
RESEARCH ARTICLE Open Access

Impact of sequencing depth and
technology on de novo RNA-Seq assembly
Jordan Patterson1†, Eric J. Carpenter2†, Zhenzhen Zhu3, Dan An3, Xinming Liang3, Chunyu Geng3,
Radoje Drmanac3 and Gane Ka-Shu Wong1,2*

Abstract

Background: RNA-Seq data is inherently nonuniform for different transcripts because of differences in gene
expression. This makes it challenging to decide how much data should be generated from each sample. How
much should one spend to recover the less expressed transcripts? The sequencing technology used is another
consideration, as there are inevitably always biases against certain sequences. To investigate these effects, we first
looked at high-depth libraries from a set of well-annotated organisms to ascertain the impact of sequencing depth
on de novo assembly. We then looked at libraries sequenced from the Universal Human Reference RNA (UHRR) to
compare the performance of Illumina HiSeq and MGI DNBseq™ technologies.

Results: On the issue of sequencing depth, the amount of exomic sequence assembled plateaued using data sets
of approximately 2 to 8 Gbp. However, the amount of genomic sequence assembled did not plateau for many of
the analyzed organisms. Most of the unannotated genomic sequences are single-exon transcripts whose biological
significance will be questionable for some users. On the issue of sequencing technology, both of the analyzed
platforms recovered a similar number of full-length transcripts. The missing “gap” regions in the HiSeq assemblies
were often attributed to higher GC contents, but this may be an artefact of library preparation and not of
sequencing technology.

Conclusions: Increasing sequencing depth beyond modest data sets of less than 10 Gbp recovers a plethora of
single-exon transcripts undocumented in genome annotations. DNBseq™ is a viable alternative to HiSeq for de
novo RNA-Seq assembly.
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Background
RNA-Seq is a widely used next-generation sequencing
(NGS) methodology for transcriptome profiling [1], both
to identify novel transcript sequences and for differential
expression studies. Much has been written about this
methodology and it is not our intention to rehash the
many excellent articles that can be found in the litera-
ture [2, 3]. We focus instead on how continuing im-
provements in NGS technologies have brought new
perspectives to two fundamental questions that many

scientists ask before they initiate a RNA-Seq experiment.
First, with the decreasing costs of generating these data,
one can now sequence a given library many times deeper
than before. Motivated by ongoing projects on the se-
quencing of phylodiverse species with no reference ge-
nomes, e.g. 1KP for plants [4] and 1KITE for insects [5],
we wanted to see how many novel transcript sequences
can be recovered by de novo assemblies of RNA-Seq
data if a project is willing to spend more money. This is
not an issue that will soon be mooted by the ever lower
costs of sequencing complete genomes, because genome
size variations (e.g. 2,342-fold for land plants [6]), poly-
ploidy, and the outbred nature of many samples col-
lected in the wild make genome assembly a continuing
challenge.
Choice among sequencing platforms is the second

issue to be addressed. We will explore how DNBSeq™, a
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recent platform from MGI (a subsidiary of BGI Group),
may serve as an alternative to the market-leading plat-
form from Illumina. It uses DNA nanoballs (DNB) and
combinatorial probe-anchor synthesis (cPAS) [7], build-
ing on technology from Complete Genomics. Both plat-
forms provide short but high-quality reads, in contrast
to the long but low-quality reads offered by Pacific Bio-
sciences and Oxford Nanopore. There are several tech-
nical differences in the two sequencing pipelines, which
are illustrated in Fig. 1.
In both platforms, DNA molecules (1) are fragmented.

Adapters are ligated to these fragments and are processed
to produce libraries (2) containing single-strand DNA cir-
cles with an adapter in the middle for DNBSeq™ and linear
double stranded DNA with adapters at each end for Illu-
mina. These DNA sequences are then replicated to produce
an amplified signal for sequencing (3), using rolling circle
replication for DNBSeq™ (producing DNBs) and bridge
PCR amplification for Illumina (producing clusters). Rolling
circle replication is a linear amplification where each repli-
cate is generated from the original fragment and does not
produce detectable clonal amplification errors or molecular
switching of sample barcodes [8], produces a small percent-
age of spot duplicates, and has reduced coverage bias,
resulting in better coverage of some GC-rich regions. The
exponential amplification performed on Illumina libraries is
known to have issues with molecular barcode switching [9]
and GC-rich sequence coverage [10–12]. DNBSeq™ and
newer Illumina instruments use patterned flow cells (4) for
higher nanoball / cluster density. Both platforms use step-
wise sequencing by polymerase on ssDNA template with

fluorescently labeled nucleotides (5). The small size of the
DNBs (~ 200 nm) relative to PCR clusters results in smaller
and more concentrated DNA spot fluorescence, giving
DNBSeq™ a higher signal-to-noise ratio, higher spot dens-
ities, and faster sequencing times.
DNBseq™ has also been investigated for use in analyz-

ing small non-coding RNAs [7], palaeogenomic sequen-
cing [13], metagenomic sequencing [14], germline and
somatic variant identification in whole genomes [15],
and transcriptome analysis in plants [16].

