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Commensalmicroorganisms influence a variety of host functions in the gut, including immune response, glucose
homeostasis, metabolic pathways and oxidative stress, among others. This study describes how Salmonella Typhi,
the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and sur-
vive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using
healthy human intestinal tissue samples and “mini-guts,” organoids grown from intestinal tissue taken from bi-
opsy specimens. We analyzed gene expression changes in human intestinal specimens and bacterial cells both
separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the
cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized
cytokine release and evade immune system activation by downregulating genes involved in antigen sampling
and presentation during infection. This work adds novel information regarding S. Typhi infection pathogenesis
in humans, by replicating work shown in traditional cell models, and providing new data that can be applied
to future vaccine development strategies.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bacterial pathogens represent a significant global burden to human
health resulting in chronic infection, significant mortality, certain can-
cers, and diminished quality of life [23,38]. Salmonella enterica serovar
Typhi (STY) is a human-restricted, gastrointestinal pathogen whose
successful infection results in Typhoid fever or chronic infection [30].
Typhoid fever is frequently fatal when untreated in pediatric or immu-
nocompromised populations [9,31,51,79]. It affects an estimated 11.9 to
26.9million people annually [6,49,50],with estimatedfinancial burdens
equaling roughly a third of the gross national income for patients in un-
developed areas of Southeast Asia [35]. Current treatments depend on
antibiotics; however, STY is rapidly developing antibiotic resistance,
thereby increasing both the risk and severity of infection.

STY is a Gram-negative, enteric pathogen of the genus Salmonellae,
species enterica, subspecies enterica. The subspecies enterica represents
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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two serovars: Typhimurium and Typhi. Genetically related, but pheno-
typically divergent, S. Typhimurium (STM) can cause localized inflam-
mation of the small intestine, diarrhea and cramping. Conversely, STY
infection has an incubation period of up to twoweeks and results in sys-
temic bacteremia with limited or no gastrointestinal symptoms. Com-
parative genomics between the two serovars reveals 480 STM-unique
genes and 600-STY-unique genes [66]; notable STY genetic acquisitions
include a capsule-encoding specific pathogenicity island (SPI)[78], two
human-like serine-threonine kinases [73] and a typhoid toxin [18,21].
Numerous STY genes contain mutations relative to the STM homologs,
with 0.6% of the STM genome encoding pseudogenes compared to 5%
in the STY genome [66].

Current STY vaccination strategies include products that are expen-
sive to produce and store. The attenuated oral vaccine Ty21a, which re-
quires several immunizations to create a sustained immune response,
confers protection in 62–96% of vaccinated individuals [41]. Alternative
vaccine candidates currently in phase I and phase II studies have been
generated by targeting virulence genes related to acid resistance, stress
response, osmolarity and invasion. These gene targets are combined
with gene deletions resulting in limited intracellular replication [24].
Inmost STY vaccine candidates, deleted genes attenuate infection. A no-
table exception is the constitutive expression of the STY-specific [82]
immune-capsule suppressing regulator [78] tviA gene [24]. Despite the
development of several vaccine strains against STY, no strategy confers
long-term protection in a cost-effective manner.

Vaccine development against typhoid fever is hindered by signifi-
cant assumptions about how S. Typhi causes infection in its human
host. Specifically, no data are available regarding STY interaction with
the small intestinal mucosa as the first step in the cascade of events ul-
timately leading to infection. Moreover, there have been no studies
evaluating bacterial gene expression and consequences on host gene
expression that occur during these critical early moments of infection.
Despite fundamental differences in the pathology of infected humans
relative to infected mice, and significant genomic differences between
the two serovars, our current understanding of STY infection is mainly
derived from the STM mouse model. Moreover, the two-week incuba-
tion period between STY exposure and onset of disease symptoms dem-
onstrates a critical window in which STY infection is active prior to the
onset of clinical disease. In recent years, human-derived organoid
systems [19,64,67,80,84] or three-dimensional cell line models
[29,60,68,69] have gained traction as a strategy to study host-
pathogen interactions. Thesemodels have enabled new insight into cel-
lular response during early STM infection to identify the role of bacterial
genes n, such as the SPI-1 operon [60], or STMmanipulation of signaling
cascades [84]; however, few studies combining STY and human-derived
organoid monolayers have been published.

Ourwork overcomes these shortfalls by placing STY bacteria directly
onto human small intestinal tissue. In this study, we use an ex vivo,
human intestinal tissue infection model and a human organoid-
derived monolayer model. Infected biopsies were analyzed for tran-
scriptional changes, cytokine profiling and electron microscopy, with
specific mechanisms explored using the organoid monolayer model.
Thiswork sought to detail critical early events in Typhoid fever develop-
ment to understand pathogenic mechanisms in human-derived tissue
with the goal of identifying novel targets for vaccine development.

2. Materials and Methods

2.1. Bacterial Strains, Growth Conditions and Biopsy Infection

For all experiments, Salmonella enterica serovar Typhi strain Ty2
(STY, ATCC® Number: 700931) or serovar Typhimurium strain SL1344
(STM) (kind gift of Bobby Cherayil, Massachusetts General Hospital,
Boston MA) were re-streaked bi-monthly on LB-agar plates. For exper-
iments conducted under traditional laboratory conditions, an overnight
culture from a single colony of STY or STM was prepared in Miller
formula LB-broth (Sigma, St. Louis, MO) at 37 °C with shaking at
225 rpm. The next day, overnight cultures were diluted 1:50 into sec-
ondary subcultures and grown to log phase. To prepare the bacteria
grown under pro-invasion conditions, a day culture in Miller formula
LB broth froma single colony of STY or STMwas started at 37 °Cwithout
shaking. After 4-8 h growth, a secondary culture diluted 1:50 in Miller
LB was prepared and grown overnight at 37 °C without shaking. Bacte-
ria were normalized to an OD600 of 0.5 prior to experimentation,
pelleted by centrifugation and resuspended in warm Dulbecco's Modi-
fied Eagle Medium (DMEM) (Gibco, Grand Island, NY) for use in infec-
tion. All biopsies were infected with 1 × 108 bacteria in 250 μL DMEM
for a maximum of 2 h. Biopsies were mounted using a snapwell system
(Corning, Corning NY) with orientation confirmed by a dissecting mi-
croscope. Mounted biopsies acclimated for 30 m prior to removal of
media and replacement with control DMEM or DMEM containing STY
or SL1344. After 2 h of infection, apical and basolateral medium and bi-
opsies were collected. For gentamicin protection assays, after 2 h infec-
tion the apical surface was washed 3× in phosphate buffered saline
(PBS), and DMEM containing 5μg/mL gentamicin (Gibco) was added
for 30 m at 37 °C. Afterward, biopsies were washed in PBS (Gibco) and
subsequently homogenized in 0.5% Triton-X (Sigma) in PBS for serial di-
lution plating to determine CFU/mL recovery.

2.2. Isolation and Generation of Human Organoids; Preparation of
Organoid-derived Epithelial Monolayers

The isolation and generation of human organoids was adapted from
the protocol published by VanDussen et al. [76]. Briefly, human terminal
ileum biopsies were processed in dithiothreitol (DTT) and ethylenedi-
aminetetraacetic acid (EDTA) in PBS with penicillin/streptomycin (P/S,
Gibco) to isolate the crypt fractions. This process was repeated 4–5
times; the fractions with the greatest number of crypts were pooled
and resuspended in Matrigel (Corning, NY). Spheres were maintained
in culture in 1:1 LWRN-conditioned medium and Intestinal Stem Cell
(ISC) medium supplemented with Y-27632 (Sigma or Calbiochem, La
Jolla, CA) and A-8301 (Sigma or Tocris, Minneapolis, MN). Spheres
were fed every 2–3 days and split prior to differentiation. Undifferenti-
ated cells were seeded onto transwell inserts and maintained in culture
until monolayers formed. 48 h prior to experiment, monolayers were
treated with apical N-[2S-(3,5-difluorophenyl)acetyl]-L-alanyl-2-phe-
nyl-1,1-dimethylethyl ester-glycine (DAPT) (Calbiochem) to induce dif-
ferentiation. Monolayers were assessed by quantitative reverse
transcriptase polymerase chain reaction (qPCR) and confocal micros-
copy to identify markers for differentiated epithelial cells, as well as,
Trans epithelial electrical resistance (TEER) and fluorescein isothiocya-
nate (FITC) dextran to determine barrier integrity.

