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Abstract

Background—Vitamin D has neuroprotective and immunomodulatory properties, and deficiency 

is associated with worse stroke outcomes. Little is known about effects of hypoxia-ischemia or 

hypothermia treatment on vitamin D status in neonates with hypoxic-ischemic encephalopathy 

(HIE). We hypothesized vitamin D metabolism would be dysregulated in neonatal HIE altering 

specific cytokines involved in Th17 activation, which might be mitigated by hypothermia.

Methods—We analyzed short term relationships between 25(OH) and 1,25(OH)2 vitamin D, 

vitamin D binding protein, and cytokines related to Th17 function in serum samples from a 

multicenter randomized controlled trial of hypothermia 33°C for 48h after HIE birth versus 

normothermia in 50 infants with moderate to severe HIE.

Results—Insufficiency of 25(OH) vitamin D was observed after birth in 70% of infants, with 

further decline over the first 72h, regardless of treatment. 25(OH) vitamin D positively correlated 

with antiinflammatory cytokine IL-17E in all HIE infants. However, Th17 cytokine suppressor 

IL-27 was significantly increased by hypothermia, negating the IL-27 correlation with vitamin D 

observed in normothermic HIE infants.
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Conclusions—Serum 25(OH) vitamin D insufficiency is present in the majority of term HIE 

neonates and is related to lower circulating anti-inflammatory IL-17E. Hypothermia does not 

mitigate vitamin D deficiency in HIE.

INTRODUCTION

Vitamin D is an important neurosteroid during development and after CNS injury. 

Deficiency of vitamin D contributes to many diseases that involve systemic or CNS 

inflammation, and vitamin D deficient adults have worse outcomes after stroke (1, 2). Most 

vitamin D studies in neonates have focused on its role in mineral metabolism. Little is 

known about vitamin D status, immunomodulatory function, or effects of hypothermia on 

vitamin D binding protein (DBP) in neonatal hypoxic-ischemic encephalopathy (HIE).

The significance of vitamin D as an immunomodulator and regulator of pro-inflammatory 

Th17 lymphocytes has been well established in adult stroke. Adult patients have 

demonstrated an increased proportion of Th17 lymphocytes within 24 hours (3) and one 

week after stroke (4). These findings may be pertinent to neonatal HI, as naïve T cells 

develop into Th17 cells more readily in infants than adults, and may contribute to neonatal 

inflammatory response to HI injury (5). Vitamin D has been shown to reduce pro-

inflammatory Th17 differentiation and proliferation, and IL-17 cytokine production (6), 

while promoting anti-inflammatory IL-10 and T regulatory cells (7). However, vitamin D 

degradation is increased in neuroinflammation (8), which may limit its effect as a Th17 

immunomodulator after HI. In addition, vitamin D deficiency (<20 ng/ml) and insufficiency 

(<30 ng/ml) is widespread in human neonates (9). In the only other report on vitamin D 

status in neonatal HIE, Mutlu et al. demonstrated lower serum 25(OH) vitamin D 

(25(OH)D) concentrations in 31 cooled HIE infants in Turkey compared with healthy term 

control infants (10). In this study all HIE infants had serum 25(OH)D < 20ng/ml on day of 

life 1, and 30% infants had persistently low serum 25(OH)D on day 5.

Circulating concentrations of prohormone 25(OH)D are important for the maintenance of 

CNS concentrations of active 1,25(OH)2 vitamin D (1,25(OH)2D), which is synthesized in 

many extra-renal cells, including neuronal and glial cells that contain 1-α-hydroxylase (11). 

