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Abstract

Purpose

The aim of this research is to establish whether, and to what extent, the tilt angle, gear ratio

of the propulsion system and propulsion frequency of a wheelchair influence the position of

the centre of gravity. Furthermore, it verifies the usefulness of such research using an origi-

nal test stand.

Materials and methods

The article presents the effects of three operational parameters of a wheelchair on the posi-

tion of the centre of gravity of the human body. The study included 27 wheelchair propulsion

tests of a wheelchair with pushrim propulsion using the following variable parameters: gear

ratio of the propulsion system, propulsion frequency and wheelchair tilt angle. The position

of the centre of gravity of the human body was measured in dynamic conditions at 100 Hz.

The results were represented with ellipses defining the region of variability of the position of

the centre of gravity of the human body. The coordinates of the centre of gravity were mea-

sured in relation to the reference system, with the start point at the centre of the axis of rota-

tion of the rear wheelchair wheels. The measurements were taken in a horizontal plane in

relation to the base on which the test stand was positioned.

Results

The research carried out shows that the inclination angle of the wheelchair has the greatest

influence on position of the ellipse describing the position of the centre of gravity of the

human body. By controlling the change in the inclination angle value in the range from 0˚ to

5.4˚, the standard deviation of the length of the horizontal half-axis of the ellipse (SD a)

equal to 31.2 mm was obtained. For comparison, by changing the frequency of pushes (40

to 50 pushes per minute) of the wheelchair at a constant inclination angle, the standard devi-

ation of the horizontal half-axis length (SD a) equal to 8 mm was recorded. The results of the

study show a change in the position of the centre of gravity of the human body in dynamic
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conditions. They are relative to the contact points of the wheelchair wheels with the ground.

Using the dimensions of the plotted ellipses, one can determine the values of pressure that

affect the wheelchair’s individual wheels. Conclusions–Increasing the value of each afore-

mentioned parameter resulted in the increase of strength required by the operator to propel

the wheelchair. It directly influenced the position of the centre of gravity during the test.

Introduction

The operating conditions of the propulsion system [1, 2] have a significant effect on the bio-

mechanical parameters [3] of manual wheelchairs, including the position of the centre of grav-

ity of the human body. Manual wheelchairs can be self-propelled and require the user to use

their upper limbs to move the wheelchair. A commonly used manual propulsion system is a

pushrim propulsion system, in which the user independently propels the left and the right

wheel by pushing round pushrims attached to the rim of each wheel. It requires movement of

the upper limb [4], and depending on the degree of disability, may also require use of a shoul-

der girdle [5]. As a result, the position of the centre of gravity of the anthropotechnical system

[6, 7] changes. An anthropotechnical system is a system that involves a human user as well as a

technical device in order to function. An example of a mutually related anthropotechnical sys-

tem is a man-wheelchair system.

The nature of the manual propulsion system requires the use of the muscular system [8] by

the disabled person, which in turn, may result in fatigue [9]. Fatigue depends on the effort

required, and is affected by the resistance to motion [10, 11] and the propulsion frequency.

Multi-gear transmissions [12, 13] can be used to reduce the load on the muscular system as a

result of the operation of the manual propulsion system.

Apart from the technical solutions reducing the propulsion-related loads, a disabled person

can further reduce it by maintaining correct body kinematics. Depending on the operational

parameters of a wheelchair, kinematics of the body segments propelling the wheelchair also

change. According to various studies, the propulsion frequency is affected by the flexion angles

of the joints of the upper limb [14]. Analysis of the kinematics of the body of the operator pro-

pelling the wheelchair also shows the effect of resistance to motion on torso flexion [15].

When using the wheelchair on slopes, the position of the body shifts in relation to the rear

drive axis [2], the center of pressure displacement for the seat is also changing [26]. In this

case, the effect is the same as when adjusting the wheelchair seat, however, the changes are

dynamic in nature. As a result, the flexion angle of the upper limb segments [16] changes to

compensate the change in position in relation to the axis of rotation of the drive wheel. Also,

the wheelchair tilt angle shifts the position of the centre of gravity of the human body forwards

or backwards depending on the slope angle.