2.3. Human Donors

All protocols for recruitment of human subjects and use of human
terminal ileum biopsies were approved by Massachusetts General
Hospital / Partners Healthcare IRB (Protocol 2014P002001). Prospec-
tive donors without chronic medical conditions who were scheduled
to undergo a diagnostic colonoscopy were screened for good general
health. Exclusion criteria included pregnancy, a known diagnosis of
an autoimmune disorder or any chronic medical condition that
would increase the risk from a gastrointestinal biopsy, and an inabil-
ity or unwillingness to provide written informed consent. Donors
signing informed consent contributed four to eight biopsies that
were transported to the laboratory and used immediately to maxi-
mize tissue viability.

2.4. RNA Isolation and Transcriptomic Analysis

Following treatment (mock or infection) biopsies were immediately
snap frozen on dry ice and stored at −80 until use. The control biopsy
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group contains four samples, the infected biopsy group contains five
samples and the bacteria control group contains four samples. Biopsy ri-
bonucleic acid (RNA) was isolated in Trizol (Ambion, Carlsbad CA),
using the Direct-Zol isolation kit (Zymo, Irvine, CA) followingmanufac-
turer's instructions. RNA from purified bacterial cultures was isolated
using the RNAeasy kit (Qiagen,Waltham,MA) followingmanufacturer's
instructions. Purified RNA was submitted to GENEWIZ (Frederick, MD)
for RNA-sequencing, bacterial rRNA and human rRNA depletion, RNA li-
brary preparation (multiplexing and cluster generation) and sequenc-
ing on a 1x50bp SR, HiSeq 2500; rapid run flow cells were conducted
by GENEWIZ. The reads generated for each RNA sample were analyzed
using anErgatis-based RNA-Seq analysis pipeline [59]. Quality control of
the sequences was performed using FastQC (version 0.10.0) [3]. Human
sequencing reads were aligned to the Homo sapiens reference genome
GRCh38.78 using TopHat (version 2.1.1) [34]. Bacterial reads were
aligned to Salmonella enterica serovar Typhi strain Ty2 genome (NCBI
Reference Sequence: NC_004631.1) using Bowtie (version 0.12.9) [40].
The number of reads that aligned to the predicted coding regions
were determined using HTSeq (version 0.4.7) [5]. Differential gene ex-
pression was analyzed using DESeq (version 1.5.24) [4] Full data sets
were uploaded to Ingenuity Pathway (licensed toW. Flavahan), and dif-
ferentially expressed geneswere used to identify the pathways changed
in infected samples. To identify differentially expressed STY genes, read
files were uploaded into KBASE [7] and analyzed as follows: Samples
were assigned to control or experimental samples to define a sample
set for downstreamanalysis. The readswere then aligned using Bowtie2
to create an RNAseq alignment set. Transcripts were then assembled
using StringTie, and differential expressionwas identified usingCuffDiff.
Further analysis was conducted to create expression matrices,
heatmaps or cluster analysis. Differentially expressed genes were
uploaded into KEGG to map bacterial pathways. Data is accessible in
GEO under accession GSE113333.

2.5. Cytokine Analysis

Multiplex cytokine profiling was conducted using a 13plex
human pro-inflammatory profiling kit in a Mesoscale Discovery Sys-
tem platform (Meso Scale Diagnostics, Rockville MD). Apical and
basolateral samples from infected and control biopsies were assayed
per manufacturer's instructions. Results were calculated to deter-
mine total volume of cytokine released. Statistical significance was
determined by one-way ANOVA with Tukey post-test and represent
an n of 15 controls, 10 STM and 10 STY infected. *p ≤ 0.05, **p ≤ 0.005,
***p ≤ 0.0005.

2.6. Western Blot Analysis

Snap-frozen biopsies were thawed in RIPA buffer (Sigma)+ 2× pro-
tease inhibitors (Roche, Burlington NC) + 2× phosphatase inhibitors
(Roche) on ice. Biopsies were homogenized using biomasher II tubes
(Kimble, VinelandNJ) and protein concentrationwas quantified by pro-
tein assay (Biorad, Hercules, CA). 10 μg of protein were run on a 4–20%
protein gel (Biorad) and transferred onto membrane (Biorad). Mem-
branes were blocked in 5% BSA for 30 m followed by overnight incuba-
tion in the following antibodies: mouse anti-β-tubulin (RRID:AB_
2715541), rabbit anti-pP44/42 MAPK (RRID:AB_2315112), rabbit anti-
p-SAPK/JNK (RRID:AB_823588), rabbit anti-pP38 (RRID:AB_2139682),
rabbit anti-pP65 (RRID:AB_331284) (all Cell Signaling Technologies,
Danvers, MA). Densitometry was calculated as: ((P-gene/area)/(Actin/
Area)experimental)/((P-gene/area)/(Actin/Area)Media Control)). Significance
was calculated by paired, two-tailed t-test, *p ≤ 0.05.

2.7. Permeability and Cell Viability

Apical supernatants were assessed for lactate dehydrogenase
(LDH) release using Promega Cytox Kit (Promega, Madison, WI)
per manufacturer's instructions. To assess paracellular permeability,
biopsies were monitored using a TEER apparatus (World Precision
Instruments, Sarasota, FL). Alternatively, passage of 1μg/mL 4kD
FITC Dextran was assessed by florescence in the basolateral medium
using Biotek Synergy 2 and compared against serial dilutions of stock
FITC dextran to generate a standard curve. No significance was deter-
mined by paired, two-tailed t-test.

2.8. Immunostaining and Microscopy Studies

For immunostaining, hematoxylin & eosin (H&E) and Periodic
Acid Schiff (PAS) analysis, biopsies were fixed in 4% paraformalde-
hyde at room temperature for 30 m followed by storage in 70% etha-
nol until paraffin embedding. Sections were stained using the
antibodies against the following proteins: mouse anti-Actin (RRID:
AB_11004139, Invitrogen/Thermo-Fisher), rabbit anti-Zo1 (RRID:
AB_2533938, Invitrogen), mouse anti-EPCaM (RRID:AB_10981962,
Thermo Fisher, Waltham, MA), rabbit anti-rab5 (RRID:AB_823625,
Cell Signaling Technologies), goat anti-Muc2 (RRID:AB_2146667,
Santa Cruz Biotechnology, Dallas, TX), mouse anti-Salmonella
(RRID:AB_1125358, BD Biosciences, San Jose, CA), rabbit-anti-Salmo-
nella (RRID:AB_561201, Pierce/Thermo-Fisher), rabbit-anti-Salmo-
nella-biotin conjugated (RRID:AB_1018415, Invitrogen/Thermo-
Fisher) and mouse anti-tubulin (RRID:AB_2715541, Cell Signaling
Technologies). Fluorescent, conjugated, secondary monoclonal anti-
bodies were used for detection. For samples using streptavidin-
biotin detection, avidin-biotin blocking was performed prior to
staining (Life Technologies/Thermo-Fisher). Samples were imaged
using a Nikon A1SiR confocal microscope.

For transmission electron microscopy (TEM) analysis, samples were
fixed in 2%PFA/2.5% Glut in 0.1 M Sodium Cacodylate followed by
mounting on grids and imaged using a transmission electron micro-
scope (JEOL, Peabody, MA).

3. Results

3.1. Human Intestinal Biopsies Are Susceptible to STY Infection

STY colonize and invade the distal ileum of humans [20]. Terminal
ileum biopsies obtained during clinically indicated colonoscopies were
mounted in microsnapwell devices to allow polarized exposure to mi-
croorganisms from the luminal side [8] (see schematic in Fig. 1A and
donor characteristics in Table 1). The biopsies were infected with
108 CFU of STY. The bacterial inoculum was prepared by growing STY
under static conditions in LB-miller to maximize the expression of
genes important in epithelial cell invasion [75] (Fig. 1B,C). After 2 h, in-
vasion and biopsy status was assessed by transmission electronmicros-
copy (TEM), hematoxylin and eosin (H&E) staining for lightmicroscopy,
Periodic acid Schiff (PAS) staining for light microscopy and gentamicin
protection assay. Intracellular bacteria were detected by TEM, H&E
and gentamicin protection assay (Fig. 1D–F). Microvilli destruction
and epithelial cell disorganizationwere observed at sites of bacterial in-
vasion (Fig. 1F, 4B). No gross differences in H&E were observed
(Fig. 1D), while minor differences in mucus staining was observed
after infection by PAS staining.