Thus, serum concentrations of 25(OH)D may be crucial for vitamin D’s neuroprotective and 

immune functions after HI injury, in addition to endocrine roles in calcium and phosphorus 

homeostasis (2, 12). We hypothesized that vitamin D metabolism would be increased with 

neonatal HIE, and that low serum 25(OH)D concentrations would adversely affect Th17 

cytokines. We further hypothesized that hypothermia therapy would alter vitamin D 

metabolism and specific cytokines involved in Th17 activation. Using samples from 

neonates with moderate to severe HIE in the first 3 days after HI birth, we explored 

25(OH)D and 1,25(OH)2D serum concentrations, vitamin D binding proteins (DBP and 

albumin), and circulating cytokines related to Th17 function in addition to calcium and 

phosphorus relationships.
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METHODS

We investigated serum 25(OH)D, 1,25(OH)2D, DBP, albumin, Th17 related cytokines, 

calcium, and phosphorus concentrations in serum samples stored at −80°C from a 

multicenter randomized trial of systemic hypothermia in neonates with HIE (13). This study 

was approved by Institutional Review Boards at all seven participating centers (Medical 

University of South Carolina, Eastern Virginia Medical School, University of Virginia, 

Albany Medical Center, State University of New York, Medical College of Georgia, and 

University of Saskatchewan). Entry criteria and demographic data of this cohort have been 

published in detail (13). Briefly, newborn infants were at least 35 weeks gestation, 2,000g 

birth weight, and less than 6h after birth or HI injury, with signs of moderate to severe 

neonatal encephalopathy, and were randomization to either hypothermia (rectal temperature, 

Tr=33°C) or normothermia (Tr=36.5°C) treatment for 48h after parental consent. Infants 

with maternal chorioamnionitis, sepsis, and birth weight or head circumference less than 

10% were excluded from the study.

Multiplex and Vitamin D Assays

Serum samples were collected at enrollment and every 12h for 72h. Hypothermia was 

initiated by transport teams at outside hospitals, and most hypothermia infants were cooled 

for several hours at the time of the first blood draw within 9h of birth. Study time points 

after enrollment correspond to time after birth (in parentheses) as follows: Enrollment 0 

hours (0–9h), 12h (12–21h), 24h (22–33h), 36h (24–45h), 48h (46–57h), 60h (58–69h), and 

72h (70–81h). Samples at the 60–72h after enrollment were obtained after rewarming. 

Samples were aliquoted and stored at −80°C until assay in duplicate on a BioPlex platform 

for the following analytes: IL-17A, IL-17E, IL-17F, IL-21, IL-22, IL-23, IL-27, and TNF-β 
(HTH17MAG-14K, EMD Millipore, Billerica, MA) as previously described (14). 

Concentrations were based on 5 parameter logistic fit of a 7 point standard curve. Serum 

levels of IL-17F, IL-22, IL-23, and TNF-β were below detectible limits, and IL-21 was only 

analyzed up to 12h due to low numbers of patients with detectible levels after this time.

25(OH)D and 1,25(OH)2D levels were measured in available samples from 0–72h after 

hypothermia initiation using a rapid, direct radioimmunoassay in Dr. Hollis’ laboratory with 

a lower limit of detection of 2ng/ml for 25(OH)D and 15pg/ml for 1,25(OH)2D, as 

previously described (15). DBP was measured on available serum samples using a 1:5000 

dilution in a sandwich ELISA (GWB-DM3741, Genway Biotech, San Diego, CA) according 

to manufacturer’s protocol. Lower limit of detection of the DBP assay was 6.5ng/ml. On a 

subset of samples (n=17) from HIE infants at the Medical University of South Carolina, we 

performed a chart review and determined daily vitamin D intake in total parenteral nutrition 

(TPN) for the first 72h (pediatric multivitamins, ergocalciferol 400 IU/day =10 mcg/day or 

417 ng/h).

Clinical Labs

Cord or initial neonatal gases were obtained at or within 1h of birth (13). Enrollment 

calcium, phosphorus, albumin and pH were all obtained after arrival at the tertiary care 

center, between 3–9h of life. Arterial blood gases were measured every 6h, calcium and 
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phosphorus levels were measured every 12h, and albumin levels were measured every 24h 

over the first 4 days of life. Enteral nutrition was not started until 96h after HI birth.