Based on the previous analyses, the locomotive function relying on the upper limbs of the

user depends on the operational parameters of the wheelchair. Different operational parame-

ters can affect the kinematics of the human body. Any changes in the kinematics of the human

body segments will translate into changes in the position of its centre of gravity. Observations

show that the selected operational parameters of the wheelchair affect the position of the centre

of gravity of the human body. The operational parameters including the wheelchair tilt angle,

gear ratio of the propulsion system and the propulsion frequency are the main components of

the locomotive function. The position of the centre of gravity of the human body as a whole

depends on how its individual segments are oriented in space. It is therefore reasonable to

Changes in position of the centre of gravity of the human body during propulsion of a wheelchair
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analyse how the wheelchair’s operational parameters affect the centre of gravity, but also how

it changes its position in dynamic conditions related to manual propelling. Determination of

changes in the centre of gravity is important, because it allows to determine the place of appli-

cation of the load resulting from human body weight. In addition, the position of the centre of

gravity of the human is important when determining the stability of the wheelchair, both static

and dynamic.

The study of the impact of operational parameters required the use of a specialised test

stand that allows the measurement of dynamic [18] and biomechanical parameters. It also

allows simultaneous simulation of various operational parameters of the wheelchair [19]. The

test stand was designed and manufactured as part of the Lider VII project “Study of the biome-

chanics of manually propelled wheelchair for innovative manual and hybrid drives” (LIDER/

7/0025/L-7/15/2016) financed by the National Centre for Research and Development. The aim

of this research is to establish whether, and to what extent, the tilt angle, gear ratio of the pro-

pulsion system and propulsion frequency of a wheelchair influence the position of the centre

of gravity. Furthermore, it verifies the usefulness of such research using an original test stand.

Materials and methods

The method of determining the position of the centre of gravity can be divided into three

stages: preparation for the test, the measurement test and the analytical processing of the

obtained data. As part of the preparations, the wheelchair was weighed, then along with the

examined person, it was placed on the test bench. After securing the wheelchair, its position

was measured to determine the exact position relative to the reference system adopted in the

study. The examined person performed 30 propulsion cycles with a constant frequency (equal

time intervals between pushes). Each measurement test was carried out with its unique and

constant operational parameters, which include: the frequency of pushes, the inclination of the

wheelchair and the gear ratio.

The wheelchair was tested using a wheelchair dynamometer [17] with a weighing scale with

four strain gauges Wi (Fig 1). The weighing scale was used to determine the response in the

supports of the weighing scale platform on which the wheelchair and its operator were posi-

tioned. The wheelchair on the weighing scale platform can be propelled by the operator and a

wheel torque is compensated by the traction rollers in the weighing scale platform.

Based on the measured response of the supports of the weighing scale platform, the position

of the centre of gravity fij on four planes π1–π4, in relation to the system with a start point at

the weighing scale platform W1 (Fig 2), was determined. Based on the position, the coordi-

nates of the position of the centre of gravity on one plane, parallel to the floor, were deter-

mined using Eqs (1) and (2).
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f43� f12
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� �
�
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The centre of gravity was determined every 0.01 seconds in each test, giving a set of points.

The set of points representing the position of the centre of gravity of the human body in time

was replaced with an ellipse (Fig 3), with the central point in the plot being an average of the

measured coordinates of the position of the centre of gravity, and the inclination angle α of the

Changes in position of the centre of gravity of the human body during propulsion of a wheelchair
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Fig 1. Test stand with strain gauges W1–W4 and the reaction force at the supports of the weighing scale platform R1–R4.

https://doi.org/10.1371/journal.pone.0226013.g001

Fig 2. Diagram including data for determining the position of the centre of gravity, where: CG—Centre of

gravity, πi—One of four side planes, Ri—Reaction of the support of the weighing scale platform, fij−position of

the centre of gravity on one of the side planes, L—Platform length, H—Platform width.

https://doi.org/10.1371/journal.pone.0226013.g002
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semi-major axis of the ellipse corresponded to the slope of a trend line for the measured

points.