3.2. Downregulation of Genes Involved in the Host Immune Response Is Ob-
served Through Transcriptomic Analysis

Weperformed RNA-sequencing to determine differentially expressed
genes in both STY and host cells (Fig. 2A, qPCR validation in Supplemen-
tary Fig. 1). Gene expression profiles from non-infected control biopsies
and STY-infected biopsies were compared to determine significantly up-
regulated (p ≤ 0.05 and N2-fold induction) and downregulated (p ≤ 0.05
and b0.5-fold reduction) genes. Similar gene expression changes were
observed across samples or control groups with some anticipated
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Image of Fig. 1


Table 1
Donor characteristics.

Study arm Total recruited Gender Age Race Ethnicity

Microsnapwell infection 67 41 Males 38 ± 31 2/67 Asian 56/67 - Non-Hispanic or Latino
26 Females 2/67 AA or Black 5/67 - Hispanic or Latino

6/67 Other 6/67 - Declined or unknown
57/67 White

Organoid culture 8 3 Male 6 (50–70) 8/8 White 1/8 Hispanic or Latino
5 Female 2 (38–48) 7/8 Non-Hispanic or Latino
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differences attributed to human-to-human variability (Fig. 2B). For
human-specific genes, very few genes were upregulated in response to
infection (Table 2A). Regulatory RNAs, the antioxidant GSTM1, zinc-
interacting protein CRIP1 and chemokine CCL25 were among the eight
significantly upregulated genes in infected samples. Reducing stringency
to include genes that satisfied our significance cutoff but which were
expressed below our 2-fold cutoff, revealed the expression of mucin
MUC5B, the cytoskeletal gene EPPK1 and several metabolism genes in-
duced after infection. Conversely, 57 genes were significantly downregu-
lated (Table 2B). Ultimately, the transcriptional profile of downregulated
genes demonstrated significant clustering in several pathways including
B-cell receptor signaling, coordination between innate and adaptive im-
mune response, cell signaling and other pathways (Fig. 2C). This data
set indicated that STY can hinder the activation of the mucosal immune
response of the host during the first 2 h of invasion.
3.3. Invading STY Showed Differential Transcriptomic Profile Compared to
Control Bacteria Related to Key Transcriptional and Invasive Pathways Im-
portant for Virulence

In general, pathogenic bacteria produce effector proteins that exploit
host pathways to promote their survival. Therefore, we evaluated
changes in bacterial gene expression occurring concurrently with the
changes in host gene expression in the same tissue explants. Similar
gene expression profiles were detected in control bacteria relative to
the bacteria infecting the gut mucosa- with a single notable exception
(Fig. 2D) -that was further emphasized during cluster analysis (Fig. 2E).
To identify patterns in gene expression, clusters of genes with similar ex-
pression patterns were generated using KBASE (Fig. 2E), with the most
significant groups showing similarity in gene expression changes for clus-
ter 1: ribosome/metabolism genes; cluster 2: virulence genes and hypo-
thetical proteins; and cluster 3: hypothetical proteins and unknown
function. Surprisingly, the gene expression profile observed during STY
infection (Fig. 2E, Table 3A and 3B) was remarkably different from what
is predicted during STM infection (Fig. 2F). STM requires SPI-1
[1,32,75,85], rpoS and ompR [24] expression, which was observed in our
bacterial inoculum and cultures grown in DMEM, but downregulated in
bacteria invading the human gut mucosa. STY upregulated genes in-
cluded numerous ribosome genes and enzymes. Upregulated enzymes
(T1853, T0310, T4519 and T3866) encode eukaryotic-like serine/threo-
nine kinases, acetyltransferases and inositol monophosphatase
(Table 3A)whichmayhave implications in themodulation of host signal-
ing. Multiple components of the general secretory pathway (secD, secF,
secG, secY) were also upregulated (Supplementary Fig. 1), suggesting
that non-T3SS proteins are also utilized during infection. Several compo-
nents of the SPI-2 operon including sseB, sseA, ssaG, ssaM, ssaR, ssaS and
Fig. 1.Modeling S. Typhi Infection: Human intestinal biopsies are susceptible to Salmonella enter
infection of human intestinal biopsies. Biopsies are mounted between plastic inserts to preserv
the apical opening. Biopsies are apically treated for 2 h (eithermedia control, STY or STM). (B) A
fliC is themajor subunit of flagellin used prior to invasion to facilitate epithelial cell homing and
STY bacteria in our pro-invasion inoculum relative to bacteria grown under traditional laborat
Scale bars represent 500 pixels, “L” indicates the lumen. (E) Gentamicin protection assay showi
data presented represent counts for two separate biopsies from three distinct donors. Invasion r
are observed by TEM, green arrows. Cytoskeletal rearrangements are denoted by *. Microvillus
with “E,” and goblet cells are marked with “G.’ Scale bar is 2um for all TEM images.
ssaO were downregulated relative to bacteria grown in DMEM alone
(Table 3B, Supplementary Figs. 2, 2F), indicating that ourmodel is captur-
ing early events during S. Typhi pathogenesis, as expression of SPI-2 oc-
curs during intracellular growth for STM. Interestingly, the SPI-7
operon-encoded Vi antigen is expressed in our inoculum with several
genes located within the SPI-7 operon upregulated during biopsy infec-
tion (tviD, tviE), consistent with previous reports generated by using bo-
vine epithelial mucosa [62].
3.4. Cytokine Release Is Uncoupled from Transcriptional Replenishment and
Mediated by Blocked MAPK and NF-kB Signaling Pathways

During clinical progression of typhoid fever [11,47,56,63,70], limited
gastrointestinal symptoms are reported suggesting that STY invades
with limited immune activation [82]. Using supernatants from infected
biopsies, cytokine release was assayed using a multiplex ELISA method.
Compared to control biopsies, infected biopsies demonstrated differen-
tial cytokine production both directionally (apically and basolaterally)
and in response to infection with either STM or STY. The cytokine re-
lease profile was predominantly apical for STY and bidirectional for
STM. Formost cytokines, STM trigged a robust and uniform cytokine re-
lease, while STY infection led to mild cytokine release (e.g., IL-10, IL-2,
IL-4) (Fig. 3A). Only half of the biopsies assayed secreted IL-13, IL-10,
IL-4 and IL-2 in response to infection. The cytokine release profile for
IFN-γ, IL-8, IL-1β and TNFα was more uniform across all donors. As
much of the STY-induced cytokine release profile is skewed toward
the apical pole, there was no significant increase in cytokine release
on the basolateral pole. Significant basolateral release was observed
with STM infection, both relative to control or STY-infected biopsies,
demonstrating that the biopsies are viable and capable of responding
to pathogen infection.

Despite significant cytokine release, no changes in cytokine tran-
scripts were detected in the RNAseq data set (Fig. 2), suggesting that in-
fection leads to cytokine release from stored intracellular pools and that
bacterial exposure likely blocks transcription of new cytokines. The sig-
naling cascades that lead to cytokine transcription are downstream of
pattern recognition receptors' activation. Initiation of signaling cascades
branching throughMAPK and NF-κBwere assayed byWestern blot anal-
ysis of infected biopsies. After 60 min treatment in the microsnapwell
chamber, phosphorylated p65, JNK, ERK andp38was detected in all biop-
sies. A reduction in the phosphorylation state of p38, p65 and JNKwas ob-
served at 120 min post incubation for the control and STY infected
samples, but remained phosphorylated in the STM infected biopsies
(Fig. 3B). Analysis of our RNAseq data set predicted p38 (Fig. 3D) and
NF-κB (Fig. 3E) to be important regulators of the gene expression changes
observed during infection. The p38 MAPK regulation of numerous
ica serovar Typhi infection. (A) A cartoon schematic detailing themicrosnapwellmodel for
e orientation by placing the basolateral surface down and the lumen-facing enterocytes in
n overview of known STY gene expression prior to andduring early invasion. For reference:
Vi antigen genes tviA and tviB are expressed during invasion. (C) qPCR gene expression of

ory conditions. (D) Hematoxylin & Eosin and Periodic Acid Schiff images of fixed biopsies.
ng the distribution of internalized STY across three donors. Invasion rates varied by donor,
ates for STM are 2-3× higher than STY (data not shown). (F)Invading and intracellular STY
destruction is marked by red arrows. M cells are marked “M cell,” enterocytes are labeled
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Image of Fig. 2


Table 2A
Human genes upregulated after 2 h infection with S. Typhi.