Statistical Analysis

Data are reported as medians ± interquartile range (IQR) or graphically as medians ± 95% 

confidence intervals (CI). Mann-Whitney U test or Wilcoxon signed rank was used for 

Vitamin D comparisons as appropriate. Racial analyses were restricted to Caucasian and 

African American groups as others were too few to analyze. Correlations within individuals 

were analyzed using a Spearman rank correlation with reported significance p≤0.01, to 

account for multiple comparisons. The independent effects of 25(OH)D and 1,25(OH)2D on 

repeated laboratory measures, and the independent and interaction effects of hypothermia 

treatment, time and survival on laboratory measurements were assessed using mixed effects 

modeling with pairwise post-hoc analyses. The effects of albumin and DBP on 25(OH)D 

levels were also assessed using mixed model analysis with treatment and time in the model. 

Within the treatment groups, IL-27 was assessed over time using a mixed model. All 

analyses were performed using SPSS 21 (IBM Corp, Armonk, NY).

RESULTS

Demographics of the 50 patients included in this analysis were similar between hypothermia 

(n=28) and normothermia (n=22) groups (Table 1). Severe outcome (death or Bayley II 

psychomotor developmental indices ≤70 at 12 mo) was significantly more common in 

normothermia compared to hypothermia infants (Fisher’s Exact Test, p=0.036).

Vitamin D Deficiency Is Common And Declines Further Over 72h In Infants With Hypoxic-
Ischemic Injury

Median serum 25(OH)D levels were not significantly different between normothermic 

(17.5ng/ml; IQR 7.5, 21.3ng/ml) and hypothermic HIE infants (16.8ng/ml; IQR 9.4, 

20.8ng/ml) at any time point, nor between Sarnat stages 2 and 3 (p=0.897) or sex (p=0.742). 

Median serum 25(OH)D were significantly lower in African American versus Caucasian 

infants, regardless of treatment (Mann-Whitney, p=0.001, Figure 1a) (9). Several sites in this 

multicenter RCT were in more northern latitudes: there were 6 infants from the Canadian 

site (2 Native American, 4 Caucasian), 4 from Albany (4 Caucasian), and 2 from SUNY 

Brooklyn (1 African American, 1 Asian). The means and standard deviation of infants from 

northern latitude sites were Canada 24.7± 11.3 (range 12.3–39.7 ng/ml), Albany 18.5± 3.0 

(range 14.7–21.5 ng/ml), and SUNY 13.7± 5.7 (range 9.7–17.7 ng/ml). Also comparing 

northern and southern latitude Native American/African American (northern 

14.9± 4.9ng/ml, n=3; southern 10.4± 6.3 ng/ml, n=17) and Caucasian infants (northern 

20.8± 9.9, n=8; southern 18.4± 6.9 ng/ml, n=23), the means were not significantly different 

in the two latitudes by race, though sample size was more limited in northern latitudes.

Treatment groups were subsequently combined for analysis of 25(OH)D (n=46 infants with 

enrollment 25(OH)D concentrations). Circulating 25(OH)D at 0h was categorized within 

consensus guidelines for nutritional rickets but taking into account other levels that have 

implications for immune function (15, 16): sufficient (>30ng/ml; >75nmol/l), low-sufficient 
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(>20–30ng/ml; 50–75nmol/l), insufficient (12–20ng/ml; 30–50nmol/l), and deficient 

(<12ng/ml; <30nmol/l).

25(OH)D was insufficient in 72% of HIE infants immediately after birth, and 33% of HIE 

infants were deficient (Figure 1b). Only 28% had 25(OH)D levels >20ng/ml, and 2 infants 

(4%) had 25(OH)D levels between 30 and 40ng/ml. All African American HIE infants had 

25(OH)D levels ≤20ng/ml. These levels are in contrast to reported cord blood 25(OH)D 

concentrations in healthy, term neonates in whom 56% were deficient and mean 25(OH)D 

was 21.1±2.2ng/ml (15).