The dimensions of the ellipse that replaced the set of points of the measured centre of grav-

ity of the human body were determined in such a way that at least 75% of the measured points

were in the area drawn by the ellipse. Knowing that the measured coordinates of the centre of

gravity need not be characterized by a normal distribution, the Chebyshev inequality was used

in which for k = 2 a maximum of 25% of the measured points was rejected. On this basis, the

dimensions of the semi-axes of the ellipse a and b were determined by calculating the standard

deviation σx and σy multiplied by the adopted factor k according to Eqs (3) and (4).

a ¼ ksx ð3Þ

b ¼ ksy ð4Þ

A test stand for simulating operating conditions and measuring dynamic parameters of a

wheelchair [17] was used in the tests (Fig 4). The basic component of the test stand is a weigh-

ing scale platform (Fig 4A) with four strain gauges (Fig 4B). The rear drive wheels are sup-

ported on the traction rollers (Fig 4D) coupled with two electric motors (Fig 4C) simulating

the resistance to motion. The front section of the wheelchair is connected to an arm tilting the

wheelchair (Fig 4F). Kinematic parameters were measured using two incremental encoders

(Fig 4E) coupled with the rear drive wheels.

Fig 3. Diagram representing the ellipse used to determine the variability of the position of the centre of gravity of the human

body based on the measured points of the position of the centre of gravity, where α—Inclination of the axis of the ellipse, a—

Semimajor axis, b—Semiminor axis.

https://doi.org/10.1371/journal.pone.0226013.g003
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A manually propelled wheelchair with multi-gear transmission (3 gears) was tested [18]

(Fig 5). The wheelchair was propelled by the operator using three constant propulsion fre-

quencies at three different wheelchair tilt angles and three gear ratios (Table 1). Propulsion fre-

quency was controlled by a metronome. The operator’s task was to execute individual

propulsion phases according to the rhythm set by this device. The drive wheels were loaded

with the same constant anti-torque for all tests. A total of 27 tests were carried out. During the

test, the position of the centre of gravity of the wheelchair was measured in constant time

intervals.

The results were compared with only one of the operational parameters of the wheelchair

variable. For example, changes in the propulsion frequency were measured at a constant

wheelchair tilt angle and constant gear ratio. The result of the test procedure was 27 tests, for

which the region of variability of the position of the centre of gravity of the human body was

determined in relation to the gear ratio, propulsion frequency and wheelchair tilt angle. To

recognise the defined goal as accomplished, it took one person, because the research was quali-

tative not quantitative. The key task was to establish whether the change in the constructed

devices (research stand and drive transmission with epicyclic gear) results in a measurable

change of the position of the centre of gravity. Currently, the relations between the quantitative

factors of separate parameters are being examined, such as muscular effort and the position of

the centre of gravity. It is, however, beyond the scope of this research, which has a finite char-

acter. To enable statistical analysis of the collected results, it was decided to use a large number

of propulsion cycles.

One female subject, aged 25 years, with a body weight of 61 kg and the BMI value of 20,4

kg/m2 was examined. The examined person is a student at the University of Physical

Fig 4. Test stand for simulating operating conditions and measuring dynamic parameters of a wheelchair, see

description in the article, where A—Weighing scale platform, B—Strain gauges, C—Electric motors, D—Traction

rollers, E—Incremental encoders, F—Tilting arm.

https://doi.org/10.1371/journal.pone.0226013.g004
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Education in Poznań, and volunteered as a test subject. She confirmed the voluntary willing-

ness to participate in the study with the signature on the consent form and read the patient

information form. The research has been positively evaluated by Bioethical Commission at the

Karol Marcinkowski Medical University in Poznań Poland, Resolution No. 1100/16 of 10

Fig 5. Tested wheelchair at the test stand, where A—Multispeed hub gearbox.

https://doi.org/10.1371/journal.pone.0226013.g005

Table 1. Test configurations: Velocity vi, wheelchair tilt angle ki and gear ratio pi.

index Frequency of pushing vi [push per minute] Angle of inclination ki [˚] Gear ratio pi [–]

1 40 0 1.96

2 45 1.5 1

3 50 5.4 0.51

https://doi.org/10.1371/journal.pone.0226013.t001
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November 2016, under the guidance of Prof. MD Chęciński P. for the research team led by Ph.