Feature.ID p.Value LFC
infected/control

Gene name Description (from uniprot)

Significant genes (P-value b 0.005 and log fold change (LFC) N 1.5)
ENSG00000274519 3.88E-16 6.11 mir3687–1 Uncharacterized microRNA
ENSG00000231609 7.27E-08 2.96 LOC100132215 Uncharacterized locus
ENSG00000134184 5.53E-05 2.41 GSTM1 Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic

electrophiles.
ENSG00000185347 4.38E-12 1.91 C14orf80 Uncharacterized protein
ENSG00000237973 7.73E-09 1.86 MTCO1P12 Pseudogene
ENSG00000275783 8.85E-10 1.79 MIR3648 Uncharacterized microRNA
ENSG00000213145 6.81E-07 1.58 CRIP1 Seems to have a role in zinc absorption and may function as an intracellular zinc transport protein
ENSG00000131142 5.42E-09 1.56 CCL25 Potentially involved in T-cell development. Recombinant protein shows chemotactic activity on

thymocytes, macrophages, THP-1 cells, and dendritic cells but is inactive on peripheral blood lymphocytes
and neutrophils.

Significant genes (P-value N 0.005)
ENSG00000117983 2.94E-08 1.46 MUC5B Gel-forming mucin that is thought to contribute to the lubricating and viscoelastic properties of whole

saliva and cervical mucus.
ENSG00000248527 5.12E-07 1.31 MTATP6P1 Pseudogene
ENSG00000198840 4.32E-05 1.29 ND3 Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase
ENSG00000140323 3.12E-05 1.28 DISP2 Smoothened signaling pathway
ENSG00000216560 9.32E-06 1.23 LINC00955 Uncharacterized locus
ENSG00000212907 1.12E-05 1.2 ND4L Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase
ENSG00000228253 3.62E-06 1.19 ATP8 Mitochondrial membrane ATP synthase (F1F0 ATP synthase or Complex V) produces ATP from ADP in the

presence of a proton gradient across the membrane which is generated by electron transport complexes of
the respiratory chain.

ENSG00000206077 4.28E-05 1.19 ZDHHC11B Protein-cysteine S-palmitoyltransferase activity
ENSG00000068078 7.80E-05 1.13 FGFR3 Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential

role in the regulation of cell proliferation, differentiation and apoptosis.
ENSG00000261150 5.71E-05 1.09 EPPK1 Cytoskeletal linker protein that connects to intermediate filaments and controls their reorganization in

response to stress

98 K.P. Nickerson et al. / EBioMedicine 31 (2018) 92–109
immune functions (blue, Fig. 3D), with genes downregulated (red)
or upregulated (green) after infection, is consistent with STY inhibi-
tion of these pathways to disarm the host innate and adaptive im-
mune responses during early infection. These pathways have been
identified as targets of S. Typhi in published literature demonstrating
NF-κB inhibition in monocytes [74] or MAPK inhibition in the gall-
bladder epithelium [67].
3.5. STY Targets the Host Cytoskeleton to Infect the Intestinal Epithelium

Bacteria often manipulate the host cytoskeleton during invasion
[14,25,43,52,61,72].Within our RNAseq data set, genes involved in cyto-
skeletal reorganization were downregulated. Formation of cellular pro-
trusions, cytoplasm organization, cytoskeleton reorganization and
microtubule dynamics were all identified as pathways predicted to be
affected by STY infection (Fig. 4A). TEM analysis revealed STY invading
the intestinal mucosa via the apical surface of the enterocyte (Fig. 4B).
Sites of bacterial invasion are accompanied by microvilli destruction
and long protrusions of host cytoskeleton originating from enterocytes.
While M cells were observed by TEM (Fig. 1F), no association of STY
with M cells was observed. Furthermore, cytoskeletal projections ob-
served in Fig. 4B were also observed in organoid-derived epithelial
monolayers (Fig. 4H), suggesting that microvilli dissolution and remod-
eling of the host cytoplasm creates a surface suitable for invasion repro-
ducible in both models.
Fig. 2. Downregulation of genes involved in the host immune response is observed through tr
human biopsies. (B) Similarity matrix compares gene expression between samples to show t
extensive variation. (C) Ingenuity Pathway analysis reveals clustering of genes in the top 50
upregulation or downregulation is shown in green. (D) Principle components analysis shows
(C). (E) Bacterial genes clustered in three significant groups based on transcriptional chang
virulence genes, and cluster three contains a mix of hypothetical and virulence genes. (F) Com
of STY bacteria during invasion; it is important to note that genes expressed in our inoculu
facilitating invasion and are expressed early on; SPI-2 effectors are expressed later in infe
downregulated at 2 h invasion of intestinal biopsies.
Subsequently, immunostaining of the cytoskeletal protein actin and
the related tight junction protein, zonula occludens-1 (ZO-1), showed
actin projections into the lumen beyond the normal cellular structure,
while no changes in ZO-1 localization was detected (Fig. 4C). Despite
changes in the cytoskeleton, no changes in paracellular permeability
were observed during this early phase of infection as measured by
mucosa-to-serosa 4kD FITC-dextran flux (Fig. 4D) and TEER (Fig. 4E).
Additionally, no significant increase in LDH release was detected, indi-
cating that the tissue biopsies were not undergoing cell death in re-
sponse to bacterial infection (Fig. 4F). To further explore the role of
the cytoskeleton in STY invasion, human organoid-derived epithelial
monolayers were treated with medium containing the actin-inhibitor
cytochalasin D or the microtubule inhibitor nocodazole prior to infec-
tion with STY. Inhibitor treatment prevented STY invasion relative to
untreated control monolayers (Fig. 4G). Lastly, TEM of infected
organoid-derived epithelial monolayers recapitulated phenotypes ob-
served in the infected biopsies including cytoskeleton rearrangement,
microvilli destruction and vesicle-contained intracellular bacteria
(Fig. 4H).
3.6. Intracellular Trafficking, Activation of Immune Pathways and the
Human-restricted Nature of STY

In addition to manipulating the cytoskeleton for cell entry, bacterial
exploitation of the structural proteins dictates how the vesicles mature,
anscriptomic analysis. (A) A schematic overview of the transcriptomic study design using
hat control and infected biopsies behaved like other control or infected biopsies without
predicted pathways; −log (p-value) is shown in blue; the z-score indicating pathway
that bacterial gene expression changes cluster based on infecting group or control group
es. Cluster one encompasses genes required for gene expression; cluster two contains
parison of genes utilized during STM infection overlaid with the gene expression profile
m were not differentially expressed at 2 h invasion. SPI-1 effectors are important for
ction and are important for intracellular survival. The SPI-2 genes sseB, sseC, sseD are



Table 2B
Human genes downregulated after 2 h Infection with S. Typhi.

Feature.ID p.Value LFC
infected/control

Gene name Function description (from uniprot)

Significant genes (P-value b 0.005 and log fold change (LFC) N 1.5)
ENSG00000242512 3.15E-06 −4.03 LINC01206 Unknown
ENSG00000139304 5.61E-05 −3.87 PTPRQ Dephosphorylates a broad range of phosphatidylinositol phosphates.
ENSG00000140798 4.56E-05 −3.67 ABCC12 Probable transporter.
ENSG00000172995 1.64E-05 −3.49 ARPP21 Calmodulin binding protein
ENSG00000280065 1.87E-11 −3.31 Unknown
ENSG00000081479 8.79E-08 −3.3 LRP2 Acts together with CUBN to mediate HDL endocytosis (By similarity).*
ENSG00000178568 1.65E-05 −3.21 ERBB4 Mediates phosphorylation of SHC1 and activation of the MAP kinases MAPK1/ERK2 and MAPK3/ERK1.
ENSG00000163554 7.66E-05 −3.2 SPTA1 Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma

membrane.*
ENSG00000140538 3.83E-10 −3.15 NTRK3 NTRK3 auto-phosphorylates and activates different signaling pathways, including the

phosphatidylinositol 3-kinase/AKT and the MAPK pathways, that control cell survival and
differentiation.

