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Abstract: Mitogen-activated protein kinase (MAPK) cascades play crucial roles in almost all bio-
logical processes in plants. They transduce extracellular cues into cells, typically through linear
and sequential phosphorylation and activation of members of the signaling cascades. However,
accumulating data suggest various regulatory mechanisms of plant MAPK cascades in addition to
the traditional phosphorylation pathway, in concert with their large numbers and coordinated roles
in plant responses to complex ectocytic signals. Here, we highlight recent studies that describe the
uncanonical mechanism of regulation of MAPK cascades, regarding the activation of each tier of
the signaling cascades. More particularly, we discuss the unusual role for MAPK kinase kinases
(MAPKKKs) in the regulation of MAPK cascades, as accumulating data suggest the non-MAPKKK
function of many MAPKKKs. In addition, future work on the biochemical activation of MAPK
members that needs attention will be discussed.

Keywords: MAPK; phosphorylation; activation; development; innate immunity; abiotic stress

1. Introduction

The mitogen-activated protein kinase (MAPK) cascade is a three-tiered system com-
posed of three protein kinases: MAPK kinase kinase (MAPKKK), MAPK kinase (MAPKK),
and MAPK [1]. These are serine/threonine protein kinases, which phosphorylate serine (S)
or threonine (T) residues in conserved motifs of target proteins to modify their functions.
The MAPK cascade is conserved in eukaryotes including yeast, mammals, and plants,
where it mediates extracellular signal transduction into cellular responses through the three
members phosphorylating each other in a serial way, such that MAPKKK phosphorylates
and activates MAPKK, which in turn phosphorylates and activates MAPK [1].

Plant genomes encode relatively more MAPK members than yeast and mammal
genomes. Over 60 MAPKKKs, 20 MAPKKs, and 10 MAPKs are found in the dicotyledonous
model plant Arabidopsis (Arabidopsis thaliana) genome [2,3], and 75 MAPKKKs, 8 MAPKKs,
and 17 MAPKs in the monocotyledonous rice (Oryza sativa) genome [4–6]. Therefore,
theoretically, a particularly large number of MAPK cascades exist in plants.

MAPK cascades have been reported to be involved in various biological processes
in plants, as well as reviewed previously and very recently [7–10]. Substantial efforts
over recent decades have enabled the functional identification of lots of MAPK members
and many complete MAPK cascades in regulation of plant development and responses to
environmental stimuli. Previous studies mostly focused on sequential phosphorylation
when they encountered the MAPK cascades. As a considerable amount of data in plants,
including tomato (Solanum lycopersicum), Arabidopsis, and rice, indicate uncanonical reg-
ulatory mechanisms of MAPK cascades, the elucidation of the underlying mechanism of
the activation of MAPK cascades has become increasingly important. In this review, we
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discuss various alternative regulatory mechanisms of plant MAPK cascades in addition to
the traditional phosphorylation pathway.

2. Activation of MAPKKKs in MAPK Cascades

The activation of a classical MAPK cascade is initiated by the phosphorylation and
activation of MAPKKK. To date, various proteins have been found to activate MAPK
cascades, and some of them directly bind MAPKKKs; however, only a few receptor-like
kinases (RLKs) have been determined to directly phosphorylate and activate MAPKKKs.

Approximately two decades ago, a complete MAPK cascade that regulates cytokinesis
in tobacco (Nicotiana tabacum) cells was identified. This signaling cascade, which comprises
NPK1 (a MAPKKK), NQK1 (a MAPKK, also known as NtMEK1), and NRK1 (a MAPK,
also known as NTF6), regulates cell division through sequential phosphorylation [11,12].
The NPK1-NQK1-NRK1 (PQR) cascade is activated by NACK1 and NACK2, two members
of the kinesin-like protein family [13]. NACK1 co-localizes and physically interacts with
NPK1; furthermore, its binding increases NPK1 kinase activity [13] (Table 1). However,
how NPK1 is activated at the biochemical level remains unclear, although the activation
of the PQR cascade is known to be repressed by cyclin-dependent kinases (CDKs), which
phosphorylate both NACK1 and NPK1 and, in turn, inhibit their mutual interaction, thus
inhibiting the activation of NPK1 [14]. Similarly, the orthologous signaling cascade of the
abovementioned PQR pathway in Arabidopsis, ANP1/ANP2/ANP3 (three MAPKKKs)-
ANQ (also known as MKK6)-MPK4, also functions downstream of AtNACK1 (also known
as HIK) to regulate cytokinesis in a similar fashion [15–19].

Table 1. Representative activation of MAPKKKs by various proteins in plants.