Analyses
Increased sequencing depth enriches for single-exon
transcripts not reported in genome annotations
Sequencing depth is an important consideration for RNA-
Seq because of the tradeoff between the cost of the experi-
ment and the completeness of the resultant data. Tran-
script abundance follows an exponential distribution, and
greater sequencing depths are required to recover less
abundant transcripts. As more sequencing is done to as-
semble less abundant transcripts, a greater proportion of
the additional reads will come from transcripts that
already have sufficient depth to assemble. Hence there are
diminishing returns as sequencing depth increases, and
intuitively one might expect the number of recovered
transcripts to asymptote. What happens in practice is sur-
prising, as we will show for our representative species.

Datasets
RNA-seq datasets are usually a few Gbp in size, but in the
public databases there are some unusually large datasets

Fig. 1 Technical comparison of DNBSeq™ and Illumina platforms
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with sizes in the many 10’s of Gbp. Importantly for our
purposes, these were sequenced from a single library, not
by pooling sequences from multiple libraries. We could
therefore sub-sample these datasets to simulate the conse-
quences of doing RNA-seq at varying sequencing depths.
To benchmark the resultant assemblies, we used species
with longstanding (decade old) reference genome annota-
tions, i.e. Homo sapiens, Mus musculus, Drosophila
melanogaster, Caenorhabditis elegans, Oryza sativa, Ara-
bidopsis thaliana. Tables 1 and 2 show the datasets used
and their related genomes, respectively. The data was
downloaded from the National Center for Biotechnology
Information’s (NCBI) Sequence Read Archive (SRA).

Quality control
All libraries were preprocessed with Trim Galore! to re-
move adapter/primer sequences. Only reads aligning to
the host genome using TopHat2 [17] were kept, to pre-
vent confounding effects from library contaminations.
Random sampling of each library was done at sequen-
cing depths of 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, and 16 Gbp.

Assembly results
Each sub-sampled dataset was de novo assembled by
SOAPdenovo-Trans and gap-filled using GapCloser [18].
Scaffolds were aligned to their host genome using BLAT
[19]. Low-quality and chimeric assemblies were filtered
out. Alignments of the high-quality scaffolds remaining
were compared to the transcriptome annotations in the
reference genomes. We counted the total number of
unique bases in these alignments, but did so in two dif-
ferent ways, depicted in Fig. 2 as “genome” or “exome”.
For the former we counted everything, but for the latter
we only counted transcriptome bases within the anno-
tated exons.

Our a priori expectation was that the total number of
unique bases would asymptote as the sequencing depth
increased. For the exome curves, this was universally ob-
served, typically at 2~8 Gbp, almost regardless of species
analyzed. For the genome curves, such asymptotic behav-
ior was best observed in Drosophila melanogaster, but not
at all in Homo sapiens, with other species falling some-
where between these two extremes of behavior. It is not
clear when the Homo sapiens genome data might asymp-
tote. For Homo sapiens, the genome data is nearly seven
times the exome data at 16 Gbp of sequencing depth.
Even in the curves that reach the asymptote, it is not be-
cause the genome or annotated exome has been com-
pletely covered, as only 60% of the genome bases and 75%
of the exon bases have transcripts aligned against them in
the most complete case (Drosophila). Given our stringent
alignment criteria, we believe the assembled sequences are
genuine transcripts. Why so many are not in the “official”
annotations is best deferred to the discussions.
An important consideration is the proportion of the as-

sembled sequences that align with and without introns.
This is because the latter case, single-exon transcripts, can
arise from a variety of sources including protein-coding
genes, long non-coding RNAs (lncRNAs), and improperly
spliced pre-mRNAs. The results for assemblies at 16Gbp of
sequencing are shown in Fig. 3. For almost all species, un-
annotated transcripts were overwhelmingly single-exon,
essentially 100%, with the exception of Drosophila melano-
gaster. A much smaller proportion of annotated transcripts
were classified as single-exon, 50 to 80% depending on
parameter settings. In Homo sapiens, Mus musculus, and
Arabidopsis thaliana libraries, a majority of the unanno-
tated single-exon material is intronic, suggesting but not
proving that they are simply unprocessed mRNAs. We
would however be cautious about overly interpreting the

Table 1 Datasets used to study effect of sequencing depth

SRA Run ID Species Tissue Description Platform # of Spots # of Bases Date Published End
Length

SRR1047863 Homo sapiens post-mortem brain (dorsolateral
prefrontal cortex / Brodmann
area 46)