ENSG00000232111 4.22E-05 −3.13 RP11-126O22.1 Novel processed pseudogene
ENSG00000279003 2.15E-08 −3.09 ENSG00000279003 Unknown
ENSG00000263006 1.26E-05 −3.06 ROCK1P1 Transcribed unprocessed pseudogene
ENSG00000279185 1.51E-06 −3 ENSG00000279185 Unknown
ENSG00000181143 3.26E-14 −2.99 MUC16 Thought to provide a protective barrier against particles and infectious agents at mucosal surfaces
ENSG00000169436 4.07E-06 −2.91 COL22A1 Acts as a cell adhesion ligand for skin epithelial cells and fibroblasts.
ENSG00000140465 5.12E-06 −2.84 CYP1A1 Heme-thiolate monooxygenases.*
ENSG00000039139 2.86E-06 −2.83 DNAH5 Force generating protein of respiratory cilia. Produces force toward the minus ends of microtubules.

Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP.
ENSG00000205592 5.15E-08 −2.83 muc19 May function in ocular mucus homeostasis.
ENSG00000148053 7.87E-08 −2.82 NTRK2 Receptor tyrosine kinase
ENSG00000279184 8.78E-11 −2.8 RP3-323A16.1 Unknown
ENSG00000007174 2.85E-07 −2.79 DNAH9 Force generating protein of respiratory cilia. Produces force toward the minus ends of microtubules.
ENSG00000166923 5.46E-12 −2.75 GREM1 Cytokine
ENSG00000186487 1.69E-05 −2.74 MYT1L May function as a pan neural transcription factor associated with neuronal differentiation.
ENSG00000127241 5.72E-06 −2.74 MASP1 Functions in the lectin pathway of complement, which performs a key role in innate immunity by

recognizing pathogens through patterns of sugar moieties and neutralizing them.
ENSG00000172724 1.09E-05 −2.73 CCL19 May play a role in inflammatory and immunological responses and in normal lymphocyte recirculation

and homing. May play an important role in trafficking of T-cells in thymus, and T-cell and B-cell
migration to secondary lymphoid organs. Binds to chemokine receptor CCR7.

ENSG00000137077 1.23E-13 −2.7 CCL21 Inhibits hemopoiesis and stimulates chemotaxis. Chemotactic in vitro for thymocytes and activated
T-cells, but not for B-cells, macrophages, or neutrophils. Shows preferential activity toward naive T-cells.
May play a role in mediating homing of lymphocytes to secondary lymphoid organs.

ENSG00000175820 1.38E-05 −2.69 CCDC168 Unknown
ENSG00000280156 8.84E-13 −2.69 AC006548.28 Unknown
ENSG00000168702 5.33E-05 −2.68 LRP1B Potential cell surface proteins that bind and internalize ligands in the process of receptor-mediated

endocytosis.
ENSG00000165323 9.60E-07 −2.65 FAT3 May play a role in the interactions between neurites derived from specific subsets of neurons during

development.
ENSG00000101638 1.22E-05 −2.64 ST8SIA5 This protein is involved in the pathway protein glycosylation, which is part of protein modification.
ENSG00000089250 3.31E-05 −2.64 NOS1 Produces nitric oxide which is a messenger molecule with diverse functions throughout the body.
ENSG00000172023 1.92E-11 −2.54 REG1B Uncharacterized protein
ENSG00000273079 2.60E-08 −2.51 GRIN2B NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and

voltage-dependent sensitivity to magnesium.

For the full list of downregulated genes, please see Supplementary Table 1.
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migrate and target bacteria for clearance [71]. During early invasion,
bacteria co-localized with tubulin (Fig. 5A) but they were not present
in vesicles labeled with the early endosome protein Rab5. Intracellular
bacteria contained within vesicles by TEM (Figs. 1F, 4B) were also ob-
served, but the vesicle identity remains unclear. It is possible that Rab
proteins are not present on these vesicles, as STM effector proteins tar-
get Rab proteins to blockmaturation of the autophagolysosome [13,28].
Our understanding of STY trafficking inside the epithelial cell is ex-
tremely limited. Furthermore, in our transcriptomic data set, we ob-
serve downregulation of several genes critical to bacterial clearance
(including CYBB and NOS) in the mature phagosome (Fig. 5B). These
data suggest that STY disarms the cellular machinery needed to kill in-
tracellular bacteria by downregulating functional phagosome genes.
4. Discussion

Enteric pathogens continue to be a significant public health burden
in both developed and developing countries [12,38,42,44]. STY remains
an elusive vaccine target [24,41], which is partly due to critical gaps in
knowledge regarding how STY causes disease. Some of these gaps are
addressed for the first time in this manuscript.
4.1. STY Blocks the Immune Response during Infection

STY produces a polysaccharide capsule known as the Vi antigen,
which is thought to protect the bacterial cell from detection by pattern
recognition receptors [33,75,81,82]. We conclude that STY further
blocks activation of the innate immune system based on depressed or
uninduced gene transcription, impaired signal transduction and apical
cytokine release observed during human biopsy infection. STY expres-
sion of the Vi antigen during human infection (which includes the up-
regulated genes vexD, vexB, tviE, and tviD) is well-documented [82],
and it masks lipopolysaccharide, peptidoglycan and flagellin from the
host pattern recognition receptors. Several additional expressed STY
genes that may also block innate immune activation by targeting signal
transduction intermediates include the γ-proteobacteria conserved
suhB gene [54], which encodes an inositol monophosphatase and func-
tions in the modulation of inositol signaling [48].



Table 3A
Select S. Typhi genes upregulated after 2 h infection.

pGene Gene Log fold change q-Value Function

T_RS16275 t3210 3.72 0.0004 Preprotein translocase subunit SecG
T_RS09445 t1853 3.43 0.0004 Beta-hydroxydecanoyl-ACP dehydratase
T_RS18075 t3559 3.38 0.0004 Repressor of the Cpx envelope stress response pathway.
T_RS24905 T_RS24905 3.38 0.0004 Hypothetical protein
T_RS20765 t4085 3.35 0.0004 Preprotein translocase subunit SecY
T_RS24820 T_RS24820 3.22 0.0004 Hypothetical protein
T_RS24855 T_RS24855 3.16 0.0004 Hypothetical protein
T_RS04520 t0882 3.13 0.0004 Cold-shock protein CspJ
T_RS23945 T_RS23945 3.1 0.0004 Hypothetical protein
T_RS24535 T_RS24535 3.02 0.0004 Hypothetical protein
T_RS20790 t4090 2.97 0.0004 DNA-directed RNA polymerase subunit alpha
T_RS22875 t4496 2.93 0.0021 Pyrbi operon leader peptide
T_RS19685 t3869 2.83 0.0004 Hypothetical protein
T_RS23875 T_RS23875 2.71 0.0004 Hypothetical protein
T_RS01565 t0310 2.71 0.0004 Inositol monophosphatase
T_RS03930 t0780 2.7 0.0004 Glucose-1-phosphate cytidylyltransferase
T_RS19190 t3772 2.67 0.0004 Xanthine permease
T_RS03270 t0646 2.6 0.0039 Membrane protein
T_RS03285 t0650 2.59 0.0004 Phosphoenolpyruvate dependent, sugar transporting phosphotransferase system.
T_RS03290 t0649 2.59 0.0004 Phosphofructokinase
T_RS02365 t0466 2.58 0.0004 Acyltransferase
T_RS10080 T_RS10080 2.57 0.0011 Hypothetical protein
T_RS10085 t1980 2.57 0.0011 Translation initiation factor IF-1
T_RS08805 t1730 2.56 0.0004 Hypothetical protein
T_RS22990 t4521 2.53 0.0004 Hypothetical protein
T_RS22995 t4519 2.53 0.0004 Serine/threonine protein kinase
T_RS23000 t4520 2.53 0.0004 Serine/threonine protein kinase
T_RS19345 t3803 2.53 0.0004 LPS core heptose(II) kinase RfaY
T_RS05655 t1106 2.49 0.0004 Hypothetical protein
T_RS02155 T_RS02155 2.48 0.0004
T_RS08555 t1680 2.46 0.0016 Sodium potassium/proton antiporter ChaA
T_RS03960 t0786 2.44 0.0004 Glycosyl transferase
T_RS08780 t1725 2.44 0.0004 Beta-ketoacyl-ACP reductase
T_RS02535 t0501 2.43 0.0004 Colicin V production protein
T_RS20635 t4059 2.42 0.0004 Elongation factor G
T_RS03925 t0779 2.39 0.0004 CDP-6-deoxy-delta-3,4-glucoseen reductase
T_RS14115 t2782 2.39 0.0004 Hypothetical protein
T_RS16300 t3215 2.38 0.0004 RNA binding protein found associated to pre-50S subunit of the ribosome.*
T_RS22250 t4371 2.38 0.0004 Integrase
T_RS03965 t0787 2.37 0.0004 Glycosyl transferase
T_RS22890 t4499 2.36 0.0004 Ornithine carbamoyltransferase
T_RS12270 t2413 2.36 0.0004 Trigger factor
T_RS08595 t1688 2.35 0.0004 Adenylosuccinate lyase
T_RS21345 t4196 2.34 0.0004 Hypothetical protein
T_RS00790 t0157 2.34 0.0004 Pyruvate dehydrogenase complex repressor
T_RS17570 t3461 2.31 0.0004 DNA-binding protein HU-alpha
T_RS16745 t3300 2.31 0.0004 Fis family transcriptional regulator
T_RS12085 t2377 2.31 0.0004 Adenine phosphoribosyltransferase
T_RS00330 t0067 2.3 0.0004 Carbamoyl-phosphate synthase small subunit
T_RS00865 t0172 2.29 0.0004 Hypothetical protein
T_RS03955 t0785 2.27 0.0004 Transporter
T_RS16250 t3205 2.27 0.0004 Transcription termination protein NusA
T_RS03175 t0627 2.26 0.0004 Hypothetical protein
T_RS14120 t2783 (iacP) 2.23 0.0004 Acyl carrier protein
T_RS12185 t2397 2.22 0.0004 Nitrogen regulatory protein P-II 2
T_RS03945 t0784 2.21 0.0004 CDP-paratose 2-epimerase
T_RS03950 t0783 2.21 0.0004 CDP-paratose synthase
T_RS19320 t3798 2.21 0.0004 Hypothetical protein
T_RS19325 t3799 2.21 0.0004 Hypothetical protein
T_RS03940 t0782 2.18 0.0004 LPS biosynthesis protein
T_RS09545 t1875 1.62 0.0067 Hypothetical protein
T_RS00205 t0042 1.61 0.0004 Transcriptional activator NhaR
T_RS22130 t4347 1.57 0.0004 Vi polysaccharide export inner-membrane protein VexB
T_RS22140 t4350 1.56 0.0037 Vi polysaccharide biosynthesis protein TviD
T_RS22145 t4349 1.56 0.0037 Vi polysaccharide biosynthesis protein TviE