Plant
Species Proteins Protein

Types
Target

MAPKKKs
Regulatory

Mechanisms Biological Functions References

Nicotiana
tabacum NACK1/2 kinesin-like

proteins NPK1 Physical interaction
and activation Plant cytokinesis [11–13]

Arabidopsis
thaliana

SSP RLCK YDA Physical interaction
and activation Plant embryogenesis [20–22]

CRLK1 RLK MEKK1
Physical

interaction, direct
phosphorylation

Plant cold response [23,24]

RLCK VII-4
members,

BSK1
RLCK MAPKKK3/5,

MEKK1

Direct
phosphorylation

and activation
Plant immunity [25–27]

Oryza sativa OsRLCK185 RLCK OsMAPKKK18/24
Direct

phosphorylation
and activation

Plant immunity [28,29]

Solanum
lycopersicum SlMai1 RLCK MAPKKKα Physical interaction

and activation Plant immunity [30]

RLKs have also been reported to bind to and activate MAPKKK in the MAPK cascade.
In Arabidopsis embryogenesis, a receptor-like cytoplasmic kinase (RLCK), SSP, activates
the YDA (MAPKKK)-MKK4/MKK5-MPK3/MPK6 cascade to regulate embryonic pattern-
ing [20,21] (Table 1). In this case, although it has been established that SSP physically
interacts with and activates YDA after zygote formation (Table 1), the biochemical details
of YDA activation remain obscure [22].

During cold stress, Arabidopsis CRLK1, a calcium (Ca2+)/calmodulin-regulated
RLK, activates a potential MAPK cascade mediated by MEKK1 (a MAPKKK) to increase
cold responsive genes expression [23,24]. CRLK1 interacts with and phosphorylates
MEKK1 [23,24]; however, whether the phosphorylation directly activates MEKK1 is
not determined.



Int. J. Mol. Sci. 2022, 23, 3572 3 of 15

In plant innate immunity, MAPK cascades are activated by RLCKs. The first layer of
innate immunity, triggered by the perception of pathogen-associated molecular patterns
(PAMPs) by plant pattern-recognition receptors (PRRs), is termed pattern-triggered immu-
nity (PTI) [31]. At least two complete MAPK cascades are activated during PTI in Arabidop-
sis: the MEKK1-MKK1/MKK2-MPK4 and the MAPKKK3/MAPKKK5-MKK4/MKK5-
MPK3/MPK6 cascade [25,26,32–36]. Both are activated in response to PAMP treatment
and induce immune responses. Furthermore, the activation of these two cascades relies
on the direct phosphorylation and activation of the two MAPKKKs by RLCKs. After the
recognition of PAMPs by PRRs, the MAPKKKs in the two pathways are directly phos-
phorylated and activated by RLCKs, leading to activation of the MAPK cascades and the
consequent regulation of immune responses [25–27] (Table 1). Similarly, two rice MAP-
KKKs, OsMAPKKK18 (the ortholog of Arabidopsis MAPKKK5) and OsMAPKKK24 (also
known as OsMAPKKKε), are also directly phosphorylated and activated by the RLCK Os-
RLCK185 in response to PAMP treatment (Table 1). The two phosphorylated rice MAPKKKs
then activate downstream MAPK cascades consisting of OsMPKK4-OsMPK3/OsMPK6 to
induce defense responses [28,29].

The second layer of plant innate immunity is termed effector-triggered immunity (ETI),
and is initiated by the direct or indirect interaction between plant intercellular nucleotide-
binding leucine-rich repeat receptors (NLRs) and pathogen-secreted effectors [31]. RLCKs
are also involved in the activation of MAPK cascades in ETI. In the tomato resistance
response to the bacterial pathogen Pseudomonas syringae pv. tomato, host protein kinases Pto
and Fen bind to the pathogen effectors AvrPto or AvrPtoB, and the host NLR Prf binds to
Pto and Fen to indirectly recognize pathogen effectors and trigger ETI [37–41]. Consistently,
MAPK cascades mediated by MAPKKKα have been reported to contribute to Prf-mediated
ETI [42–44]. Furthermore, SlMai1, a tomato RLCK, is recently identified as a MAPKKKα-
interacting protein that regulates NLR-induced cell death [45]. Although SlMai1 does not
show in vitro kinase activity, its physical interaction with MAPKKKα increases downstream
MAPK activation [45] (Table 1). Interestingly, SlMai1 kinase activity is not required for its
function [45], suggesting an undiscovered mechanism of MAPKKKα activation.

The signaling pathways described here exemplify how a MAPK cascade is activated
through the activation of MAPKKK directly or indirectly bound to or phosphorylated by
different proteins. However, elucidation of the biochemical basis of MAPKKK activation
warrants further research.