Serum 25(OH)D concentrations decreased further in 50% of HIE infants between enrollment 

and 48–72h (n=17 out of 34 infants with multiple measurements; Figure 1c).

We next evaluated a subset of infants (n=17) with serial 25(OH)D levels in whom 

documentation of exogenous parenteral administration of 25(OH)D in multivitamins was 

available, to determine the effect on serum 25(OH)D in the acute phase after HI birth. Nine 

infants received 400 IU (10 μg) ergocalciferol per day in TPN at a constant infusion rate of 

417 ng/h, starting at a median of 35h (range 3–67h). Five out of nine infants had lower 

serum 25(OH)D at 48h, which continued to decline to 72h in two of these infants 

(Supplemental Figure S1, online). For all supplemented infants, the change in serum 

25(OH)D varied from −1 to +3.7ng/ml at 72h, indicating little or no accumulation of 

25(OH)D in the first 3 days after HIE.

Active Hormone 1,25(OH)2D Is Undetectable in a Third of HIE Infants

Circulating active 1,25(OH)2D concentrations are maintained by renal conversion of serum 

25(OH)D by 1-alpha-hydroxylase, which is regulated by parathyroid hormone and calcium 

and phosphorus levels under normal physiologic conditions (17). We investigated 

1,25(OH)2D levels after HIE on a more limited set of serum samples from 0–12h (n=16), 

36–48h (n=14), and 60–72h (n=10). Six of 16 HIE infants (38%) had undetectable levels of 

1,25(OH)2D within 12h of birth (<15pg/ml). Among those with detectable serum levels, 

1,25(OH)2D concentrations were not different than that reported in healthy infants (median 

37pg/ml (IQR 15, 50 pg/ml, 0–12h) (15), nor between treatment groups. Median serum 

1,25(OH)2D gradually increased to 41pg/ml at 36–48h (IQR 15, 51 pg/ml, n=14) and 51 

pg/ml at 60–72h (IQR 18, 85 pg/ml, n=10). The number of HIE infants with undetectable 

1,25(OH)2D also declined over this period to 4 (28%) at 36–48h and 2 (20%) at 60–72 h. 

1,25(OH)2D concentrations were not related to the serum 25(OH)D or DBP at any time 

point, which may be due to a smaller sample size for 1,25(OH)2D and/or preferential 

binding of DBP to 25(OH)D (12).

Low Vitamin D Binding Protein is Associated with Serum 25(OH)D Status

The bioavailability of circulating lipophilic vitamin D may be determined by binding either 

to DBP, which has high affinity for 25(OH)D, or to serum albumin, which is 100 times more 

abundant (12). In HIE, lower serum albumin and perhaps lower DBP might make more 

lipophilic 25(OH)D available for tissue uptake or renal conversion. Hypothermia treatment 

group had significantly lower serum albumin concentrations when compared to 

normothermia groups over the study period (p<0.0001). Albumin concentrations were 
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positively correlated with serum 25(OH)D levels in the hypothermia group at both 0 and 72h 

(p≤0.016) (Figure 2a). Interestingly, in the normothermic HIE group, albumin and 25(OH)D 

levels were not significantly related.

Mean DBP was lower after moderate to severe HI birth (215±85ug/ml, n=33) in our study 

than previously reported in normal term and preterm infant cord blood (285 and 297 ug/ml, 

respectively) (18, 19), and positively correlated with serum 25(OH)D at 0–12h (Spearman’s 

Rho≥0.503, p≤0.006, n=33, Figure 2b). DBP did not differ by treatment group at 0–12h of 

age, or by those who had declining versus increasing serum 25(OH)D. However, during 

hypothermia treatment at 36–48h, circulating DBP was significantly lower in hypothermic 

HIE infants (p=0.004, Figure 2c). After rewarming (60–72h, n=27) DBP rebounded in the 

hypothermia group, equivalent to normothermic concentrations.