D. Wieczorek B. The authors obtained written consent of the examined person for the publica-

tion of research results with her participation. The data was presented in such a way as to

ensure her complete anonymity. The set of registered results describes only one patient. The

analysis does not concern a larger number of people, and therefore they are not categorised.

On this basis, it should be stated that there are no ethical concerns.

Results

During the tests, the effects of the selected operational parameters of the wheelchair on the

region of variability of the position of the centre of gravity of the human body in the sagittal

plane was determined. Variability of the position of the centre of gravity was defined with

ellipses covering 80–90% of all measured points of the position of the centre of gravity of the

human body for a single test, in which the wheelchair operator carried out 30 propulsion

cycles. The test aimed to analyse the effects of the following parameters:

• gear ratio at constant propulsion frequency and constant wheelchair tilt angle;

• propulsion frequency at constant gear ratio and constant wheelchair tilt angle;

• wheelchair tilt angle at constant propulsion frequency and constant gear ratio.

The central point on the axis of rotation of the rear wheels was selected as a starting point of

the system of coordinates representing the changes in the position of the centre of gravity of

the human body. The ellipses were drawn in the sagittal plane and defined using three parame-

ters: inclination angle α of the semi-major axis a in relation to the axis x, corresponding to the

travel direction, semi-major axis a defining the length of the ellipse in the direction corre-

sponding to the travel direction, and semi-major axis b defining the width of the ellipse, per-

pendicular to the semi-major axis a. Charts showing the differences in registered positions of

the centre of gravity for different conditions (Figs 6–8).

Tables 2–4 show the parameters of the ellipses describing the region of variability of the

position of the centre of gravity for selected wheelchair operational parameters.

Discussion

Changes in the gear ratio of the propulsion system affected the load on the muscular system of

the upper limbs and the shoulder girdle of the operator. The higher the gear ratio of the multi-

gear transmission of the tested wheelchair, the higher the load on the muscular system. Analy-

sis of the variability of the region of the position of the centre of gravity depending on the gear

ratio for different operating conditions (Fig 6, Table 2) shows an slight increase in ellipse size

with an increase in gear ratio. Semi-major axis a of the ellipse describes the variability of the

position of the centre of gravity changes to the highest degree. Dimension changes for the

semi-axis a are 7.6 mm while for the semi-axis b are 1.3 mm.

The change in load affects the kinematics of the upper limb propelling the pushrim [4]. The

load acting on the propulsion system affects the motion of the upper limbs and torso and

changes the dimensions of the region of variability of the position of the centre of gravity of

the human body. In the tests, an increase in the propulsion force [19] resulted in more chaotic

movements of the upper limb and elongation of the hand motion path to the front of the

wheelchair [20]. It resulted in an increase in ellipse dimensions, with an increase in the gear

ratio of the wheelchair’s propulsion system.

Analyses of the results of the dimensions of the regions of variability of the centre of gravity

at different gear ratios show that the dimensions of the ellipses differ slightly despite a growing

Changes in position of the centre of gravity of the human body during propulsion of a wheelchair
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tendency (Table 2). An increase in semi-major axis a, in relation to semi-major axis b with an

increase in gear ratio, can be observed for all operating conditions.