3. Uncanonical Regulation of MAPK Cascades by MAPKKKs

In the canonical MAPK cascade in plants, MAPKKK typically phosphorylates the
downstream MAPKK on the two conserved S and T residues in the S/T-XXXXX-S/T (X
represents any amino acid) motif [7]. This activates MAPKK to phosphorylate and activate
the downstream MAPK. Therefore, MAPKKK, in a classical MAPK cascade, activates the
cascade via its kinase activity toward MAPKK. However, several studies have suggested
uncanonical mechanisms underlying the regulation of MAPK cascades by MAPKKKs.

3.1. Uncanonical Roles of MEKK-like MAPKKKs in the Regulation of Plant MAPK Cascades

Plant MAPKKKs can be simply grouped into MEKK-like and Raf-like MAPKKKs
based on their sequence similarity [1,3]. Most of the MEKK-like MAPKKKs have been
reported to exhibit typical MAPKKK features that directly phosphorylate and activate
downstream MAPKKs in a MAPK cascade. However, several studies have suggested that
MEKK-like MAPKKKs can also function as unconventional MAPKKKs to regulate the
MAPK cascade.

In Arabidopsis, a complete MAPK cascade (MEKK1-MKK1/MKK2-MPK4) func-
tions downstream of RLCKs in response to pathogen infection [26,33–35]. Disruption
of this MAPK cascade results in constitutive defense responses with excessive accumu-
lation of salicylic acid (SA) and hydrogen peroxide (H2O2) in a MEKK2-dependent man-
ner [30,33,46–50]. MEKK2, a MEKK-like MAPKKK, is a paralog of MEKK1, located in



Int. J. Mol. Sci. 2022, 23, 3572 4 of 15

a tandem repeat region consisting of MEKK1, MEKK2, and MEKK3 [46,47]. MEKK2
physically interacts with MPK4 via its amino (N)-terminal domain and directly inhibits
the activation of MPK4 triggered by the phosphorylation of MKK2, which is an MAPKK
upstream of MPK4 in plant innate immunity [46,51] (Table 2). Interestingly, the carboxy
(C)-terminal kinase domain of MEKK2 is responsible for the inhibition of AtMPK4 activa-
tion [51]. As the inhibition of MPK4 activation in turn activates plant defense responses,
and MEKK2 kinase activity is not necessary for the activation of defense responses, the role
of MEKK2 kinase activity in plant biological processes is worth further clarification. As
an example, the role of MEKK2 in regulating the MEKK1-MKK1/MKK2-MPK4 cascade
illustrates the uncanonical function of MEKK-like MAPKKKs.

Table 2. Uncanonical regulation of MAPK members by MAPKKKs in plants.

MAPKKKs Subgroup Target MAPK Members Regulatory Mechanisms Biological
Functions References

A
ra

bi
do

ps
is

th
al

ia
na

MEKK2 MEKK MPK4 Physical interaction and
direct inhibition Plant immunity [30,46–51]

MKKK7 MEKK MPK6 Indirect inhibition through
PRR complex Plant immunity [52]

CTR1 Raf
MKK9-MPK3/MPK6,

MKK1/MKK3-
MPK3/MPK6

Indirect inhibition Plant ethylene
signaling [53,54]

EDR1 Raf MKK4/MKK5 Physical interaction,
inhibition Plant immunity [55,56]

MKD1 Raf MKK1/MKK5 Physical interaction,
in vitro phosphorylation Plant immunity [57]

Raf36 Raf MKK2 Physical interaction,
in vitro phosphorylation Plant immunity [58,59]

O
ry

za
sa

tiv
a OsMKKK70 MEKK OsMKK4 Physical interaction and

activation
Grain size and

leaf angle [60]

OsEDR1 Raf OsMPKK10.2 Physical interaction and
inhibition Plant immunity [61]

OsILA1 Raf OsMPKK4 In vitro phosphorylation,
inhibition Plant immunity [62]

Another MEKK-like MAPKKK, MKKK7, is involved in innate immunity in Arabidop-
sis [52]. Briefly, MKKK7 interacts with FLS2, a RLK that recognizes the bacterial elicitor
flagellin and represses basal immune responses, including flg22 (a conserved 22-amino
acid peptide from flagellin)-induced MPK6 activation and defense-related gene expres-
sion [52] (Table 2). The inhibitory effect of MKKK7 on the attenuation of MPK6 activation
might not be achieved through the direct modification of MAPKKs upstream of MPK6, but
may occur via affecting the FLS2 complex by flg22-induced MKKK7 phosphorylation [52].
This scheme allows strict control of defense outputs to prevent erroneous or excessive
immune activation.