Illumina HiSeq 1000 258 733 827 52 264 233 054 2014-01-08 101 bp

SRR980471 Homo sapiens CD19+ primary cells, hispanic
male age 37

Illumina HiSeq 2000 263 034 155 39 981 191 560 2013-09-12 76 bp

SRR1732347 Mus musculus male brain age 8 weeks, strain
C57BL/6 J

Illumina HiSeq 2000 354 274 087 71 563 365 574 2014-12-23 101 bp

SRR1509508 Drosophila
melanogaster

adult; strain: y; cn bw sp Illumina HiSeq 2000 140 645 540 28 410 399 080 2014-07-09 101 bp

SRR1523365 Caenorhabditis
elegans

at least 100 adult worms Illumina HiSeq 2000 228 557 939 45 711 587 800 2014-07-31 100 bp

SRR1178906 Oryza sativa panicle from O. sativa japonica
(Nipponbare cultivar)

Illumina HiSeq 2000 207 489 217 41 497 843 400 2014-03-03 100 bp

DRR018424 Arabidopsis thaliana 4 day old seedlings Illumina HiSeq 2000 192 531 285 38 891 319 570 2014-11-27 101 bp

SRR1061361 Arabidopsis thaliana leaves – when first flower open Illumina HiSeq 2000 202 019 334 40 807 905 468 2015-07-22 101 bp

All datasets were sourced from the NCBI and DDJB Sequence Read Archives
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single-exon fractions, as incomplete assemblies can pro-
duce single-exon transcripts, despite their underlying genes
having multiple exons. That said, the difference between
the proportions for unannotated and annotated transcripts
is striking.
Of further interest is whether the annotated and unan-

notated scaffolds might contain viable open reading
frames (ORFs). In analyzing the scaffolds for ORFs, we
only considered scaffolds with a minimum length of 300
bases and looked for ORFs of at least 100 amino acids. As

shown in Fig. 3, the annotated scaffolds contain a higher
proportion of ORFs than the unannotated scaffolds in all
cases. Some species contain higher levels of ORFs in the
unannotated scaffolds, which may be partially explained
by missing annotations in the references. The proportion
of annotated scaffolds not containing ORFs is likely af-
fected by the completeness of the assembly. Transcripts
that are partially assembled into separate scaffolds are less
likely to have ORFs of sufficient length, even though they
would be considered annotated.

Table 2 Reference genome and annotation (GFF) sources

Species RefSeq Assembly and Annotation Genome (bp) Total Gaps (bp) Exome (bp)

Homo sapiens GCF_000001405.29_GRCh38.p3 3 226 010 022 161 368 151 120 562 222

Mus musculus GCF_000001635.24_GRCm38.p4 2 803 568 840 79 356 756 114 986 282

Drosophila melanogaster GCF_000001215.4_Release_6_plus_ISO1_MT 143 726 002 1 152 978 35 879 647

Caenorhabditis elegans GCF_000002985.6_WBcel235 100 286 401 0 26 801 799

Oryza sativa GCF_000005425.2_Build_4.0 382 778 125 10 060 004 49 757 833

Arabidopsis thaliana GCF_000001735.3_TAIR10 119 667 750 185 644 57 812 822

All genome sequence and GFF reference files were obtained from the NCBI Assembly database

Fig. 2 Effect of sequencing depth on transcriptome recovery. We count the total number of unique bases in the alignments, based either on the
genome or the exome. The vertical scale normalizes the exome size of the 16 Gbp assemblies to unity
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The observed differences in genome sequence recov-
ered relative to exome in Fig. 2 are consistent with the
total amounts of non-minimal introns [20] in the
underlying genomes. Caenorhabditis elegans and Arabi-
dopsis thaliana are noted for their small genomes (100
Mbp and 120 Mbp respectively) and small proportions
of introns greater than a kilobase. Drosophila melano-
gaster has a comparably small genome of 144 Mbp, but
larger proportions of introns of kilobase length or lar-
ger. Oryza sativa has a slightly larger genome of 383
Mbp, but its introns are shorter in length than Dros-
ophila. Homo sapiens and Mus musculus have much larger
genomes (3.2 Gbp and 2.8 Gbp respectively) and compara-
tively large proportions of introns of 10 kilobases in length
or larger, with some reaching a megabase in length.

HiSeq and DNBseq™ platforms are nearly equivalent
except in the most GC-rich regions
Here, we compare two short-read NGS sequencing
platforms, the market-leading Illumina platform,
HiSeq, and a recent platform from MGI, DNBseq™,
based on technology from Complete Genomics. Our
primary interest is to recover as many complete tran-
script sequences as possible using a de novo assem-
bly. Within the context of the previous discussion,
and in particular Fig. 2, we are most interested in re-
covering the exome that appears in the genome anno-
tations. Obviously, this will be a function of
sequencing depth, but given an equivalent amount of
sequencing, might there be significant differences be-
tween platforms?