Another variable parameter was the propulsion frequency expressed as the number of push

motions per minute. The wheelchair velocity was controlled by changing the propulsion fre-

quency. Based on the measured position of the centre of gravity of the human body, the ellipses

describing the variability of the centre of gravity at three propulsion frequencies at constant

wheelchair tilt angle were determined (Fig 7, Table 3). Analysis of the results shows that with

an increase in the propulsion frequency, semi-major axis a of the ellipse lengthens, which

translates into an increase in the region of variability of the position of the centre of gravity of

the human body. The results also show that the propulsion frequency increases the scatter of

the points of the position of the centre of gravity along the travel direction (axis x), measured

dimensional difference for extreme propulsion frequency values was 12.7 mm. It results from

Fig 6. Diagrams of regions of the position of the centre of gravity for three gears ratios p1–i = 1.96 (A), p2–i = 1 (B), p3–i = 0.51

(C), medium regions of the position of the centre of gravity (D) and location of medium centre of gravity (E), where test—

Independent measuring test.

https://doi.org/10.1371/journal.pone.0226013.g006
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an increase in the torso flexion contribution and changes in the hand motion path [20], with

an increase in the propulsion frequency. The tests show that changes in the propulsion fre-

quency mainly affect the hand motion path [4, 20, 21]. It changes the kinematics of the upper

limb and the distribution of the position of the centre of gravity of the human body.

Analysis of the changes in the frequency of wheelchair propulsion does not show a signifi-

cant effect on ellipse inclination angle and distribution of the points of the position of the cen-

tre of gravity of the human body in the direction lateral to the travel direction (axis y). For

extreme values of the propulsion frequency, the semi-axis dimension b differed by 3.0 mm. It

Fig 7. Diagrams of regions of the position of the centre of gravity for three propulsion velocities v1–v = 40 ppm (A), v2–

v = 45 ppm (B), v3–v = 50 ppm (C), medium regions of the position of the centre of gravity (D) and location of medium centre

of gravity (E), where test—Independent measuring test.

https://doi.org/10.1371/journal.pone.0226013.g007
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can be explained by the biomechanics of wheelchair propulsion, in which an increase in pro-

pulsion frequency translates to changes in the shift of the human body segments in the direc-

tion corresponding to the travel direction only (axis x).

In reference to the actual operating conditions, the wheelchair tilts as a result of uneven ter-

rain. To reflect those conditions in the tests, the wheelchair’s frame was tilted by lifting the

front castor wheels to determine the effect of wheelchair tilt angle β on the distribution of the

position of the centre of gravity of the human body at constant propulsion frequency and con-

stant gear ratio (Fig 8, Table 4).

Fig 8. Diagrams of three regions of the position of the centre of gravity at three wheelchair tilt angle k1–β = 0˚ (A), k2–β = 1.5˚

(B), k3–β = 5.4˚ (C), medium regions of the position of the centre of gravity (D) and location of medium centre of gravity (E),

where test—Independent measuring test.

https://doi.org/10.1371/journal.pone.0226013.g008
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Changes in the wheelchair tilt angle β resulted in a shift in the ellipse position in the direc-

tion of the axis of rotation of the rear wheelchair wheels, with an increase in the tilt angle. It is

caused by the body shifting closer to the wheel axis as a result of the wheelchair seat tilt.

Analysis of the dimensions of semi-major axis a and b of the ellipses defining the variability

of the position of the centre of gravity of the human body shows that the dimensions increase

with an increase in the tilt angle. The results show that the most extensive changes in the posi-

tion of the centre of gravity of the human body can be observed for the tilt angle β = 5.4˚, irre-

spective of the propulsion frequency and gear ratio. An increase in the surface area of the

Table 2. Parameters of the ellipses describing the region of variability of the position of the centre of gravity for selected operational parameters of the wheelchair

and three gear ratios, where i—Gearbox ratio, test—Independent measuring test, α—Inclination of the axis of the ellipse, a—Horizontal axis of the ellipse, b—Verti-

cal axis of the ellipse, M—Average value, SD—Standard deviation, xCG—Average position of the centre of gravity on x-axis, yCG—Average position of the centre of

gravity on y-axis, ρ—The number of measured points inside the ellipse.