In rice plants, the OsMKKK70-OsMKK4-OsMPK6 cascade regulates grain size and
leaf angle [60]. In this signaling cascade, OsMKKK70 (a MEKK-like MAPKKK) shows
in vitro kinase activity and physically interacts with its downstream kinase, OsMKK4,
in yeast and tobacco cells, but does not phosphorylate OsMKK4 (Table 2). Intriguingly,
OsMKKK70 promotes OsMPK6 phosphorylation in OsMKK4-dependent and -independent
manners. As OsMKKK70 does not interact with OsMPK6, it is unlikely that OsMKKK70
functions as a scaffold protein tethering both OsMKK4 and OsMPK6 to promote OsMPK6
phosphorylation by OsMKK4. Thus, whether the OsMKKK70 kinase activity is involved in
the regulation of the OsMKK4-OsMPK6 cascade and how OsMKK4-OsMPK6 is activated
have to be further studied [60].
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Altogether, these results illustrate the diversity of MEKK-like MAPKKKs with uncon-
ventional roles in the regulation of MAPK cascades and expand our understanding of the
mechanisms underlying these MEKK-like MAPKKKs.

3.2. Special Roles of Plant Raf-like Kinases in the Regulation of MAPK Cascades

Plant Raf-like kinases have been grouped as MAPKKKs based on sequence similarity
in some reports [1,3,6,7], while in others, they have been included in the tyrosine kinase-like
(TKL) group and do not form a monophyletic group with metazoan Raf-like MAPKKKs [63].
Regardless of their classification, several studies have shown that plant Raf-like kinases do
not function as genuine MAPKKKs that directly phosphorylate and activate downstream
MAPKKs. For example, Arabidopsis CTR1, previously identified as a member of the Raf-
like MAPKKKs, is involved in the regulation of ethylene signaling [64]. Yoo and coworkers
found that constitutively active CTR1 repressed MPK3/MPK6 activity and located CTR1
upstream of the MKK9-MPK3/MPK6 cascade in ethylene signaling according to biochem-
ical and genetic data [53] (Table 2). Subsequently, other reports have suggested that the
MKK9-MPK3/MPK6 cascade regulates ethylene biosynthesis, and thus, might not function
downstream of CTR1 [65–70]. More recently, the MKK1/MKK3-MPK3/MPK6 cascade,
rather than the MKK9-MPK3/MPK6 cascade, was found to operate downstream of CTR1
in guard cell ethylene signaling (Table 2); and enhanced MPK3/MPK6 activation in the ctr1
mutant was repeated [54], suggesting a negative role of CTR1 in the regulation of the MAPK
cascade. CTR1 possesses kinase activity and phosphorylates MAPKK in vitro [71], but it
might not affect MAPKK function in ethylene signaling through direct phosphorylation
because EIN2 is the phosphorylation substrate of CTR1 in ethylene signaling [72,73]. Thus,
CTR1 may indirectly regulate downstream MAPKKs.

Another Arabidopsis Raf-like MAPKKK, EDR1, negatively regulates innate immu-
nity [74,75]. Furthermore, EDR1 is involved in the regulation of the MAPK cascade in an
unusual manner in plant defense responses. EDR1 physically interacts with MKK4/MKK5
via its N-terminal domain and negatively regulates the accumulation of MKK4/MKK5-
MPK3/MPK6 [55] (Table 2). Genetic data have shown that edr1-mediated Arabidopsis resis-
tance to powdery mildew requires the MKK4/MKK5-MPK3/MPK6 cascade [55]. Therefore,
EDR1 acts upstream of the MKK4/MKK5-MPK3/MPK6 cascade. Further results show
that the accumulation of MKK4/MKK5 is associated with the phosphorylation of KEG,
which encodes a RING E3 ubiquitin ligase and functions downstream of EDR1 in plant
innate immunity [56,76]. In detail, KEG interacts with and ubiquitinates MKK4/MKK5,
which in turn contributes to the degradation of MKK4/MKK5 by 26S proteasome; when
EDR1 loses its function, KEG is phosphorylated and subsequently self-ubiquitinated and
degraded, thus leading to the accumulation of MKK4/MKK5 [56]. These results suggest
an uncanonical regulation of MAPKKs by a MAPKKK, wherein EDR1 affects the protein
level of its downstream MKK4/MKK5-MPK3/MPK6 cascade through the modification
of another protein that also functions downstream of EDR1. Given that edr1-mediated
disease resistance requires LORELEI-LIKE GPI-ANCHORED PROTEIN 1 (LLG1), which
is associated with the PRR complex and functions as a co-receptor of RLKs in the mekk1-
mkk1/mkk2-mpk4 cell death pathway [77,78], an alternative hypothesis is that EDR1 affects
the downstream MKK4/MKK5-MPK3/MPK6 cascade via modification of the PRR complex,
as MKKK7 does, thereby inhibiting PAMP-induced MAPK activation through modification
of the PRR complex [52].