For the full list of upregulated STY genes, please see Supplementary Table 2.
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Legionella manipulates inositol signaling to enable creation of the
Legionella-containing vacuole for survival [26]. Likewise, STM replicates
within the Salmonella-containing vesicle (SCV). Generation of the SCV is
dependent on the SPI-1 effectors SopB and SopE/E2[27], which modu-
late inositol signaling and Rab proteins, respectively. The suhB gene
overcomes the rate-limiting step in inositol signaling to affect second
messenger signaling, autophagy and cell death pathways [26]. Two ad-
ditional upregulated STY specific-enzymes encode eukaryotic-like
serine-threonine kinases (T4519, T4520). In data derived from the in-
fection of immortalized macrophage cell lines, T4519 is required for
both intracellular survival and IL-6 and TNF-α production, as well as
for NFkB phosphorylation [73]. In linewith our data, impaired activation



Table 3B
Select S. Typhi genes downregulated after 2 h Infection.

Locus Gene Log fold change q-Value Function

T_RS05760 t1128 −4.6998 0.000303 Heat-shock protein
T_RS20010 t3935 −4.68863 0.0047827 Membrane protein
T_RS16050 t3164 −4.42922 0.0356647 Serine/threonine dehydratase
T_RS06575, t1288 −4.05222 0.0017506 Type III secretion system protein SsaS
T_RS15430 t3045 −3.931 0.0361737 Hypothetical protein
T_RS14420 t2844 −3.85909 0.0022412 Type I-E CRISPR-associated protein Cse1/CasA
T_RS09110 t1790 −3.82746 0.0267944 N-acetylneuraminate epimerase
T_RS01550 t0307 −3.74357 0.003615 Anaerobic sulfite reductase subunit B
T_RS18320 t3606 −3.66574 0.0054552 Hypothetical protein
T_RS00180 t0037 −3.62981 0.0033564 Sulfatase
T_RS23565 t4633 −3.62105 0.0106418 Fimbrial chaperone protein
T_RS15480 t3054 −3.57317 0.0234569 Amidohydrolase
T_RS07840 t1540 −3.5345 0.0046498 Membrane protein
T_RS20210 t3974 −3.52218 0.0198834 Ribokinase
T_RS09100 t1788 −3.50146 0.0095141 MFS transporter
T_RS05770 t1130 −3.4989 0.0031178 Hypothetical protein
T_RS11895 t2339 −3.48786 0.0253715 Allantoin permease
T_RS06445 t1262 −3.42977 7.20E-05 EscC/YscC/HrcC family type III secretion system outer membrane ring protein
T_RS06380 t1249 −3.42 0.0464325 Hypothetical protein
T_RS02200 t0435 −3.39407 0.0292125 Purine-nucleoside phosphorylase
T_RS06525 t1278 −3.383 2.18E-06 Pathogenicity island protein
T_RS09630 t1891 −3.37E+00 0.0149459 Hypothetical protein
T_RS06460 t1265 −3.36098 0.0492594 Chaperone for SseB and SseD
T_RS01555 t0308 −3.33498 0.0106668 Sulfite reductase subunit alpha
T_RS13295 t2616 −3.30635 0.0073327 Chaperone protein ClpB
T_RS06385 t1250 −3.30289 0.0493247 Pseudo hypothetical protein, frameshifted
T_RS02205 t0436 −3.2902 0.016477 Xanthosine permease
T_RS06035 t1180 −3.2816 0.0254963 Pyrimidine (deoxy)nucleoside triphosphate pyrophosphohydrolase
T_RS06540 t1281 −3.26407 5.89E-05 Type III secretion system protein SsaM,
T_RS14505 t2860 −3.26E+00 0.0025029 Fimbrial protein SteE
lpfA t3659 −3.25935 0.0271651 Fimbrial protein
T_RS00190 t0039 −3.25E+00 0.0180323 Hypothetical protein
T_RS23005 t4522 −3.09E+00 0.0466588 Polarity suppression protein
modA,modB t2105 −3.06609 0.0034703 Part of ModCBA molybdate transporter
T_RS13735 t2702 −3.05094 0.0136309 NrdH-redoxin
T_RS20205 t3973 −3.05052 0.0497433 Hypothetical protein
T_RS11900 t2340 −2.99758 0.03144 MFS transporter
T_RS06580, t1289 −2.95076 0.0011772 Type III secretion system protein SsaT
T_RS06555 t1284 −2.91116 7.20E-05 SSaO Salmonella pathogenicity island 2 protein
T_RS16100 t3175 −2.83436 0.0014239 PTS galactitol/fructose transporter subunit II
T_RS09515 t1868 −2.80141 7.14E-05 Hypothetical protein
T_RS15520 t3062 −2.79169 0.002574 Molybdenum ABC transporter substrate-binding protein
T_RS16110 t3177 −2.77916 0.0346406 D-tagatose-bisphosphate aldolase, class II, non-catalytic subunit
T_RS21165 t4162 −2.7735 7.20E-05 Hypothetical protein
T_RS19870 t3906 −2.77198 0.0376913 Cyclic-guanylate-specific phosphodiesterase
T_RS01545 t0306 −2.76366 0.0243692 Sulfite reductase subunit C
T_RS23560 t4632 −2.75952 0.0347524 Frameshifted
T_RS06505 t1274 −2.73865 0.0360844 Type III secretion system needle protein SsaG
T_RS19490 t3831 −2.71975 0.0499517 Hypothetical protein
T_RS16450 t3244 −2.68263 0.011345 Glutamine amidotransferase
T_RS02280 t0450 −2.67886 0.0466588 Hypothetical protein
T_RS09750 t1914 −2.67E+00 0.0006626 Methyltransferase
T_RS23210 t4563 −2.66886 0.0212746 Membrane protein
T_RS23145 t4550 −2.6688 0.0477512 SAM-dependent methyltransferase
T_RS08510 t1671 −2.64519 0.0003457 Nitrate reductase molybdenum cofactor assembly chaperone
T_RS06895 t1352 −2.6331 0.0101017 Tail fiber protein
T_RS14890 t2935 −2.6154 0.0110453 Transcriptional regulator
T_RS04790 t0937 −2.59229 0.0423495 Cell wall hydrolase
T_RS18330 t3608 −2.58732 0.0054552 Hypothetical protein
T_RS07830 t1538 −2.56658 0.0114123 ABC transporter ATP-binding protein
T_RS18345 t3610 −2.48E+00 0.000754 Coproporphyrinogen III oxidase
sseA t1265 −2.39E+00 0.0404711 Type III secretion system chaperone SseA
T_RS12810 t2522 −2.27364 0.0137239 Fimbrial chaperone protein
T_RS06465 t1266 −2.27192 0.0169695 SSeB necessary for the correct localization of SseC and SseD on the bacterial cell surface

For the full list of downregulated STY genes, please see Supplementary Table 3.

