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Introduction

Prostate cancer is a major health problem in the United States 
and the world. It continues to be the most common cancer 
diagnosed and the second leading cause of cancer-related 
mortality in men in the United States. The American Cancer 
Society (ACS) estimates that 180,890 men would have been 
diagnosed with prostate cancer in 2016, comprising 21% of 
all male cancer diagnoses. The estimated number of lives 
claimed was 26,120, comprising 8% of all cancer-related 
mortalities in American men in 2016.1 Most patients in the 
United States are diagnosed with localized or regional pros-
tate cancer that is treated with surgery (e.g. prostatectomy) 
and/or radiation therapy, including brachytherapy. Despite 
local treatment, approximately 30% of these patients develop 
recurrent disease.2–4 Treatment options for advanced prostate 
cancer include androgen deprivation therapy. Docetaxel is 
the first-line chemotherapy.5 There are several new lines of 
treatment for castrate-resistant prostate cancer including an 
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immunotherapy, sipuleucil-T; an androgen receptor blocker, 
enzalutamide; an adrenal androgen synthesis inhibitor, abira-
terone acetate; a chemotherapy, cabazitaxel; and a radioac-
tive agent, Radium 223.6

Immunotherapy for prostate cancer is an attractive strat-
egy in light of the potential role of the immune system. For 
example, the correlation described between the presence of 
tumor-infiltrating lymphocytes and good prognosis speaks 
well for the potential of immunotherapy.7 Human prostate-
specific antigen (PSA) is one of the prostate differentiation 
antigens which has been used extensively as targets for 
T-cell-induced immunotherapy for prostate cancer. PSA is 
synthesized with a 17–amino acid leader sequence (pre-pro 
PSA) that is cleaved to generate an inactive 244–amino acid 
precursor protein.8 Cleavage of the N-terminal 7–amino 
acids from pro PSA generates the active enzyme, which has 
five intra-chain disulfide bonds, a single asparagine-linked 
oligosaccharide, and a mass of 33 kilodaltons.9–11 The physi-
ological role of PSA is the liquefaction of the sperm-trapping 
coagulum consisting of semenogelin I, semenogelin II, and 
fibronectin, resulting in liberation of the spermatozoa.12

PSA is an ideal tumor antigen, as it is likely expressed 
exclusively in prostate.13–15 Several vaccine strategies have 
been based on PSA, including dendritic cells pulsed with 
PSA,16 recombinant viruses expressing PSA,17–19 recombi-
nant PSA protein,20 PSA peptides,21 and DNA vaccines.22 
Specifically, PROSTVAC includes recombinant pox viruses 
that express PSA with three immune-enhancing co-stimula-
tory molecules (LFA-3, ICAM-1, and B7.1).19 Other tumor 
antigens which have been investigated as potential targets 
were prostate-specific membrane antigen, prostate acid 
phosphatase, and prostate secretory protein-94.15

Identification of tumor-associated antigen-derived peptides 
able to elicit anti-tumor T-cell responses is essential for the 
development of peptide-based cancer vaccines,23 and some 
PSA-derived human T-cell epitopes have been described.24,25 
Recent studies have shown that PSA-derived peptides can 
cause expansion of interferon-γ (IFN-γ)-secreting CD8+ 
T-cells in vitro with peripheral blood mononuclear cells 
(PBMCs) from healthy individuals and prostate cancer 
patients.26 Cytokines secreted by antigen-presenting cells play 
important roles in the process of differentiation of T-helper 
cells into T-helper type 1 (Th1), T-helper type 2, or T-helper 
type 17 (Th17) cells. Interleukin (IL)-12 p70 directs Th1 
response, while IL-1 and IL-6 direct the Th17 response.27,28 
Both CD4+ and CD8+ T-cells are required for an optimal 
tumor rejection to occur.29