p1—i = 1.96 p2—i = 1.00 p3—i = 0.51

α a b ρ α a b ρ α a b ρ
[˚] [mm] [mm] [%] [˚] [mm] [mm] [%] [˚] [mm] [mm] [%]

test 1 2.94 59.99 24.99 84.2 0.06 42.00 19.00 87.30 10.83 70.00 26.00 85.70

test 2 1.37 57.96 19.95 84.9 8.74 41.00 18.00 86.00 11.19 55.00 20.00 84.90

test 3 5.79 68.95 26.95 86.4 2.55 35.00 18.00 85.70 10.41 39.00 22.00 85.10

M 3.37 62.30 23.96 - - - 3.78 39.33 18.33 - - - 10.81 54.67 22.67 - - -

SD 2.24 5.85 3.61 - - - 4.47 3.79 0.58 - - - 0.39 15.50 3.06 - - -

Center of gravity xCG yCG xCG yCG xCG yCG

[mm] [mm] [mm] [mm] [mm] [mm]

test 1 140.15 74.50 test 1 137.43 73.31 test 1 139.06 76.74

test 2 129.32 75.43 test 2 138.66 74.45 test 2 141.22 82.11

test 3 132.32 72.51 test 3 138.79 75.72 test 3 140.83 82.68

M - - - 133.93 74.14 - - - 138.29 74.49 - - - 140.37 80.51

SD - - - 5.59 1.49 - - - 0.75 1.20 - - - 1.15 3.28

https://doi.org/10.1371/journal.pone.0226013.t002

Table 3. Parameters of the ellipse describing the region of variability of the position of the centre of gravity for the selected operational parameters of the wheel-

chair and three propulsion velocities, where v—Frequency of push, test—Independent measuring test, α—Inclination of the axis of the ellipse, a—Horizontal axis of

the ellipse, b—Vertical axis of the ellipse, M—Average value, SD—Standard deviation, xCG—Average position of the centre of gravity on x-axis, yCG—Average posi-

tion of the centre of gravity on y-axis, ρ—The number of measured points inside the ellipse.

v1–40 ppm v2–45 ppm v3–50 ppm

α a b ρ α a b ρ α a b ρ
[˚] [mm] [mm] [%] [˚] [mm] [mm] [%] [˚] [mm] [mm] [%]

test 1 2.94 59.99 24.99 84.2 1.37 57.96 19.95 84.90 5.79 68.95 26.95 86.40

test 2 8.42 51.94 21.98 87.3 7.78 56.98 21.98 86.00 3.54 70.00 25.97 85.70

test 3 5.52 52.99 19.95 85.7 2.85 53.97 22.96 84.90 6.25 63.98 22.96 85.10

M 5.63 54.97 22.31 - - - 4.00 56.30 21.63 - - - 5.19 67.64 25.29 - - -

SD 2.74 4.38 2.54 - - - 3.36 2.08 1.54 - - - 1.45 3.22 2.08 - - -

Center of gravity xCG yCG xCG yCG xCG yCG

[mm] [mm] [mm] [mm] [mm] [mm]

test 1 140.15 74.50 test 1 129.32 75.43 test 1 132.32 72.51

test 2 137.43 73.31 test 2 138.66 74.45 test 2 138.79 75.72

test 3 139.06 76.74 test 3 141.22 82.11 test 3 140.83 82.68

M - - - 138.88 74.85 - - - 136.40 77.33 - - - 137.32 76.97

SD - - - 1.37 1.74 - - - 6.26 4.17 - - - 4.45 5.20

https://doi.org/10.1371/journal.pone.0226013.t003
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ellipses is due to an increase in torso flexion and an increase in the wheelchair tilt angle. High

increase in semi-axis a dimension (of 30.7 mm), resulted from high torso flexion angles during

wheelchair propulsion at high seat [22] tilt angle.

Comparison of the average dimensions of ellipses shows that the biggest difference between

the dimensions of the region of variability of the position of the centre of gravity of the human

body can be observed for changes in the wheelchair tilt angle. For the semi-axis a the increase

was 30.7 mm and for the semi-axis b 6.8 mm. Also, the propulsion frequency affects the

dimensions of the ellipses. In this case, the semi-axis dimension a increased by 12.7 mm as the

propulsion frequency increased. The analysis of the effect of the gear ratio on the region of var-

iability of the position of the centre of gravity of the human body shows a minor effect of this

parameter. In the case of semi-axis a the difference in dimensions was 7.6 mm and for the

semi-axis b the dimensional difference was 1.3 mm.