We performed mixed model analyses to determine whether DBP or albumin was more 

influential on serum 25(OH)D levels, with treatment in the model. At both 0–12 and 60–

72h, DBP predicted 25(OH)D serum concentrations (p≤0.045), without significant 

contribution from albumin when DBP was included. At 36–48h, hypothermia treatment and 

DBP had an interaction effect in predicting serum 25(OH)D. This interaction effect is 

consistent with our simple correlational analyses in which hypothermia treatment decreased 

DBP at 36–48h, but did not have an independent effect on serum 25(OH)D concentrations in 

addition to its effect on DBP. These results are the first report of DBP levels after HIE and 

suggest a complex relationship of direct and indirect effects of HIE and hypothermia on 

DBP levels in these infants.

Vitamin D Correlates with Anti-inflammatory Th17 Regulatory Cytokines

Vitamin D is known to decrease Th17 activation in other inflammatory conditions (20). 

Th17 activated cells produce pro-inflammatory IL-17A and IL-17F, while IL-17E suppresses 

Th17 cell proliferation and activation (21). IL-27, produced by neonatal macrophages, also 

inhibits Th-17 induction and is regulated by vitamin D (22, 23). Therefore, we next 

examined vitamin D’s relationship to proinflammatory Th17 cytokines (IL-17A, IL-17F, 

IL-21, MIP3α) and anti-inflammatory IL-17E and IL-27 after moderate to severe HI injury.

Median serum cytokine levels for IL-17A, IL-21, MIP3α, and IL-17F were similar between 

treatment groups and were not associated with serum 25(OH)D levels immediately after HI 

birth (Supplemental Table S1, online). However, 25(OH)D levels at 48h showed a significant 

correlation with anti-inflammatory IL-17E serum concentrations at 60–72h (n= 20, Figure 

3a).

Hypothermia treatment had a significant main effect (p<0.0001) on IL-27 serum 

concentrations and an interaction effect with time (p=0.008), as illustrated in Figure 3B, 

where IL-27 levels were significantly higher in hypothermia treated infants before and after 

rewarming, from 36 to 72h (Figure 3b). Serum IL-27 strongly correlated with 25(OH)D 

concentrations at 48h in normothermic patients (Figure 3c), but not in the hypothermic 

infants (Figure 3d), consistent with a direct effect of hypothermia on production of IL-27, 

independent of 25(OH)D.
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Vitamin D’s Relationship to Serum Phosphorus and Total Calcium Levels after HIE

Vitamin D’s role in calcium and phosphorus metabolism after moderate to severe HI has not 

been explored. Although there was marked variability in serum calcium, mean total and 

ionized calcium concentrations were significantly lower in hypothermic infants after 

rewarming at 60–72h compared with normothermic infants (p≤0.013), while serum 

phosphorus and pH were not different by treatment group (Supplemental Figure S2, online). 

Phosphorus concentrations were negatively correlated with pH (p<0.001) at 0h, supporting 

higher serum phosphorus as a marker of metabolic acidosis and perhaps injury severity.

Active 1,25(OH)2D controls circulating calcium and phosphorus levels under normal 

conditions, but after HIE neither were predicted by 1,25(OH)2D serum concentrations 

(n=16), using mixed model analysis. Total serum calcium was positively predicted by serum 

25(OH)D at 0h (p=0.034), but not at 48 and 72h, perhaps due to intravenous calcium 

replacement therapy in 35 infants to correct initial hypocalcemia. Serum phosphorus was 

positively predicted by serum 25(OH)D concentration after pH had normalized at 48 and 

72h (p≤0.025). This data suggests that vitamin D’s role in phosphorus homeostasis is 

functional 2–3 days after HI birth.

Survival relates to serum Phosphorus but not 25-OH Vitamin D

Infants who died in the neonatal period had significantly lower pH (p=0.0002) and higher 

serum phosphorus over the 72h study period than those who survived (p=0.00006, Figure 

4a) with a survivaltime interaction for serum phosphorus (p=0.041). This difference in 

serum phosphorus between surviving and non-surviving HIE neonates was present at 0h 

(p≤0.002), and negatively correlated with pH (p=0.003, Figure 4b), supporting phosphorus 

as a marker of injury severity and poor outcome. Serum phosphorus concentrations of 

infants who survived were < 6.3mg/dL within 9h of birth.

