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Clear-cell renal cell carcinoma (ccRCC) arises from 
proximal tubules in the kidney cortex and is the most 
common kidney malignancy (1). Metastasis occurs in over 
one-third of cases and targeted therapies, primarily against 
angiogenesis, have been used in clinical practice over 
the past decade (1). The application of anti-angiogenesis 
therapies has been motivated by the inactivation of Von 
Hippel-Lindau (VHL) tumor suppressor gene, which is the 
most common genetic alteration in ccRCC. VHL deficiency 
leads to the aberrant activation of hypoxia signaling and 
downstream angiogenesis pathways (2,3). Furthermore, 
due to the immunogenic nature of ccRCC tumors, immune 
checkpoint inhibitors (ICIs) are used as the standard of 
care for advanced tumors, most recently in combination 
with tyrosine kinase inhibitors (TKIs) (3,4). While some 
patients benefit from these treatments, responses to anti-
angiogenesis and ICI agents are transient and limited to a 
small subset of patients, emphasizing the critical need for 
prognostic and predictive biomarkers, which are currently 
lacking in clinical practice (5-7). Notably, the current 
therapies are directed against tumor microenvironment, 
highlighting the challenge of targeting cancer cells directly 
within ccRCC tumors.

Recent large-scale sequencing studies have advanced 
our knowledge about genomic drivers of ccRCC beyond 

VHL mutations and revealed significant heterogeneity 
in the genomic landscapes of tumors, which is linked 
to diverse clinical outcomes (8,9). The most commonly 
mutated genes in ccRCC include VHL (76%), PBRM1 
(39%), SETD2 (18%), and BAP1 (14%), all located on 
the short arm of chromosome 3 (8,10). Interestingly, 
PBRM1 and SETD2 encode two prominent epigenome 
modulators, highlighting the driving role of abnormal 
epigenome patterns in ccRCC development. In this context, 
previous studies have reported the anti-proliferative 
activity of DNA methyltransferase inhibitor 5-aza-20-
deoxycytidine (DAC) against ccRCC cells (11). Notably, 
the combination of DAC with chemotherapeutic agents 
effectively demonstrates a synergistic impact in reducing 
the viability of renal cell carcinoma (RCC) cell lines (12). 
SETD2 is the leading histone methyltransferase, responsible 
for catalyzing the methylation of histone-3 at lysine-36 
(H3K36me3), and according to a previous study, SETD2 
deficiency can increase DNA double-strand breaks (DSB) 
damage by impairing homologous recombination (HR) (13). 
These observations have inspired Zhou and colleagues to 
examine the potential impacts of combination therapy with 
DNA hypomethylating agents (HMAs) and DNA repair 
inhibitors in ccRCC. Specifically, they evaluated the effects 
of combining DAC with an inhibitor of poly (ADP-ribose) 
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polymerase (PARP) (talazoparib; BMN-673) on the viability 
and growth of SETD2-deficient human ccRCC (14).

PARP inhibitors (PARPi) interrupt the ability of 
malignant cells to tolerate DNA damage, leading to cell 
cycle arrest and apoptosis, and have shown significant 
efficacy in different tumor types (15). 

Zhou and colleagues investigated the effects of treatment 
with BMN-673 and DAC on different RCC cell lines, 
categorized into three groups as follows: (I) ACHN (SETD2 
wild-type) and A498 (SETD2 mutant); (II) Caki-2 (SETD2 
wild-type) and 769-P (SETD2 down-regulated); (III) 786-O 
SETD2 wild-type (SETD2-WT) and 786-O SETD2 knock-
out (SETD2-KO). First, the authors observed a synergetic 
inhibition of cell growth by inducing apoptosis in SETD2-
mutated cells upon a combination therapy with DAC and 
BMN-673. Moreover, they showed a relationship between 
increased cell cycle inhibition and apoptosis induction 
and higher rates of DNA damage, inefficient DNA repair 
systems for DNA DSBs, and loss of genomic stability in 
SETD2-altered cells. 