Fig. 3. Tissue response to S. Typhi infection reflects differential apical cytokine release. (A) Multiplexed ELISA analysis of pro-inflammatory and regulatory cytokines in control biopsies,
STM or STY treated (black, red, blue, respectively). (B) As cytokine release is observed but no transcriptional upregulation is detected (per RNA-seq data set), intracellular signal
transduction was assessed by western blot analysis to determine the phosphorylation state of NF-kB and MAPK from samples mounted in the microsnapwell system after exposure to
media, STM or STY at time points of 60 min and 120 min. (C) Densitometry analysis of signaling blots. (D) Pathway analysis demonstrates a central role for MAPK in regulated cellular
processes and gene expression important in development of immune responses. Note: All genes shown here are downregulated and their expression patterns predict inhibition of cell
recruitment. (E) NF-kB is a central regulator of gene expression; its activation is critical to expression of genes downregulated in our RNAseq data set.
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Image of Fig. 3
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Image of Fig. 4
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of signal transduction pathways not only prevents gene transcription
changes and overall immune response development, but also blocks ve-
sicular trafficking. Salmonella-mediated impaired vesicle maturation
prevents lysosomal or autophagolysosomal bacterial killing [28,57],
thereby allowing bacterial survival and preventing bacterial antigens
to stimulate the class I/II major histocompatibility complex (MHC) anti-
gen presentation pathways for the generation of adaptive immune re-
sponses. Combined, our data suggest that STY evade innate and
adaptive immune responses through multiple and complementary ap-
proaches that begin immediately upon invasion and are actively regu-
lated through secreted factors delivered to host enterocytes or the
intestinal lumen.

Furthermore, in our model, major MHC-II and reactive oxygen spe-
cies genes (NADPH-oxidase genes and nitric oxide synthase NOS) are
transcriptionally downregulated in response to infection, which may
further prevent the host response to STY. Additionally, important im-
mune system genes are downregulated, indicating critical breakpoints
in B-cell and T-cell maturation, activation and overall lymphoid cell re-
cruitment to the sites of infection (Supplementary Figs. 3, 4). Our data,
which support clinical observations that STY exposure fails to provoke
an immune response, also identifies bacterial genes expressed in the
modulation of the host immune response. Further studies and deletion
constructs are pivotal to understand the function of these enzymes dur-
ing STY infection. Our findings provide novel information on mecha-
nisms responsible for the host cell's inability to kill STY. These
mechanisms are linked to the inhibition of pathways preventing antigen
recognition and, ultimately, the development of an adaptive immune
response. This concept is supported by our pathway analysis show-
ing differentially expressed genes associated with the deactivation
of pathways involved in the crosstalk between innate and adaptive
immune responses (Fig. 5C, Supplementary Fig. 3), B-cell receptor
signaling (Supplementary Fig. 4) and the maturation of dendritic
cells. Ultimately, the downregulation of cell surface genes such as
CD22, CD79A and IgG, as well as intracellular signaling genes PI3K
and transcription factor PAX5, underscores an inability of the STY in-
fected host cell to activate the adaptive immune system, providing
insight into how STY escape clearance by circumventing the host im-
mune system activation.
4.2. STY Infects Enterocytes

Historically, enteric pathogens are thought to enter the host by
crossing the gastrointestinal epithelium via specialized M-cells
[16,17,46]. Through TEM analysis, we found numerous epithelial cells
in various states of STY invasion. Although research supports a role for
M-cells in STM infection [17], and to a lesser extent in STY infection
[24], we observed that STY infectionwas predominantly via enterocytes
in both tissue explants and gut organoid-derived monolayers, although
previous studies have described mechanisms for apical invasion of
enterocytes for STM [2]. Common themes observed in infected cells
included microvilli destruction and cytoskeletal rearrangement
affectingboth actin and tubulin. Furthermore, cytoskeletal projections
created a site of invasion that seemed to recruit other STY bacterial
cells to enter at the same location. We hypothesize that quorum
sensing (QS) facilitates invasion in an energetically favorable man-
ner, by which initial invading bacteria promote microvilli destruc-
tion and cytoskeletal rearrangement, and perhaps the release of QS
Fig. 4.Host response to Typhi infection: barrier function and antigen trafficking. (A)Differentiall
relationship to the pathway are shown in black; genes involved in pathway inhibition are show
intestinal biopsies and organoid-derived epithelial monolayers (H). Large scale bars are 2 μ
immunostaining (C, circled). (D–F) No changes in paracellular permeability (D, E) are obse
enterocytes of the intestinal epithelium, and that biopsy invasion is not accompanied by cell
microtubule inhibitor nocodazole block STY entry into organoid-derived epithelial monolayers
and internalization into vesicles like those observed in the infected biopsies. Invading and
denoted by * and enterocytes are labeled with “E.” Large scale bars are 2 μm, small scale bars a
molecules, resulting in cooperative invasion at the same site. STY
produces QSmolecules homologous to QseBC [53]; a communication
system required for enterohemorrhagic E. coli pathogenesis [58].
Therefore, we hypothesize that the community of invading STY
works together to suppress the immune activation in the same cell,
enriching its chances of survival by creating invasion “hot spots.”
The conserved QS genes in the qse and lux/lsr operon are expressed
in both our inoculum and invading bacteria, but not differentially
expressed during invasion. Curiously, homologs of peptide-based
QS genes are differentially expressed during invasion. Peptide-
initiated QS is frequently observed in Gram-positive bacteria
[65,77] but only the ‘extracellular death factor’ peptide QS signaling
pathway has been described in Gram-negative E. coli [36,37,39]. QS
molecules are produced in response to population density and to
regulate virulence factors [45,65]. It is well-documented that QS
molecules induce expression of SPI-1 in STM to promote invasion
[15,22,53,55]. Importantly, pathogenesis of enterohemorrhagic
E. coli depends on host and commensal derived QS molecules to
initiate colon invasion, whereas the invasion stimulus for STY, and
the potential role for QS, remains an area warranting future
investigation.
4.3. Host-Specificity of Infection: STM vs. STY

STM causes infection in a genetically susceptible, antibiotic-
treated mouse [10]. Hallmarks of infection include edema, neutro-
phil recruitment and bacterial infiltration of the liver, lymph nodes,
spleen and cecum [10]. As STM can cause systemic infection, it is
used as a model for STY infection in humans. When mice are exposed
to STY, the resulting infection is self-limiting within the GI tract and
shares very few clinical and pathogenic traits with human disease.
Conversely, human infection with STM bacteria results in local gas-
trointestinal infection that resolves within a few days. Genetically,
the two serovars are nearly identical; however STY has gained addi-
tional virulence genes [66,83] (notably, SPI-7) and is thought to have
significantly fewer protein-coding genes than STM due to insertion
sequences, truncations and mutations [66]. Despite genetic similari-
ties, we observed extensive and divergent phenotypes with human
infection by STY as compared to STM. As such, we noticed that the
host genes upregulated during STY infection were nearly all diver-
gent between human and mice. For example, the cytokine CCL25
and the mitochondrial enzyme ATP8 are both found in humans but
not in mice (Table 4). Other genes, like the cytoskeletal remodeling
gene EPPK1, shares only 75.5% protein identity with its mouse homo-
logue, which allows us to speculate that some of the host specificity
of infection is a direct extension of the genes upregulated during in-
fection. Other variables are important here: e.g., humanMUC2 shares
only 76% identity with its mouse homologue and the MUC2 product
functions as a barrier protecting the intestinal epithelium from bac-
teria. As mice and humans have different pathogen susceptibility
and crossing the mucus barrier is a significant challenge to infection,
it would be interesting to study if the protein homology differences
contribute to infection susceptibility. Further studies are required
to evaluate the relative importance of each of the affected genes
and virulence factors during the initial stages of infection.