Infants who had 25(OH)D deficiency at 0h (<12ng/ml; n=17) had a 58% survival rate similar 

to those with low or insufficient 25(OH)D (12–30ng/ml; 65% survival, n=31, Fisher’s Exact 

Test, p=0.5). Both infants with sufficient 25(OH)D (>30ng/ml) survived (15). There was also 

no difference in survival between infants who maintained (63%, n=26) compared to those 

who had decreasing 25(OH)D over 72h (67%, n=11, Fisher’s Exact Test, p=1.0). Therefore, 

serum 25(OH)D did not demonstrate a direct relationship with survival in this cohort of 

infants with severe HIE, and the sample size was too limited for further analysis of 

developmental outcome.

DISCUSSION

25(OH)D insufficiency was present in the majority of our HIE infants, and half of these 

infants had decreasing 25(OH)D over the initial 72h of treatment, in spite of administration 

of 417ng/h ergocalciferol in TPN, which did not appreciably increase serum 25(OH)D 

concentrations. This data agrees with findings in a Turkish cohort of hypothermic mild to 

moderate HIE infants, in whom the incidence of serum 25(OH)D <5ng/ml increased from 

day 1 to 5, and was significantly greater at day 5 than in the healthy term controls (10). In 

Lowe et al. Page 7

Pediatr Res. Author manuscript; available in PMC 2017 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



our cohort, hypothermia treatment did not affect either 25(OH)D or 1,25(OH)2D serum 

concentrations compared to normothermic infants.

Vitamin D is a well-known regulator of inflammatory Tcells, and inhibits Th17 cell 

activation(6, 24). In our neonates low serum 25(OH)D was associated with reduced anti-

inflammatory IL-17E after HIE. Another anti-inflammatory cytokine that may oppose Th17-

induced inflammation, IL-27 was also correlated with 25(OH)D levels in normothermic HIE 

infants, providing additional evidence that vitamin D insufficient infants may have limited 

ability to mitigate post-HI Th17 inflammation. However, even in the face of low serum 

25(OH)D, hypothermia treated patients had increased IL-27, indicating direct modulation of 

this serum cytokine by hypothermia treatment (14). These data suggest the 

immunoregulation of TH17 activation after HIE depends on the mediator, with IL-17E 

primarily affected by vitamin D deficiency, while IL-27 was primarily affected by 

hypothermia therapy.

Serum 25(OH)D also serves as the main source for local CNS production of 1,25(OH)2D. 

Similar to our study in neonates with HIE, serum 25(OH)D concentrations are known to 

decrease after stroke in adults (25). Although serum 25(OH)D has a two week half-life 

under physiologic conditions (26), inflammation contributes to accelerated depletion of 

serum 25(OH)D, which in turn limits 1,25(OH)2D production by leukocytes and neural cells 

(8, 11, 12). The net effect of increased vitamin D metabolism in inflamed CNS tissue is to 

reduce the circulating substrate, 25(OH)D (12), while circulating 1,25(OH)2D may initially 

be more stably maintained.

Urinary losses may contribute to low or decreasing serum 25(OH)D concentrations in HIE 

infants. HI-induced renal injury is common, involves tubular dysfunction with proteinuria, 

and takes days to resolve. Renal reabsorption of 25(OH)D-bound DBP occurs in proximal 

tubular cells upon binding to megalin, a transmembrane receptor found on many cell types, 

including brain capillary endothelial cells, neurons and astrocytes (27). Ischemia reperfusion 

down-regulates renal megalin expression (28), which may result in excessive urinary losses 

of vitamin D and DBP (29). As DBP binds 25(OH)D with higher affinity than 1,25(OH)2D, 

renal injury after HI birth may not have the same effect on serum 1,25(OH)2D (12). In fact, 

the tight correlation of serum 25(OH)D and DBP at 0–12h is consistent with either urinary 

loss of the bound 25(OH)D or tissue distribution. One of the limitations of this study is a 

lack of urine samples to verify urinary losses of DBP and 25(OH)D in our patients.