Analysis of the changes in the dimensions of the semi-axles shows that any changes in oper-

ating parameters affect major on the dimensions of semi-axis a and the ellipse inclination

angle in relation to axis x. The tested configurations show that the operating parameters affect

the dimension of semi-axis b of the ellipse defining the distribution of the centre of gravity in

relation to the left and right wheelchair wheel to a negligible degree.

Summary

The tests verified the effects of the operational parameters of a wheelchair on the position of

the centre of gravity of the body of an operator propelling a manual wheelchair. During the

test, the gear ratio of the propulsion drive, propulsion frequency and wheelchair tilt angle were

variable. For all tests, an increase in aforementioned parameters resulted in any of the parame-

ters resulted in an increase in effort required by the operator. The effort was compensated by

the wheelchair operator changing their body kinematics, which translated into changes in the

dimensions of the regions of variability of the position of the centre of gravity defined with

ellipses. It can be assumed that an increase in wheelchair resistance to motion [23] translates

Table 4. Parameters of the ellipses describing the region of variability of the position of the centre of gravity for selected operational parameters of the wheelchairs

and three wheelchair tilt angles β, where test—Independent measuring test, α—Inclination of the axis of the ellipse, a—Horizontal axis of the ellipse, b—Vertical

axis of the ellipse, M—Average value, SD—Standard deviation, xCG—Average position of the centre of gravity on x-axis, yCG—Average position of the centre of grav-

ity on y-axis, ρ—The number of measured points inside the ellipse.

β - 0˚ β– 1.5˚ β– 5.4˚

α a b ρ α a b ρ α a b ρ
[˚] [mm] [mm] [%] [˚] [mm] [mm] [%] [˚] [mm] [mm] [%]

test 1 2.94 59.99 24.99 84.2 8.28 66.99 32.97 86.20 -5.06 98 32.97 87.60

test 2 8.42 51.94 21.98 87.3 11.67 58.94 26.95 87.90 -3.45 78.96 28.98 86.00

test 3 5.52 52.99 19.95 85.7 9.08 43.96 24.99 87.00 -3.38 79.94 24.99 86.20

M 5.63 54.97 22.31 - - - 9.68 56.63 28.30 - - - -3.96 85.63 28.98 - - -

SD 2.74 4.38 2.54 - - - 1.77 11.69 4.16 - - - 0.95 10.72 3.99 - - -

Center of gravity xCG yCG xCG yCG xCG yCG

[mm] [mm] [mm] [mm] [mm] [mm]

test 1 140.15 74.50 test 1 130.64 74.95 test 1 98.85 42.83

test 2 137.43 73.31 test 2 127.29 73.19 test 2 98.45 46.54

test 3 139.06 76.74 test 3 132.85 79.61 test 3 96.39 44.70

M - - - 138.88 74.85 - - - 130.26 75.92 - - - 97.90 44.69

SD - - - 1.37 1.74 - - - 2.80 3.32 - - - 1.32 1.85

https://doi.org/10.1371/journal.pone.0226013.t004
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to an increase in the variability region of the position of the centre of gravity of the human

body.

The results show that the position and dimensions of the variability region of the position

of the centre of gravity are affected by the wheelchair tilt angle. The results show that an

increase in the wheelchair tilt angle increases the variability region of the position of the centre

of gravity in the direction corresponding to the travel direction. The second operational

parameter affecting the region of variability of the position of the centre of gravity is the wheel-

chair propulsion frequency. In this case, with an increase in the propulsion frequency, the

region of variability of the position of the centre of gravity also increases. Variability of the

dimensions of the ellipses defining the position of the centre of gravity is least affected by

changes in the gear ratio.