In addition to EDR1, another Arabidopsis Raf-like MAPKKK, MKD1, also contributes
to plant immunity via its association with the MKK1/MKK5-MPK3/MPK6 cascade [57].
MKD1 interacts with MKK1/MKK5 and phosphorylates them in vitro (Table 2). The
phosphorylation sites contained not only the canonical residues in the S/T-XXXXX-S/T
motif, but also other amino acids beyond these sites. Loss of function of MKD1 results
in susceptibility to pathogens and a decreased degree of activation of MPK3/MPK6 in
response to phytotoxins. As the mkk1 mutant and MKK5RNAi transgenic plants mimic the
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mkd1 mutants in response to pathogens, it was concluded that MKD1, MKK1/MKK5, and
MPK3/MPK6 form a signaling cascade in plant responses against pathogens [57].

In addition, Arabidopsis Raf36 (a Raf-like MAPKKK), which possesses kinase activity
and belongs to the Raf-like kinase group [79], was recently found to negatively regulate
plant disease resistance by targeting MKK2 (a MAPKK) [58]. Raf36 interacts with MKK2 in
plants, and phosphorylates MKK2 in vitro [58,59] (Table 2). The genetic data indicating that
MKK2 positively regulates plant disease resistance and that MKK2 knockout compromises
raf36-mediated disease resistance supports the Raf36-MKK2 signaling cascade. Indeed,
Raf36 kinase activity is involved in the interaction with MKK2 and the modulation of plant
disease resistance, although whether and how Raf36 kinase activity affects MKK2 function
in the defense response remain unknown.

In rice plants, OsEDR1, the ortholog of Arabidopsis EDR1, is involved in the regu-
lation of the MAPK cascade in rice disease resistance. OsEDR1 is a Raf-like MAPKKK
and negatively regulates rice resistance to bacterial pathogens [80,81]. OsEDR1 physically
interacts with but does not phosphorylate OsMPKK10.2, a MAPKK that positively reg-
ulates rice disease resistance and drought tolerance through the activation of different
MAPKs [61,82] (Table 2). In OsEDR1-knock out mutants, the phosphorylation and kinase
activity of OsMPKK10.2 toward its downstream MAPK OsMPK6, is enhanced [61]. Genetic
data indicating that knocking-out OsMPKK10.2 or OsMPK6 compromised osedr1-mediated
disease resistance place OsEDR1 upstream of the OsMPKK10.2-OsMPK6 cascade [61].
Remarkably, the enhanced activation of the OsMPKK10.2-OsMPK6 cascade by unidentified
protein kinases may promote OsEDR1 degradation through direct phosphorylation of
OsEDR1 by OsMPK6 [61]. Finally, OsEDR1 is considered a scaffold protein rather than
a protein kinase in the regulation of the OsMPKK10.2-OsMPK6 cascade in rice disease
resistance. Interestingly, it is noteworthy that OsEDR1, OsMPKK10.2, and OsMPK6 are also
involved in rice drought resistance [82,83], and whether they form a signaling cascade in
drought resistance warrants further exploration.

Another Raf-like MAPKKK in rice plants, OsILA1, is also involved in the regulation
of the MAPK cascade in rice resistance against bacterial pathogens. OsILA1 was initially
identified as a regulator of the rice lamina joint through the interaction with and phos-
phorylation of CCCH-tandem zinc-finger transcription factors [84,85]. However, it was
recently reported that OsILA1 negatively regulates rice resistance to bacterial pathogens
via its association with the OsMPKK4-OsMPK6 cascade [62]. OsILA1 does not interact
with OsMPKK4 in yeast cells but phosphorylates OsMPKK4 in vitro, mainly at the T34 site
located in the N-terminal region (Table 2). Mutation of T34 to prevent its phosphorylation
strongly inhibits OsMPKK4 phosphorylation by OsILA1 in rice protoplasts and increases
the accumulation of OsMPKK4. Therefore, the phosphorylation of T34 might have affected
the stability of OsMPKK4. However, it is difficult to conclude that OsILA1 phosphorylates
and, in turn, destabilizes OsMPKK4. Acute observations are required to determine whether
and why OsILA1 phosphorylates or destabilizes OsMPKK4 in rice cells without extracel-
lular stimulus, as OsMPKK4 is required for rice plant development, including grain size
formation [60,86–88]. Presumably, OsMPKK4 may coordinate rice plant development and
responses to environmental stimuli via phosphorylation by different protein kinases.