Fig. 3 Single-exon and ORF proportions in annotated and unannotated scaffolds. Many scaffolds align partially to the exome. A scaffold is said to
be “annotated” when it has an alignment that exceeds an arbitrary fraction, i.e. annotation threshold, of either the scaffold length or of the
reference transcript length. Annotated and unannotated SE refers to the proportion of annotated and unannotated transcripts that are single-
exon. Unannotated SEI refers to the proportion of unannotated single-exon transcripts that are intronic. Annotated and Unannotated ORF refers
to the proportion of scaffolds in each category that have ORFs of at least 100 amino acids in length, out of the scaffolds that are at least 300
bases long
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Datasets
All of the analyzed sequence was for libraries created
from the Universal Human Reference RNA (UHRR),
which is comprised of RNA from ten human cell lines,
and is commonly used as a control for microarray gene-
expression experiments. Nine libraries were constructed
by MGI with the MGIEasy RNA Library Prep Set
(1000006383, 1000006384) kit, consisting of three sets
with three replicates each. Nine sequencing runs with
paired-end 100 bp (PE100) data were performed on the
BGISEQ-500, giving a total of 416,161,025 reads. Five
approximately PE100 runs from the Illumina HiSeq-
2000 were used for comparison; they totaled 525,070,317
reads. Notice however that the HiSeq libraries were pro-
duced in two different labs. Table 3 shows the datasets
used.

Quality control
SOAPnuke [21] was used to filter the reads based on the
amount of low-quality bases, ambiguous bases (Ns), or
adapter sequence. In total, the DNBseq™ libraries had
4.70% of their reads filtered (0.25% adapter, 2.83% low-
quality, and 1.62% ambiguous); the HiSeq libraries had
27.91% of their reads filtered (1.48% adapter, 24.38%
low-quality, and 2.06% ambiguous). Notice however that
this large difference in number of low-quality reads fil-
tered can potentially be explained by differences in base
callers. It does not necessarily reflect any intrinsic qual-
ity difference between the platforms. Detailed results are
given in Table 4.
To reduce the effect of differences in library prepara-

tions, we also filtered the reads by aligning against the
Genome Reference Consortium human genome build38

(GRCh38) with HISAT2 [22]. This removed likely con-
taminations, and eliminated the spike-in reads that were
added to some libraries. For DNBseq™ libraries, 3.97% of
remaining reads could not be aligned; for HiSeq librar-
ies, 3.68% of remaining reads could not be aligned. To
reduce differences resulting from input material
amounts or PCR cycles, we also filtered duplicate reads
using Picard Tools [23]. For DNBseq™ libraries, 27.23%
of remaining reads were filtered out; for HiSeq libraries,
28.85% of remaining reads were filtered out. Full results
are given in Table 5.

Assembly results
We performed multiple de novo assemblies, all using
SOAPdenovo-Trans [18], with randomly-selected sub-
sets of each library. Target sizes were 1, 2, 3, 4, 5, 6, 8,
and 10 Gbp, to the extent that sufficient data was avail-
able in the source library. These assemblies were aligned
against GRCh38 with BLAT [19] and evaluated against
the GENCODE v28 [24] annotations. As before we dif-
ferentiate between alignments to the genome and ex-
ome. Results are shown in Fig. 4. Looking only at the
genome curves, the HiSeq libraries appear superior; but
looking at the exome curves, there is no appreciable dif-
ference between platforms. Each user will have to decide
for him/herself if this additional genome coverage is
worthwhile, given that it was not included in the exome
annotations from GENCODE.
Next, the scaffolds were aligned against the GRCh38

transcriptome using the LAST aligner [25], to evaluate the
completeness of the RNA-seq assembly. To be declared
complete, at least 95% of the annotated transcript must be
aligned to by a single RNA-seq scaffold. This definition