The increase in the region of variability of the position of the centre of gravity of the human

body as a result of the increase of the wheelchair tilt angle results from changes in the position

of the human body in relation to the axis of rotation of the drive wheel and the wheelchair seat

inclination [22]. It increases the torso and shoulder girdle movement contribution, which due

to their mass, significantly increase the longitudinal dimension of the ellipse corresponding to

the travel direction. For the increase in propulsion frequency, an increase in the region of vari-

ability of the position of the centre of gravity is due to an increase in the range of motion of the

upper limb. The observations show that an increase in the propulsion frequency also affects

the torso flexion and extends the ellipse in the longitudinal direction, corresponding to the

travel direction.

A common relationship for all the operational parameters was an increase in the longitudi-

nal dimension of the ellipses corresponding to the travel direction with only slight changes in

the lateral dimensions. The ellipse inclination angle for each test depends on the uniformity of

wheelchair propulsion and torso flexion. The observations show that the inclination angle

indicates which side of the wheelchair is loaded at a time. Positive α angle indicates the left and

negative α angle indicates the right side of the wheelchair. The position of the ellipse in the

horizontal plane depends on the seating position of the operator and the position of the body

in relation to the sagittal plane. The test results were in the 1st quarter of the reference system,

indicating an asymmetric position of the body in relation to the seat and shift in the direction

of the left drive wheel.

The tests represent the effects of operational parameters on the distribution of the position

of the centre of gravity in dynamic conditions. Since the position of the centre of gravity of the

wheelchair is constant, the position of the centre of gravity of the entire system is affected by

the variable position of the centre of gravity of the human body. The position of the centre of

gravity of the human-wheelchair system is the result of the kinematics of the human body pro-

pelling the manual wheelchair. The design of innovative and advanced wheelchairs requires

thorough knowledge of the biomechanical parameters affecting the wheelchair operation. The

position of the centre of gravity is a major biomechanical parameter affecting wheelchair sta-

bility [24, 25]. Stability is a key safety factor. The position of the centre of gravity also affects

changes in resistance to motion and thus the muscular activity of the upper limbs and shoulder

girdle. Determining the position of the centre of gravity of the human body in the horizontal

plane is important. It allows to define the place of load application to the wheelchair structure

(the mass force that the support frame has to withstand). The innovation of the described

method is to perform measurements in dynamic conditions, which allows to significantly

refine the load values assumed in calculations regarding the strength of the structure and its

stability. The novelty of the results obtained in the presented method is their determination

based on various parameters, in dynamic conditions. The realised experiments represent a

selected part of the ongoing research. In order to consider them as complete, it is necessary to
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measure the position of the centre of gravity also on the vertical axis. This is necessary in order

to determine the dynamic stability. This measurement is carried out within the described

research project, but with the use of another method not included in this article.

The presented test results allow the assessment of the change of the position of the centre of

gravity depending on the movement conditions of the manually operated wheelchair. There-

fore, it is possible to determine the pressure values (reaction forces) to each wheelchair wheel,

among others. It is a crucial parameter which determines, for instance, the torque required to

move a wheelchair. This research is unique also due to the use of an original research stand

and innovative transmission of manual drive to the wheelchair wheels, which was submitted as

a patent application [12, 17]. Work related to the development of innovative designs of manual

wheelchairs is important because the physical activity associated with the propelling of the

wheelchair enriches the rehabilitation process. Wheelchairs equipped with electric drive do

not have this advantage. The developed constructional solutions and the results of the con-

ducted research remain an added value in the field of both theoretical research and practical

design guidelines for wheelchairs and their drive systems. Therefore, it broadens the scope of

the design of adjusting the wheelchair to individual needs of disabled people.

Conclusions

According to the research and analysis, it can be established that the tilt angle, gear ratio of the

propulsion system and propulsion frequency of a wheelchair influence the position of the cen-

tre of gravity. The biggest observed change is the result of the largest wheelchair tilt angle.

Most likely, it is a result of the increased effort that the operator had to put in when propelling

the wheelchair. It directly influenced the position of the centre of gravity during the test. It can

be concluded that the research stand used, enables to examine in a measurable way the influ-

ence of individual parameters on the position of the centre of gravity. Establishing the quanti-

tative influence on this parameter is the aim for further research.
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