct700200b
http://www.ncbi.nlm.nih.gov/pubmed/26619985
https://doi.org/10.1200/JCO.2002.10.057
http://www.ncbi.nlm.nih.gov/pubmed/12177099
https://doi.org/10.1002/path.4651
http://www.ncbi.nlm.nih.gov/pubmed/26419819
https://doi.org/10.1038/nature13948
https://doi.org/10.1038/nature13948
http://www.ncbi.nlm.nih.gov/pubmed/25409150
https://doi.org/10.1016/j.cell.2014.08.017
https://doi.org/10.1016/j.cell.2014.08.017
http://www.ncbi.nlm.nih.gov/pubmed/25201529
https://doi.org/10.1038/s41467-017-00147-w
http://www.ncbi.nlm.nih.gov/pubmed/28740126
https://sites.google.com/site/anshulkundaje/projects/idr#TOC-UNIFORMLY-PROCESSED-ENCODE-PEAK-CALLS
https://sites.google.com/site/anshulkundaje/projects/idr#TOC-UNIFORMLY-PROCESSED-ENCODE-PEAK-CALLS
https://doi.org/10.2337/dc10-1068
http://www.ncbi.nlm.nih.gov/pubmed/21447663
https://doi.org/10.1214/11-AOAS466
https://doi.org/10.1124/mol.111.074039
https://doi.org/10.1124/mol.111.074039
http://www.ncbi.nlm.nih.gov/pubmed/21862691
https://doi.org/10.1101/gad.501108
http://www.ncbi.nlm.nih.gov/pubmed/18981474
http://www.ncbi.nlm.nih.gov/pubmed/18981474
https://doi.org/10.1200/JCO.2016.67.2048
http://www.ncbi.nlm.nih.gov/pubmed/27870574
https://doi.org/10.1200/JCO.2002.10.058
https://doi.org/10.1200/JCO.2002.10.058
http://www.ncbi.nlm.nih.gov/pubmed/12177098
https://doi.org/10.1063/1.328693
https://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1038/ng.3419
http://www.ncbi.nlm.nih.gov/pubmed/26457646
https://doi.org/10.7554/eLife.30862


Raj GV, Sareddy GR, Ma S, Lee TK, Viswanadhapalli S, Li R, Liu X, Murakami S, Chen CC, Lee WR, Mann M,
Krishnan SR, Manandhar B, Gonugunta VK, Strand D, Tekmal RR, Ahn JM, Vadlamudi RK. 2017. Estrogen
receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast
cancers. eLife 6:e26857. DOI: https://doi.org/10.7554/eLife.26857, PMID: 28786813

Rodriguez-Gonzalez A, Cyrus K, Salcius M, Kim K, Crews CM, Deshaies RJ, Sakamoto KM. 2008. Targeting
steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 27:
7201–7211. DOI: https://doi.org/10.1038/onc.2008.320, PMID: 18794799

Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green
AR, Ali S, Chin SF, Palmieri C, Caldas C, Carroll JS. 2012. Differential oestrogen receptor binding is associated
with clinical outcome in breast cancer. Nature 481:389–393. DOI: https://doi.org/10.1038/nature10730,
PMID: 22217937

Sachs N, Clevers H. 2014. Organoid cultures for the analysis of cancer phenotypes. Current Opinion in Genetics
& Development 24:68–73. DOI: https://doi.org/10.1016/j.gde.2013.11.012, PMID: 24657539

Schulman IG, Shao G, Heyman RA. 1998. Transactivation by retinoid X receptor-peroxisome proliferator-
activated receptor gamma (PPARgamma) heterodimers: intermolecular synergy requires only the PPARgamma
hormone-dependent activation function. Molecular and Cellular Biology 18:3483–3494. DOI: https://doi.org/
10.1128/MCB.18.6.3483, PMID: 9584188

Shearer BG, Steger DJ, Way JM, Stanley TB, Lobe DC, Grillot DA, Iannone MA, Lazar MA, Willson TM, Billin AN.
2008. Identification and characterization of a selective peroxisome proliferator-activated receptor beta/delta
(NR1C2) antagonist. Molecular Endocrinology 22:523–529. DOI: https://doi.org/10.1210/me.2007-0190,
PMID: 17975020

Van Allen EM, Mouw KW, Kim P, Iyer G, Wagle N, Al-Ahmadie H, Zhu C, Ostrovnaya I, Kryukov GV, O’Connor
KW, Sfakianos J, Garcia-Grossman I, Kim J, Guancial EA, Bambury R, Bahl S, Gupta N, Farlow D, Qu A,
Signoretti S, et al. 2014. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive
urothelial carcinoma. Cancer Discovery 4:1140–1153. DOI: https://doi.org/10.1158/2159-8290.CD-14-0623,
PMID: 25096233

Walkey CJ, Spiegelman BM. 2008. A functional peroxisome proliferator-activated receptor-gamma ligand-
binding domain is not required for adipogenesis. Journal of Biological Chemistry 283:24290–24294.
DOI: https://doi.org/10.1074/jbc.C800139200, PMID: 18622018

Wu YL, Yang X, Ren Z, McDonnell DP, Norris JD, Willson TM, Greene GL. 2005. Structural basis for an
unexpected mode of SERM-mediated ER antagonism. Molecular Cell 18:413–424. DOI: https://doi.org/10.
1016/j.molcel.2005.04.014, PMID: 15893725

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu
XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology 9:R137. DOI: https://doi.org/10.1186/
gb-2008-9-9-r137, PMID: 18798982

Halstead et al. eLife 2017;6:e30862. DOI: https://doi.org/10.7554/eLife.30862 27 of 27

Research article Cancer Biology

https://doi.org/10.7554/eLife.26857
http://www.ncbi.nlm.nih.gov/pubmed/28786813
https://doi.org/10.1038/onc.2008.320
http://www.ncbi.nlm.nih.gov/pubmed/18794799
https://doi.org/10.1038/nature10730
http://www.ncbi.nlm.nih.gov/pubmed/22217937
https://doi.org/10.1016/j.gde.2013.11.012
http://www.ncbi.nlm.nih.gov/pubmed/24657539
https://doi.org/10.1128/MCB.18.6.3483
https://doi.org/10.1128/MCB.18.6.3483
http://www.ncbi.nlm.nih.gov/pubmed/9584188
https://doi.org/10.1210/me.2007-0190
http://www.ncbi.nlm.nih.gov/pubmed/17975020
https://doi.org/10.1158/2159-8290.CD-14-0623
http://www.ncbi.nlm.nih.gov/pubmed/25096233
https://doi.org/10.1074/jbc.C800139200
http://www.ncbi.nlm.nih.gov/pubmed/18622018
https://doi.org/10.1016/j.molcel.2005.04.014
https://doi.org/10.1016/j.molcel.2005.04.014
http://www.ncbi.nlm.nih.gov/pubmed/15893725
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1186/gb-2008-9-9-r137
http://www.ncbi.nlm.nih.gov/pubmed/18798982
https://doi.org/10.7554/eLife.30862