Table 3 Datasets used to compare DNBseq™ and HiSeq platforms

SRA Run ID Lab Platform # of Spots # of Bases Date Published End
Length

ERR1831362 1 BGISEQ-500 48 148 821 9 629 764 200 2017-02-21 100 bp

ERR1831363 1 BGISEQ-500 29 782 959 5 956 591 800 2017-02-21 100 bp

ERR1831364 1 BGISEQ-500 54 940 056 10 988 011 200 2017-02-21 100 bp

ERR1831365 1 BGISEQ-500 36 073 210 7 214 642 000 2017-02-21 100 bp

ERR1831366 1 BGISEQ-500 43 664 065 8 732 813 000 2017-02-21 100 bp

ERR1831367 1 BGISEQ-500 55 025 946 11 005 189 200 2017-02-21 100 bp

ERR1831368 1 BGISEQ-500 53 296 161 10 659 232 200 2017-02-21 100 bp

ERR1831369 1 BGISEQ-500 65 455 754 13 091 150 800 2017-02-21 100 bp

ERR1831370 1 BGISEQ-500 29 774 053 5 954 810 600 2017-02-21 100 bp

SRR1261168 2 HiSeq 2000 134 921 154 26 984 230 800 2014-04-24 100 bp

SRR1261170 2 HiSeq 2000 72 897 482 14 579 496 400 2014-04-24 100 bp

SRR950078 3 HiSeq 2000 100 387 010 20 278 176 020 2013-08-29 101 bp

SRR950080 3 HiSeq 2000 91 781 477 18 539 858 354 2013-08-29 101 bp

SRR950084 3 HiSeq 2000 125 083 194 25 266 805 188 2013-08-28 101 bp

All datasets were sourced from the NCBI and ENA Sequence Read Archives
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recognizes that a complete RNA-seq assembly is often
longer than the corresponding annotation, because the
former will include UTR sequences while the latter typic-
ally does not. The results are depicted in Table 6.
DNBseq™ results were fairly consistent in the number of
complete transcripts recovered for each subset size. HiSeq

results showed greater variation with subset size, which
we believe is due to differences in library preparation
among different labs. In particular, the libraries
SRR1261168 and SRR1261170 seemed of especially high
quality, as determined by transcript completeness, and
both were generated at the same sequencing center.

Table 4 Read quality filtering on two sequencing platforms

Platform Name Adapter Low Quality N%

DNBseq™ ERR1831362 125 926 0.26% 1 424 492 2.96% 769 503 1.60%

ERR1831363 79 533 0.27% 871 008 2.92% 479 635 1.61%

ERR1831364 127 069 0.23% 1 476 496 2.69% 869 764 1.58%

ERR1831365 103 994 0.29% 1 051 568 2.92% 588 427 1.63%

ERR1831366 110 324 0.25% 1 060 462 2.43% 711 236 1.63%

ERR1831367 132 461 0.24% 1 581 470 2.87% 901 123 1.64%

ERR1831368 133 444 0.25% 1 588 843 2.98% 875 865 1.64%

ERR1831369 152 027 0.23% 1 825 708 2.79% 1 049 309 1.60%

ERR1831370 83 674 0.28% 898 776 3.02% 484 541 1.63%

HiSeq SRR1261168 3 497 0.00% 30 319 019 22.47% 466 900 0.35%

SRR1261170 509 0.00% 33 381 937 45.79% 6 147 822 8.43%

SRR950078 1 313 463 1.31% 20 004 668 19.93% 1 307 643 1.30%

SRR950080 2 022 559 2.20% 18 689 016 20.36% 1 194 269 1.30%

SRR950084 4 443 842 3.55% 25 596 160 20.46% 1 675 649 1.34%

The columns show the number and percentage of reads filtered out based on them containing adapter sequence, having too many low quality bases, and having
too many ambiguous bases

Table 5 Read filtering for differences in library preparation

Preprocessing

Platform Name Raw Filtered Mapped Deduplicated

DNBseq™ ERR1831362 48 148 821 45 828 900 44 015 469 32 497 907

ERR1831363 29 782 959 28 352 783 27 237 354 21 102 998

ERR1831364 54 940 056 52 466 727 50 421 993 36 693 200

ERR1831365 36 073 210 34 329 221 32 932 438 24 745 818

ERR1831366 43 664 065 41 782 043 40 108 615 29 250 048

ERR1831367 55 025 946 52 410 892 50 302 197 36 153 502

ERR1831368 53 296 161 50 698 009 48 688 107 34 475 744

ERR1831369 65 455 754 62 428 710 59 984 288 41 622 545

ERR1831370 29 774 053 28 307 062 27 164 676 20 606 457

HiSeq SRR1261168 134 921 154 104 132 308 101 903 998 70 430 950

SRR1261170 72 897 482 33 367 214 32 597 422 27 498 074

SRR950078 100 387 010 77 761 236 73 979 293 50 505 406

SRR950080 91 781 477 69 875 633 66 896 955 49 310 706

SRR950084 125 083 194 93 367 543 89 192 069 61 653 799

DNBseq™ Total 416 161 025 396 604 347 380 855 137 277 148 219

% Removed 4.70% 3.97% 27.23%

HiSeq Total 525 070 317 378 503 934 364 569 737 259 398 935

% Removed 27.91% 3.68% 28.85%

Here we show reads remaining after each preprocessing step. The columns indicate read counts after SOAPnuke filtering (Filtered), aligning to GRCh38 with
HISAT2 (Mapped), and PCR deduplication with Picard Tools (Deduplicated)
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We also combined all of the DNBseq™ libraries and as-
sembled subsets of different sizes. The results showed that
the combined library performs better in terms of complete
transcripts than any other DNBseq™ library at every subset
size (see COMBINED row in Table 6). This is likely be-
cause the sequences that are sampled in different libraries
are complementary and occur in sufficient quantity such
that they will be assembled in the combined libraries.