Second, they employed RNA-sequencing to examine 
alterations in transcriptional profiles of 786-O SETD2-WT 
and 786-O SETD2-KO cells before and after treatments. 
The Gene Set Enrichment Analysis (GSEA) revealed that 
main pathways upregulated following treatments with DAC 
alone or in combination with BMN-673 were related to 
innate and adaptive immune responses. The activation of 
immune response pathways correlated with an increased 
expression of transposable elements (TEs), particularly 
following the combination therapy. However, these 
pathways were not significantly affected following PARPi 
monotherapy, indicating a noticeable effect of the dual 
treatment on the activation of immune-related pathways. 
Additionally, the study revealed a significant increase in 
STING1 protein levels, particularly in SETD2-KO cells, 
following treatment with DAC or the combination of DAC 
and BMN-673. These findings suggest that activation of 
TEs, resembling viral mimicry, and the STING1 pathway 
are potentially involved in immune response activation 
and may contribute to the therapeutic impacts observed 
after treatment with DAC or the combination of DAC and 
BMN-673.

Lastly, to validate in vitro findings, Zhou et al. examined 
the effects of therapies in vivo on xenografts developed 
by implanting SETD2-WT and SETD2-KO 786-O 
cells in immune-deficient nude mice. The in vivo results 
confirmed that the SETD2-deficient xenografts were more 
sensitive to the combination therapy, consistent with the 

in vitro results (14).
The results of this study are novel and interesting in 

terms of proposing a new therapeutic strategy that targets 
cancer cells directly in ccRCC tumor milieu. However, the 
translational potential of the findings cannot be assessed 
thoroughly due to the limitations of the study, as discussed 
below. First, the results are generated using a limited 
number of cell lines in vitro and only one cell line (786-O) 
in vivo. Given the diverse histological subtypes of RCC, 
the in vivo observations are only limited to the ccRCC 
subtype (represented by 786-O) and may not be valid for 
other SETD2-mutant subtypes of RCC. Second, the cell 
line models do not capture the complex environment of 
tumors faithfully, and patient-derived organoid (PDO) or 
patient-derived xenograft (PDX) models have emerged as 
more appropriate tools for the evaluation and pre-clinical 
studies of novel treatment approaches (16). Lastly, the use 
of immune-deficient animals did not allow to verify possible 
involvement of immune responses.

Genome-based therapeutic approaches in RCC have a 
long-standing history. An eminent example is the application 
of anti-angiogenesis TKIs in ccRCCs, characterized by 
inactivating mutations of VHL. While the use of anti-
angiogenic agents was the first-line treatment in ccRCC 
for many years, the landscape of ccRCC management is 
consistently changing, owing to the emergence of new links 
between genomic alterations and targeted therapies. For 
example, it has been proposed that PBRM1 mutations may 
be associated with better response to ICI treatments (17,18). 
Furthermore, recent research has shown that RCC cells 
carrying SETD2 mutations or exhibiting reduced expression 
of SETD2 are sensitive to HMAs both in vitro and  
in vivo (19). In addition, it has been shown that combination 
therapy with an HMA and PARPi has the potential to 
inhibit cell growth in some cancers (20,21). In this context, 
the study by Zhou et al. is the first report proposing a dual 
therapy with DAC and PARPi against SETD2-mutant 
ccRCC (14). The results of this study can complement 
those of preclinical studies that have indicated the potential 
use of PARPi in ccRCC management (22,23), and a current 
phase Ib/II clinical trial that is evaluating the outcomes of 
the talazoparib and axitinib combination in patients with 
previously treated metastatic RCC (24). In sum, the study 
by Zhou et al. may open new avenues for personalizing 
PARPi-therapies for SETD2-mutated metastatic ccRCCs, 
addressing the limitations of existing approaches (25). 
However, additional studies are needed to validate these 
observations and elucidate the involved pathways.
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