Altogether, these results suggest that, although some Raf-like kinases possess kinase
activities and can phosphorylate MAPKKs in vitro or even in planta, they do not function as
canonical MAPKKKs to activate MAPK cascades. However, they do function as regulators
of MAPK cascades. In fact, it was previously thought that classifying these kinases as Raf-
like kinases might lead to the misconception that these kinases function as MAPKKKs [89].
Therefore, once a Raf-like kinase is determined to be associated with the MAPKK-MAPK
cascade during a cellular response and can phosphorylate MAPKK in vitro or in planta, one
must be cautious in establishing a link between Raf-mediated MAPKK phosphorylation
and its function. Indeed, it is not surprising that a Raf-like MAPKKK phosphorylates
MAPKKs in vitro or in planta at sites in the canonical S/T-XXXXX-S/T motif or beyond,
because Raf-like kinases possess kinase activity and will probably yield a phosphorylation
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event when interacting with a MAPKK. Whether the phosphorylation occurs in vivo and
contributes to the cellular response is essential and requires careful verification. In addition,
it is necessary to note that Raf-like kinases regulate plant abiotic responses through direct
phosphorylation of SNF1-related protein kinase2 instead of MAPKKs, thus providing
firm phosphorylating substrates of Raf-like kinases in plant biological processes [68,90–93].
However, further studies are required to elucidate the role of Raf-like kinases in the
regulation of MAPK cascades.

4. Activation of MAPKKs and MAPKs

A wealth of data, showing that MAPK cascades function in plant biological processes,
support the hypothesis that MAPKK or MAPK is always phosphorylated and activated
by the upstream MAPKKK or MAPKK, in a signaling cascade. However, several reports
have indicated that plant MAPKKs or MAPKs can be phosphorylated or activated directly
by protein kinases, rather than through MAPKKKs or MAPKKs, or by other alternative
mechanisms which do not include MAPK components.

4.1. Direct Phosphorylation and Activation of MAPKKs by Non-MAPKKKs

In auxin-controlled cell division patterns during lateral root development, Arabidopsis
transmembrane kinases TMK1 and TMK4, a group of RLKs, directly interact with and
phosphorylate MKK4 and MKK5 [94] (Table 3). Biochemical and genetic data have re-
vealed that auxin-induced MKK4/MKK5-MPK3/MPK6 phosphorylation is TMK1/TMK4-
dependent, and that suppression of MKK4/MKK5 or MPK3/MPK6 expression leads to
defects in lateral root development, as observed in tmk1tmk4 double mutants [94]. Thus, the
TMK1/TMK4-MKK4/MKK5-MPK3/MPK6 cascade signals in auxin-regulated cell division
patterns presumably via sequential phosphorylation, although the phosphorylation sites
of MKK4/MKK5 and the effect of TMK1/TMK4 phosphorylation of MKK4/MKK5 on its
kinase activity are unclear.

Table 3. Uncanonical activation of MAPK members in plants.

Factors Category Target MAPK
Members Regulatory Mechanisms Biological

Functions References

A
ra

bi
do

ps
is

th
al

ia
na

TMK1/4 RLK MKK4/5 Physical interaction,
phosphorylation

Auxin-regulated cell
division [94]

NDPK2 NDP kinase MPK3 Activation through
binding Cellular redox [96]

Phosphatidic acid Metabolite MPK3/6 Activation through
binding

Salt stress and
submergence

responses
[97,98]

H2S Gas MPK4 Activation through
persulfidation Cold stress response [99,100]

MPK9 MAPK MPK9 Autophosphorylation Salt stress responses [101]

CaM Ca2+-binding
protein

MPK8 Activation through
binding

Plant wounding
response [102]

Unknown Protein kinase MPK15 Autophosphorylation,
trans-phosphorylation Plant immunity [103]

O
ry

za
sa

tiv
a

Unknown Protein kinase OsMPKK10.2 Direct phosphorylation
and activation Plant immunity [61]

OsDMI3 CCaMK OsMKK1 Direct phosphorylation
and activation ABA signaling [95]

SIT1 Lectin RLK OsMPK6
Physical interaction,

in vitro phosphorylation,
activation

Salt stress responses [104]

CPK18
Ca2+-

dependent
protein kinase

OsMPK3
Direct interaction,

phosphorylation and
activation

Plant immunity [105]
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In rice bacterial-pathogen resistance, OsMPKK10.2 can be phosphorylated and activated
by non-MAPKKKs [61]. It has been shown that during pathogen infection, OsMPKK10.2 is
phosphorylated at many sites that are not located in the S/T-XXXXX-S/T activation motif.
Specifically, phosphorylation of the amino acid residue, S304, located at the C-terminal
domain, enhances OsMPKK10.2 kinase activity toward its downstream MAPK OsMPK6,
thereby promoting rice disease resistance (Table 3). Nonetheless, the specific interplay of
phosphorylation between S304 and the S/T-XXXXX-S/T motif awaits elucidation. Addi-
tionally, the upstream kinase responsible for OsMPKK10.2 S304 phosphorylation has not
been identified. It is important to unravel these issues for a thorough understanding of
OsMPKK10.2 activation by different protein kinases.