To get an idea of the overlap in complete assembled
transcripts between the two sequencing platforms, we
compared the complete transcripts for the 4 Gbp subset
assemblies, as that was the largest available subset in
most of the libraries. Results are depicted in Fig. 5.
Complete overlap does not exist. This was the case
whether comparing libraries from different sequencing
platforms or from the same sequencing platform. The

Fig. 4 Genome vs exome coverage from HiSeq and DNBseq™. Each line corresponds a subsampled library, with total sizes of 1, 2, 3, 4, 5, 6, 8, and
10 Gbp

Table 6 Completeness of transcripts assemblies per library

Complete Transcripts Assembled

Platform Name 1Gbp 2Gbp 3Gbp 4Gbp 5Gbp 6Gbp 8Gbp 10Gbp 12Gbp 20Gbp

DNBseq™ COMBINED 2 483 3 891 4 720 5 276 5 705 5 994 6 458 6 716 6 979 7 472

ERR1831362 2 049 3 306 4 140 4 719 5 189 5 530

ERR1831363 1 981 3 235 4 026 4 641

ERR1831364 2 052 3 393 4 253 4 805 5 187 5 527

ERR1831365 1 997 3 295 4 125 4 667

ERR1831366 1 995 3 293 4 111 4 739 5 193

ERR1831367 2 061 3 351 4 173 4 775 5 216 5 511

ERR1831368 1 951 3 304 4 131 4 707 5 164 5 471

ERR1831369 2 032 3 323 4 170 4 772 5 178 5 575 5 989

ERR1831370 1 920 3 260 4 091 4 622

HiSeq SRR1261168 2 363 3 696 4 483 4 987 5 439 5 720 6 304 6 688 6 933

SRR1261170 1 908 3 135 3 908 4 478 4 916 5 107

SRR950078 809 1 402 1 820 2 190 2 444 2 673 3 024 3 362

SRR950080 982 1 620 2 126 2 504 2 816 3 094 3 471

SRR950084 936 1 573 2 068 2 433 2 722 2 985 3 379 3 666

Complete transcript counts are shown for each randomly-selected subset for each library
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implication is that we are mostly seeing the inevitable
differences in sampling of lower level transcripts. How-
ever, the amount of overlap between libraries from the
same platform was higher than that between libraries
from different platforms, indicating that some tran-
scripts are more likely to be completely assembled when
we use a particular sequencing platform.
Next, we looked at the 4 Gbp assemblies for tran-

scripts that were not complete in any library on one se-
quencing platform, but complete for at least one library
on the other platform. We then compared the GC con-
tents of the assembled regions to the gap regions. The
results are shown in Fig. 6. For DNBseq™ libraries, gap
regions are uniformly distributed among low, mid, and
high GC-content. In contrast, albeit for only some of the
HiSeq libraries, the gap regions reveal a bias against GC-
rich sequence. The fact Illumina libraries can be suscep-
tible to both high and low GC biases has previously been
reported [10–12], although there are techniques that can
reduce the magnitude of the biases. And indeed, the two
best HiSeq libraries from our study showed much less of
a GC-content bias than the other three.
Looking further into the GC-content biases, we exam-

ined the read depths from the HISAT2 alignments. We
established a set of 565 non-overlapping transcripts with
a minimum average depth of 10 across all our 4 Gbp

datasets. To ensure that the subset of transcripts are
representative of the complete set of transcripts, we
counted the number of transcripts with GC-content in
1% segments for both sets. These two sets have a Spear-
man correlation of 0.904, showing that the subset has a
similar GC-content distribution to the full set of tran-
scripts. Then, for each 100 base pair window along each
transcript, we determined their GC-content and average
read depth. The ratio of each window depth to the entire
transcript average depth is taken. Figure 7 depicts the
average of these ratios for each GC-content bin from 0
to 100% on a few representative libraries. The DNBseq™
library ERR1831362 and the HiSeq library SRR1261168
look rather similar, not surprisingly considering that these
were among the best in terms of assembly completeness.
However the HiSeq library SRR950078 exhibited a sub-
stantial drop-off in read depth at high GC-content, con-
sistent with its inferior assembly completeness.
Finally, we estimated the transcript abundances using

Kallisto [26], focusing again on the 3 representative li-
braries, plotting the ratio of transcript abundances from
the DNBseq™ library to each of the two HiSeq libraries.
These results are shown in Fig. 8. Transcripts were only
included when their estimated abundances were at least
10 transcripts per million in both libraries, to avoid the
higher-variance low-abundance transcripts. Comparing

Fig. 5 Overlap in complete assembled transcripts. Comparisons of complete transcripts between libraries at the 4 Gbp subsets. For the libraries in
each row, the fraction is calculated as the number of complete transcripts that are shared with the library from each column, divided by the total
number of complete transcripts for the library in that row
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the 9,687 transcripts (4.75% of all transcripts) with abun-
dances meeting the threshold in ERR1831367 and
SRR1261168, we see a slight slope in the regression-fitted
line, as expected if there is a bias against higher GC-con-
tent reads in the HiSeq data. Comparing the 11,753 tran-
scripts (5.77% of all transcripts) with abundances meeting
the threshold in ERR1831367 and SRR950078, we see a
similar slope, consistent with the other comparison.