Taken together, our data and other studies of vitamin D in stroke suggest that HI injury 

increases the conversion of 25(OH)D to 1,25(OH)2D, and both 1,25(OH)2D and 25(OH)D 

may be subject to increased degradation as shown post-stroke and in neuroinflammatory 

conditions (8, 30). Along with increased urinary losses (12), uptake of 25(OH)D into tissues 

for intracellular production of 1,25(OH)2D, may also contribute to low and declining 

25(OH)D serum concentrations (12, 31). Although we did not obtain serum samples from 

time points later than 72h, with evidence of insufficient serum 25(OH)D levels regardless of 

25(OH)D supplementation, it is possible that at some point in the first days or week of life, 

the uptake of 25(OH)D and conversion to 1,25(OH)2D in neural and immune cells may be 

compromised in some HIE infants.
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25(OH)D insufficiency is under-recognized in HIE, and is not part of standard of care HIE 

protocols in research or clinical practice(32, 33). Our data indicate the vitamin D 

insufficiency is present in more than 70% of HIE infants on admission, and may not be 

significantly improved by vitamin D supplementation in TPN. Both human and animal 

investigations indicate that pre-existing vitamin D deficiency exacerbates neurological 

injuries, and severe 25(OH)D deficiency is associated with increased stroke risk and worse 

outcomes in both adult humans and rodent models (1, 2, 30, 34, 35). Even in the absence of 

HI, vitamin D deficiency during a critical perinatal window in rodent models results in 

behavioral and learning deficits (36, 37). Thus, 25(OH)D insufficiency could be an 

aggravating factor after neonatal HIE. Although 25(OH)D concentrations were not 

independently associated with survival in our infants, only 2 of our infants had 25(OH)D 

levels ≥ 30ng/ml, and we were not able to analyze neurodevelopmental outcomes by degree 

of 25(OH)D insufficiency due to sample size. Vitamin D effects may also have been 

overshadowed by the marked severity of HI injury in this cohort, with greater than 70% of 

infants with severe HIE.

By convention we define ‘sufficiency’ and ‘insufficiency’ for circulating 25(OH)D levels 

according to previous reports in neonatal blood using established endocrine concentrations 

for bone growth and homeostasis (15). However, the circulating levels of 25(OH)D that are 

sufficient or deficient for neurodevelopment or other intracrine roles after injury have yet to 

be determined. Circulating 25(OH)D concentrations required for immune function appear to 

be significantly higher than for bone homeostasis (20 ng/ml) and prevention of rickets (10 

ng/ml) (15). In addition, the relationship of DBP and whether it limits the tissue 

bioavailability of free, unbound 25(OH)D in the serum or enhances uptake in disease states, 

such as neonatal HI, have not been explored (12). DBP also has independent roles as a 

macrophage activating factor and scavenger of extracellular actin, unrelated to its vitamin D 

ligand function, and seems to be independently regulated by hypothermia at 36h, as we have 

shown with other serum chemotactic factors (14, 38, 39).

Vitamin D deficiency can result in increased Th17 cell activation (40), while treatment with 

vitamin D down-regulates Th17 activation (6). In HIE neonates, 25(OH)D levels correlated 

with circulating Th17 inhibitory cytokines IL-17E and IL-27, but for IL-27, this effect was 

overridden by hypothermia treatment itself. Hypothermia up-regulated anti-inflammatory 

IL-27 production and release from antigen presenting cells in the serum from 36 to72h, even 

while the total circulating leukocyte, neutrophil, lymphocyte, and monocyte counts were 

decreasing (39). Thus, increased circulating anti-inflammatory cytokines, such as IL-17E 

and IL-27, may contribute to the neuroprotective mechanisms of hypothermia and yet be 

impacted by 25(OH)D levels.