In the abscisic acid (ABA) signaling-pathway in rice, another MAPKK, OsMKK1, is
directly phosphorylated and activated by OsDMI3, a Ca2+/calmodulin-dependent pro-
tein kinase (CCaMK) [95] (Table 3). ABA-induced OsDMI3 phosphorylates the amino
acid residue T25 located at the N-terminal domain of OsMKK1 but not the canonical
S/T-XXXXX-S/T motif. Phosphorylation of T25 increases OsMKK1 kinase activity to its
downstream MAPK, OsMPK6 (named OsMPK1 in the original article). Simultaneously, the
two canonical sites in the S/T-XXXXX-S/T motif are also phosphorylated in response to
ABA treatment. These two phosphorylation events do not affect each other. Therefore, it
seems likely that the phosphorylation of OsMKK1 by MAPKKKs and OsDMI3 coordinates
and facilitates the adaptation of rice plants to abiotic stress.

4.2. Activation of MAPKs

In the plant MAPK cascade, MAPK is typically activated through MAPKK-mediated
dual phosphorylation at T and tyrosine (Y) residues within the TXY motif [7]. However,
plant MAPKs can also be activated in alternative ways.

For instance, in Arabidopsis, NDPK2, an NDP kinase, is associated with H2O2-
mediated MAPK signaling [96]. NDPK2 binds to MPK3 in vitro; it does not phosphorylate
MPK3, but enhances MPK3 phosphorylation ability against myelin basic protein (MBP,
always used as a common phosphorylation substrate of MAPKs) (Table 3), thus suggesting
direct activation of MPK3 by NDPK2 through an unknown mechanism which does not
require MAPKKs [96].

Furthermore, Arabidopsis MPK6 can also be activated by unusual modes. For example,
MPK6 activation is induced when Arabidopsis is exposed to NaCl [106]. Further analysis
showed that NaCl treatment increases the generation of phosphatidic acid (PA), which in
turn binds to MPK6 and facilitates MPK6 phosphorylation ability toward its substrate [97]
(Table 3). Furthermore, PA can also bind to MPK3 and MPK6 when Arabidopsis undergoes
submergence; moreover, this binding promotes MPK3/MPK6 kinase activity towards their
substrates to modulate plant tolerance to submergence [98] (Table 3). As the kinase activity
of the upstream kinase MKK5 is also enhanced by PA, it is possible that PA activates a
MAPK cascade consisting of MKK5 and MPK3/MPK6 [98]. Additionally, PA reportedly
binds directly to CTR1 and inhibits its kinase activity to coordinate ethylene signaling and
the submergence response [107,108]. The ortholog of AtMPK6 in rice plants, OsMPK6, is
also involved in the regulation of rice response to salt stress. When rice plants are exposed
to salt stress, a lectin receptor-like kinase SIT1 is induced, which in turn interacts with and
phosphorylates OsMPK6, which finally results in the excess accumulation of reactive oxy-
gen species and, thus, in salt sensitivity [104] (Table 3). Although OsMPK6 phosphorylation
sites by SIT1 are unknown, phosphorylation of the TXY motif, which is typically conferred
by MAPKKs, is positively associated with SIT1 kinase activity, suggesting a direct link
between OsMPK6 activation and SIT1 kinase activity in rice response to salt stress.

In Arabidopsis responses to cold stress, MPK4 is required in alleviating cell dam-
ages [99]. Later, it was found that hydrogen sulfide (H2S) modifies cysteines of MPK4
by persulfidation, and promotes MPK4 kinase activity to enhance Arabidopsis resistance
to cold stress [100]. Persulfidation of a protein kinase can alter its structure and improve
transfer efficiency of phosphate form ATP to target phosphorylation sites, thus enhancing
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the phosphorylation level [109]. However, how persulfidation promotes MPK4 activity
remains unknown and requires further elucidation.