Current vaccine candidates target the following genes in S. Typhi:
rpoS, galE, galK, ilvD, vexD, phoP, phoQ, aroC, ssaV, aroD, htrA and tviA.
y expressed genes cluster in cytoskeletalmodulation pathways. Geneswith anunidentified
n in blue. (B, H) Reorganization of the cytoskeletal is observed upon STY association with

m, small scale bars are 500 nm. (C) Cellular protrusions are actin-dense as observed by
rved at early time points during infection supporting the fact that STY directly infected
death (F). (G) Inhibition of the cytoskeleton using the actin inhibitor cytochalasin D or
. (H) STY bacteria interact with the epithelium by promoting cytoskeletal rearrangement
intracellular STY are observed by TEM, green arrows. Cytoskeletal rearrangements are
re 500 nm.
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Table 4
Human-mouse protein homology.

Gene name Protein % identity

M. musculus P. troglodytes

Genes upregulated upon infection GSTM1 83.90% 97.70%
C14orf80 69.40% 99.50%
CRIP1 97.40% 100%a

CCL25 54.30% 98%
MUC5B 61.60% 91%a

ND3 67.00% 94.80%
DISP2 76.40% 99.40%
ND4L 67.30% 99.00%
ATP8 Human onlyb 92.60%
ZDHHC11B Human onlyc 95.20%
FGFR3 93.40% 95.80%
EPPK1 75.50% 98.20%

Control genes RAB5 98% 100%
ACTIN 100% 100%
RAB7 100% 100%
TUBULIN 100% 100%
ZO1 91.10% 99.90%
MUC2 76% 78%d

Please see Supplementary Fig. 5 for additional alignment information.
a Predicted protein sequence.
b Protein alignment covers 98% with 48% identity - alignment in Supplementary Fig. 5.
c Protein alignment covers 78% with 59% identity - alignment in Supplementary Fig. 5.
d Protein alignment covers 46% with 78% identity.
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Based on the data presented here, only vexD is upregulated during
early infection of human terminal ileum biopsies. Several genes are
downregulated (phoPQ, ssaV), while others remain unchanged
(galK, ilvD, aroC, aroD, htrA, tviA). These virulence, metabolism and
regulatory genes have been considered important targets for initial
vaccine candidates [24,41] by creating strains with limited intracel-
lular replication capacity and attenuated virulence. Based on the re-
sults of these studies, we propose targeting additional genes
specifically upregulated by STY during early infection, namely en-
zymes and cytoskeletal rearrangement genes. During infection, in-
vading bacteria are efficiently shutting down the host's ability to
recognize and respond to infection by manipulating the epithelial
cell and blocking recruitment of immune cells to the site of infection.
Deletion of genes utilized during early invasion will likely prevent
STY from shutting down the host response, thereby permitting infec-
tion recognition and restoring the ability to recruit immune cells to
the site of infection. Additionally, genes that target RNA degradation
may also hold promise as possible targets for vaccine development.
By eliminating the bacterium's ability to suppress host gene expres-
sion, perhaps we can restore the development of a strong, protective,
adaptive immune response.

4.4. An Expanded Model for STY Pathogenesis

As it becomes increasingly clear that our extrapolated data frommu-
rine STM studies are insufficient to accurately recapitulate STY patho-
genesis in the human host, we have developed a new model that
closely resembles the human gut microenvironment to serve as a
framework to study STY pathogenesis. Based on our data we propose
the following model (Fig. 6): STY invades enterocytes of the terminal
ileum through cytoskeletal rearrangement by targeting actin and
Fig. 5. Inside the enterocyte: STY localization and survival. (A) Immunostaining of STY-infected
and genomic material (DAPI). STY colocalizes with tubulin during biopsy invasion but exists i
arrow; independent STY are marked with a pink arrow. (B) Loss of intracellular early end
inhibition of phagosome formation and maturation; downregulated genes are in red, upregula
harvest and bacterial clearance, which are overarching themes in disease pathways pred
(D) Predicted deactivated disease states related to the immune response deciphered from down
of pathways; the number of genes refers to the number of genes downregulated during STY in
quantity of phagocytes, activation of lymphocytes, localization of mononuclear cells, activation
tubulin networks. Upon entry, the bacteria target Rab proteins to
conceal the vesicle from the cellular sorting pathways (a fraction of
STY might even escape to the cytosol). During this time, the bacteria
block host response transcription by targeting signal transduction
pathways normally triggered by bacterial antigens. To prevent re-
cruitment of immune cells to the site of infection, the release of cyto-
kines and chemokines is re-directed via the apical surface toward the
lumen of the intestine. By crippling the host recognition of invasion
(i.e., by reduced or absent triggering of signal transduction and tran-
scriptional downregulation of antibacterial or cytokine genes) STY
exploits a “Trojan horse” strategy to prevent detection. STY is
protected from host immune defenses and the bacteria move unde-
tected to the basolateral pole and continue systemic dissemination
in the host.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.04.005.

Funding

These studies were supported, in part, by NIAID, NIH, DHHS
grants R01-AI036525 (to MBS), U19-AI082655 [Cooperative Center
on Human Immunology] (to MBS and AF), and U19-AI109776 [Cen-
ter of Excellence for Translational Research (CETR)] to MBS. The con-
tent is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institute of Al-
lergy and Infectious Diseases, the National Institutes of Health,
NIAID, NIH.

We thankDana-Farber/Harvard Cancer Center in Boston,MA, for the
use of the Specialized Histopathology Core, which provided embedding
and sectioning service. Dana-Farber/Harvard Cancer Center is sup-
ported in part by an NCI Cancer Center Support Grant # NIH 5 P30
CA06516.

The EM core was supported by NIH/NINDS P30NS045776. Sup-
port for the Philly Dake Electron Microscope Facility was provided
by NIH 1S10RR023594S10 and by funds from the Dake Family
Foundation.

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

KPN, SS, RL, LI, CSF, MBS, CF, AF, andMRF were responsible for study
design, data generation and data analysis. SP and RL were responsible
for donor identification, recruitment and sample collection. DKVK
aided in TEM experiments. ZY, CF, KPN and WF were responsible for
transcriptomic and related bioinformatics analysis. All authors contrib-
uted to manuscript preparation.

Acknowledgements

The authors would like to thank the Diane Capen for her expertise
and skill in preparing the samples for TEM analysis. We would also
like to thank members of the Fasano, Fiorentino and Faherty labora-
tories as well as the members of the University of Maryland Cooper-
ative Center on Human Immunology (CCHI) for their thoughtful
biopsies with cytoskeletal protein tubulin, intracellular early endosomemarker Rab5, STY
ndependent of Rab5. Inset images demonstrating co-localization are marked with a blue
osome marker indicates masking of cellular localization by STY. RNAseq data predicts
ted genes are in green. (C) Inhibition of phagosome maturation critically impairs antigen
icted to be downregulated in response to STY infection of terminal ileum biopsies.
regulation of genes during STY infection. The negative Z-score indicates a downregulation
fection that corresponds to the pathway listed. Notable deactivated disease states include
of lymphocytes and leukocyte migration.

https://doi.org/10.1016/j.ebiom.2018.04.005
https://doi.org/10.1016/j.ebiom.2018.04.005


Fig. 6. An expandedmodel for STY pathogenesis. Taken together, our data demonstrates STY bacteria employ a “Trojan Horse” strategy to invade enterocytes and dismantle the immune
response from the intracellular environment.We propose that STY invades enterocytes after rearranging the enterocyte cytoskeleton. Invading bacteria are contained within vesicles that
aremodified to block vesicular trafficking. The secretion of effector proteinsmodulates eukaryotic cell signaling cascades and transcription. Cytokine stores are released toward the apical
pole to prevent recruitment of immune cells to the site of infection. Finally, STY traverse to the basolateral pole and transition to the systemic phase of disease.
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