Discussion
How much RNA-Seq data is optimal? It is well-known
that there are diminishing returns to ever deeper tran-
scriptome sequencing and the exact choice will always
be a function of budget vs ambition. However, it is less
well-known that deeper transcriptome sequencing will
generate a plethora of single-exon transcripts that are
not typically included in most genome annotations,

Fig. 6 GC-content of assembled versus gap regions. Cumulants of GC-content in the assembled versus gap regions for (a) DNBseq™ libraries and
(b) HiSeq libraries. Each pair (solid and dotted lines) represents a single library

Fig. 7 GC-bias plots for representative libraries. Relative coverage as a function of GC-content, computed on 100-base windows across the set of
565 transcripts described in the text. A relative coverage of one would indicate no bias
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especially but not exclusively for human sequencing.
What these additional transcripts might be has long been a
subject of debate. The first high-profile mention of this
phenomenon was the FANTOM Consortium publication
of full-length mouse cDNAs, where it was claimed that 15,
815 of 33,409 non-redundant cDNAs were non-protein-
coding RNA genes [27]. However, most of these genes were
poorly conserved across mammalian evolution [28] and it
was unclear how many were biologically functional. These
debates escalated when the ENCODE Consortium assigned
biochemical functions to 80% of the human genome [29].
The arguments focussed on the definition of biological
functionality, and the relevance or not of evolutionary
conservation [30–34]. We do not wish to revisit these
arguments. The point of Figs. 2 and 3 was simply to
demonstrate what you get if you sequence more
deeply on an RNA-Seq library. It is up to the

individual user to decide if such additional transcripts
are worth the extra expenditures.
Which sequencing platform is better? For most users,

next-generation sequencing is a choice between higher-
quality shorter reads, as exemplified by the market-lead-
ing Illumina platform, or lower-quality longer reads, as
exemplified by Pacific Biosciences and Oxford Nano-
pore. In the former category, the most pertinent ques-
tion is if the DNBseq™ platform (BGISEQ-500 and more
recent MGISEQ-2000 and MGISEQ-T7, which are cap-
able of PE150 reads) is a viable alternative to Illumina.
Here, we show that for recovery of transcript sequences
from de novo assembled RNA-Seq libraries the two plat-
forms give equally good results. Some of the Illumina li-
braries under-represented GC-rich sequences, leading to
gaps in the assemblies. However, other Illumina libraries
did not exhibit such a GC-content bias, and without a

Fig. 8 A slight bias in the transcript abundances vs GC-content. The log ratio of the expression levels of (a) SRR1261168, the HiSeq run with the
most complete assemblies and (b) SRR950078, the HiSeq run with the least complete assemblies, compared to ERR1831364, the DNBseq™ run
with most the complete assemblies. Regression fit is shown in blue, with numerical parameters indicated
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systematic analysis of library making protocols that is
beyond the scope of this publication, it is unclear if this
is an intrinsic disadvantage of the Illumina platform.
However, the importance of good library construction,
and the consequent biases if this is not done right, is
worth emphasizing regardless of sequencing platform
used.

Conclusions
Increasing sequencing depth of RNA-Seq experiments has
quickly diminishing returns in terms of exomic sequence
assembled. A large portion of the additional sequences as-
sembled as sequencing depth increases appears to be un-
annotated single-exon transcripts. Of these sequences, a
majority appears from intronic regions.
DNBseq™ is a viable alternative to HiSeq for de novo

RNA-Seq assembly. Libraries sequenced on both tech-
nologies recovered similar numbers of full-length tran-
scripts after assembly. Higher levels of GC-bias are seen
in some of the Illumina libraries, which is likely attribut-
able to differences in library preparation.

Methods
Increased sequencing depth enriches for single-exon
transcripts not reported in genome annotations
Quality control
Reads are trimmed by Trim Galore! 0.3, which removes
adapter/primer sequences. The --paired parameter is
used, with the --quality parameter set to 0 so that no
bases are removed for low-quality scores (these are dealt
with later). To improve alignment rates in the next step,
five bases were also trimmed from the 5′-ends of reads
in the SRR1523365 (C. elegans) data.
Each library is split into million read-pair chunks.

Each chunk is aligned to their reference genome by
Tophat 2.0.13, using the --b2-very-sensitive parameter to
increase alignment sensitivity. Reads are considered
“clean” if both ends align and they are consistent in loca-
tion and direction. Clean reads from all chunks are
merged and used for further processing.