Other MAPKs have also been found to be directly activated in plants without the
intervention of MAPKKs. For example, Arabidopsis MPK9, which is also induced by salt
stress, autophosphorylates its TXY motif and other sites in the C-terminal domain in an
MPKK-independent manner [101] (Table 3), thereby giving rise to the intriguing question:
How do environmental signals flow to MPK9? It is not clear whether the aforementioned
MAPK-activation modes operating under salt stress operate in the MPK9-mediated salt
stress response as well.

Several calmodulins in Arabidopsis act as Ca2+-binding proteins (CaMs) bound to
MPK8 in a Ca2+-dependent manner [102]. This binding does not modify the phosphoryla-
tion of the TXY motif in MPK8 by upstream MAPKKs, but enhances MPK8 kinase activity
toward MBP (Table 3). The two modes of MPK8 activation by CaMs and MAPKKs are
independent, but might be reciprocal in plant wounding responses [102].

Similarly, Ca2+ has been found to be associated with OsMPK3 (also known as OsMPK5)
in rice plants [105]. During rice blast resistance, the Ca2+-dependent protein kinase CPK18
interacts with and phosphorylates OsMPK3 (Table 3). Such phosphorylation takes place at
the T14 and T32 sites located in the N-terminus, resulting in OsMPK3 activation, which
then represses defense-related gene expression and leads to the inhibition of rice blast
resistance [105]. Seemingly, the phosphorylation and activation of OsMPK3 by CPK18 does
not affect TEY motif phosphorylation, and thus, is MAPKK-independent. Additionally,
in ABA signaling in maize, silencing of ZmCPK11 decreased ZmMPK5 (the orthologue of
rice OsMPK3) expression and kinase activity [110], leading to the indication of conserved
mechanisms of MAPK activation by CPKs in plants.

Recently, MPK15 was found to confer Arabidopsis resistance to fungal pathogens [103].
MPK15 is phosphorylated in response to pathogen infection and PAMP stimulation. Phos-
phorylation by unknown kinases at S511, located in the C-terminal tail, is RLCK-dependent
and activates MPK15, which then contributes to plant resistance (Table 3). MPK15 is also
self-phosphorylated at S511 (Table 3). Complete activation of MPK15 requires both S511
phosphorylation and TXY motif phosphorylation, suggesting a possible mutual potentia-
tion scheme between the two phosphorylation modes.

5. Conclusions and Perspectives

Mounting evidence proves that the number of MAPK members have expanded in
land plants with functions in complex growth regulation and adaptation to dynamic envi-
ronmental conditions [1,111,112]. A crucial question is how MAPK cascades are activated
or regulated when plants face different stimuli. Although the detailed mechanisms remain
unclear, the current data listed above suggest that the activation modes of each member of
the three-tiered system vary (Figure 1).

As many MAPK cascades are genetically located downstream of RLKs [9,10,113],
the activation of MAPKKKs appear to associate tightly with RLKs in most cases. Some
MAPKKKs in the MAPK cascade can be directly phosphorylated and activated by RLKs to
activate downstream MAPK members. However, in most cases, the activation of MAPKKKs
has not been entirely clarified, especially at the biochemical level. Moreover, the principles
or rules of MAPKKK phosphorylation and activation are largely unknown and require
further elucidation.

For other MAPK members referring to MAPKKs and MAPKs, various proteins and
metabolites are involved in their regulation. Many MAPKKKs or non-MAPKKKs affect
MAPKKs protein accumulation or kinase activity directly or indirectly, and many non-
MAPKKs or metabolites activate MAPKs through direct phosphorylation or binding,
showing unusual modes of action that are independent of or coordinated with sequential
phosphorylation mechanisms. These non-traditional regulation modes of MAPK cascades
allow for the coordinated control of plant growth regulation or stress responses and require
further in-depth analysis.
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Figure 1. Activation modes of plant MAPK cascades. Each tier of the signaling cascade can be
activated by different modes. MAPKKKs can be activated by kinesin-like proteins and receptor-
like kinases (RLKs) through direct binding and/or phosphorylation. MAPKKs can also be directly
activated by RLKs, or other protein kinases such as calcium/calmodulin-dependent protein kinase
(CCaMK), through binding or phosphorylation. The activation modes of MAPKs vary considerably.
Proteins including NDP kinase (NDPK), calcium-dependent protein kinase (CPK), and calcium-
binding protein (CaM) activate MAPKs through binding and/or phosphorylation. Phosphatidic acid
and H2S promote MAPKs activation through direct binding and persulfidation, respectively. It is
necessary to note that some MAPKKKs, especially some Raf-like kinases, do not function as genuine
MAPKKKs, although they are still involved in the regulation of MAPK cascades. Arrows and T lines
indicate positive and negative regulations, respectively.
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