In conclusion, this study provides insights into 25(OH)D insufficiency and effects in infants 

with HIE and under hypothermic conditions over the first 72 hours. Without routine 

monitoring, vitamin D insufficiency goes largely undiagnosed in neonatal HIE. Our data 

indicate that 25(OH)D insufficiency is common on admission and may decline further 

during the acute phase after HI injury. As treatment with vitamin D has been shown to 

provide neuroprotection in animal models of neonatal HI and in a small pilot trial in human 
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adults after stroke(41, 42), the potential for beneficial effects of vitamin D replacement in 

this at risk population deserve further study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Circulating 25(OH)D at enrollment after HI injury (n=46). (1a) Box plots of median, 25th & 

75th IQR, and ranges of serum 25(OH)D by race in HIE infants (n= 27 Caucasian, 16 

African American, 3 other race; * p=0.001 vs Caucasian). (1b) Incidence of sufficiency (≥30 

ng/ml, green), low-sufficiency (20–30 ng/ml, yellow), insufficiency (12–20 ng/ml, orange) 

and deficiency (<12 ng/ml, red) of 25(OH)D. (1c) Median (± 95%CI) serum 25(OH)D levels 

over 72 hours in HIE patients that either maintained serum 25(OH)D levels during the study 

period (n=17, blue) or had declining serum 25(OH)D (n=17, green) at 48–72 hours 

compared to enrollment (*, p=0.002).
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Figure 2. 
Circulating vitamin D binding proteins by hypothermia (blue) and normothermia (red) 

treatment. (2a) Median serum albumin over time (n=50, * p<0.01, **p<0.001); (2b) Serum 

DBP versus 25(OH)D concentrations at 0–12h after enrollment (n=33, rho=0.503, p=0.003); 

(2c) Median serum DBP over time by hypothermia and normothermia treatment. (*p<0.05).
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Figure 3. 
Anti-inflammatory cytokines IL-17E and IL-27 in HIE neonates. (3a) 25(OH)D at 48 hours 

correlates with IL-17E at 72 hours after enrollment (rho=0.555, p=0.001). (3b) Median 

IL-27 (± 95% CI, pg/ml) over time in hypothermia (blue) and normothermia (red) treatment 

groups. (*p<0.05, mixed model post-hoc analysis). (3c) IL-27 at 36 hours positively 

correlates with 25(OH)D in normothermic infants (n=11, rho=0.809, p=0.003). (3d) IL-27 at 

36 hours does not correlate with 25(OH)D in hypothermic infants (n=14, rho= −0.442, 

p=0.114).
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Figure 4. 
Phosphorous is significantly higher 3–9h after birth in infants who do not survive (orange) 

the neonatal period compared to survivors (green). (4a) Circulating median phosphorous 

(± 95%CI, * indicates p<0.05) over 72 hours after HI birth. (4b) Enrollment pH negatively 

correlates with phosphorous (rho= −0.477, p=0.003).
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Table 1

Study demographics

Hypothermia
n = 28

Normothermia
n = 22

Total
n= 50

Gender

Male 16 (57 %) 11 (50 %) 26 (54 %)

Race

Caucasian 16 (57 %) 13 (59 %) 29 (58 %)

African-American 10 (36 %) 7 (32 %) 17 (34 %)

Other 2 (7 %) 2 (9 %) 4 (8 %)

Sarnat

Stage I 0 (0 %) 1 (5 %) 1 (2 %)

Stage II 4 (14 %) 4 (18 %) 8 (16 %)

Stage III 24 (86 %) 17 (77 %) 41 (82 %)

Outcome

Death 9 (32 %) 8 (36 %) 17 (34 %)

Death or PDI≤70 @ 12 mo 14 (50 %)* 18 (77 %) 32 (64 %)

*
p=0.036 vs. normothermia, Fisher’s Exact Test
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