Assembly and alignment
Clean read-pairs from each library are randomly sub-
sampled to generate 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, and 16
Gbp of sequencing data. These subsets are assembled
with SOAPdenovo-Trans 1.03 (2014-01-23) using default
parameters, but with the -F argument set to enable gap
filling and the average insert size defined as 250 bp.
Post-processing with GapCloser filled in more gaps.
Assembled sequences are aligned against their host

genome by BLAT [19] using the -fine (looks harder for
smaller initial and terminal exons) and -ooc (speeds up
alignment by skipping overly common 11-mers) parame-
ters. Scaffolds that align to the genome over at least 98%

of their length are deemed to be correctly assembled.
Alignments are compared with the reference annotations
for the host genome.
To compute the proportion of unannotated and anno-

tated scaffolds with single vs multi-exon alignments, we
set a percentage threshold that the alignment must
reach, from 0 to 100% at 1% intervals. A scaffold is con-
sidered to be annotated if has an alignment that is
greater than that percentage threshold, where the de-
nominator on the percentage calculation is the length of
the scaffold or the length of the reference transcript
(whichever is more favorable).
To analyze the proportion of unannotated and anno-

tated scaffolds containing viable ORFs, we looked at the
set of scaffolds at least 300 bases long in each category,
and computed the proportion of those that had ORFs at
least 100 amino acids long.

HiSeq and DNBseq™ platforms are nearly equivalent
except in the most GC-rich regions
Quality control
Reads from each library are first filtered with SOAPnuke
1.5.6. We chose filtering parameters matching the previ-
ous study of a reference human genome dataset gener-
ated on DNBseq™ [35]. Reads are eliminated when more
than 10% of the bases have a PHRED score of less than
10 or when more than 1% of the bases are ambiguous
N’s. Reads containing at least 50% of an adapter with no
more than one mismatch are also filtered.
To reduce the effect of contamination or otherwise

unwanted sequence, we filter the reads by aligning them
to the Genome Reference Consortium human genome
build 38 (GRCh38) using HISAT2 2.1.0 and default pa-
rameters. Both ends must be aligned concordantly for
the read to be kept. This removes contamination, spike-
in reads, etc.
PCR duplicates are marked by the Picard Tools 2.18.5

MarkDuplicates command, and then filtered using Samtools
1.8 and an awk command to reduce the effect of differences
in input materials and PCR cycles between libraries.

Assembly and alignment
The clean deduplicated reads are randomly subsampled
from each library to generate 1, 2, 3, 4, 5, 6, 8, and 10
Gbp of sequencing data, to whatever extent that the de-
sired amount of data is available. The datasets are as-
sembled with SOAPdenovo-Trans 1.04 using default
parameters, with the -F argument set to enable gap fill-
ing and the average insert size set to 200 bp. This is
followed with GapCloser post-processing to fill in more
gaps. Assembled sequences are aligned against the
GRCh38 genome with BLAT 36 [19], using parameters
-fine (looks harder for smaller initial and terminal exons)
and -ooc = 11.ooc (speeds up alignment by skipping
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overly common 11-mers). Scaffolds aligning to the gen-
ome above 98% of their length are said to be assembled
correctly. Their alignments are compared with the Gen-
code v28 [24] annotations to determine exome vs gen-
ome coverage.

Completeness
Assembled sequences are also aligned with lastal 941 [25],
using default parameters, to the set of transcripts in
GRCh38 generated from the Gencode v28 annotations.
For a reference transcript to be considered complete, there
must be a scaffold that can align over 95% of that refer-
ence transcript. Only scaffolds which have an unambigu-
ous top-scoring alignment are considered.

GC content gaps/biases
GC content analysis is done on the 4 Gbp subsets, be-
cause all libraries except for SRR515084 have a 4 Gbp
subset. For comparing assembled versus gap regions,
transcripts are chosen if they are not assembled in any
other library from the same sequencing platform, but as-
sembled in a library from the other sequencing platform.
Regions are declared to be a gap when there are no scaf-
folds that align to that region of the annotated transcript
and, moreover, there are no reads (assembled or unas-
sembled) that align to that region. Only transcripts with
at least 10 bases worth of gap region are used for our
comparisons.
To analyze GC-bias in reads coverage, we must ex-

clude genes with multiple splice variants, because their
reads coverage cannot be confidently assigned. Hence
we limit the analysis to a set of 565 transcripts that have
no overlap with any other annotated transcripts and that
also have a minimum average read depth of 10 across
their lengths. For each 100 bp window along each tran-
script, we calculate the ratio of the read depth for that
window against the average read depth along the tran-
script, as well as the GC-content of that window. The
set of all depth ratios is averaged and plotted against
GC-content.
To analyze the effect of GC-bias on transcript abun-

dance, we run Kallisto 0.44.0 [26] to estimate transcript
abundance. For each library pair, we plot the ratio of the
transcript abundance for each transcript, as a function of
GC-content. Only transcripts that have a transcripts per
million (TPM) estimate of 10 or greater are included.
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