The idea of using Candida skin test reagent as an adjuvant 
came from studies which used it as an intralesional injection 
therapy for regressing common warts.30–35 The role of T-cells 
in regression was shown.31,34 In vitro, Candida skin test rea-
gent has been shown to induce T-cell proliferation and IL-12 
secretion by Langerhans cells.36,37 A brand of Candida skin 
test reagent called Candin® (Nielsen BioSciences, San 
Diego, CA) has been tested as a vaccine adjuvant for an 

investigational human papillomavirus (HPV) therapeutic 
vaccine, and an increase in circulating Th1 cells has been 
demonstrated in the vaccine recipients.38,39 Candin is made 
from two strains of Candida albicans. They are propagated 
in media containing inorganic salts, biotin, and sucrose, lyo-
philized and extracted resulting in a clear solution. 
Unexpectedly, Candida, as a skin test reagent, did not show 
any maturation effects on Langerhans cells but the HPV type 
16 E6 peptides did.37

Here, we present a design of a novel prostate cancer 
immunotherapy which includes PSA peptides and Candida. 
A formulation compatible for human use is described. The 
maturation effect on Langerhans cells from healthy subjects 
and the immunogenicity of the PSA peptides in prostate can-
cer patients were investigated. In addition, proteomes were 
compared between Langerhans cells treated and untreated 
with Candida with a goal of gaining further insight into its 
mechanism of action. As the feasibility of producing this 
prostate cancer immunotherapy has been demonstrated, fur-
ther work investigating its safety and efficacy is warranted.

Material and methods

Design and solubility screening of the PSA 
peptides

The goal of this pilot study was to design a novel prostate 
cancer vaccine using PSA peptides and Candida that would 
eventually be suitable for human testing. Beyond the feasi-
bility of being synthesized, one of the criteria for suitability 
for human testing is the solubility of the peptides, as it makes 
injection possible and monitoring of peptide stability feasi-
ble during the clinical trial phase. Six peptides (40–amino 
acids in length except for the most C-terminal peptide which 
is 20–amino acids long) covering 85% of the PSA protein 
sequence were selected for their likeliness of being solubi-
lized in a single solution (Table 1). They were synthesized by 
RS Synthesis (Louisville, KY) and were acetylated at 
N-termini and amidated at C-termini to enhance stability.

Six peptides were tested individually for solubility in pH 
4 or 5 with 10 mM succinate or 10 mM glutamate. Since five 
of the six peptides had positive charges, they were expected 
to be soluble in solutions of lower pH. Turbidity was meas-
ured by determining the optical density (OD) at 630 nm 
using an Epoch Microplate Spectrophotometer (BioTek, 
Winooski, VT). Turbidity is a measure of the light-transmit-
ting properties of water, and it reflects the amount of sus-
pended material (i.e. insoluble) in the liquid which scatters 
light. The turbidity of <1.0 was considered to be soluble, 
and that of <0.2 was considered to be very soluble. For each 
peptide not fully soluble, the following amino acids were 
added to enhance solubility: (1) 5% glycine, (2) 2% histi-
dine, (3) 2.5% lysine, (4) 1.5% serine, (5) 1.5% threonine, 
and (6) 5% arginine. Then, the solubility of all six peptides 
combined was tested.
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Fluorescence-activated cell sorter analysis for 
assessing maturation effects of the PSA peptides

While it may not be a typical feature of self-antigens, some of 
them have been shown to be able to increase expression of co-
stimulatory molecules on antigen-presenting cells.40 Therefore, 
the ability of the PSA peptides to induce maturation of 
Langerhans cells were assessed. PBMCs were purified from 
apheresis products of healthy donors (n = 6) (Key Biologics, 
LLC, Memphis, TN) using a ficoll gradient centrifugation 
method. Monocytes were negatively isolated from PBMC 
using Monocyte Isolation Kit II (Miltenyi Biotec, Auburn, 
CA) and were differentiated to Langerhans cells using granu-
locyte–macrophage colony-stimulating factor, IL-4, and trans-
forming growth factor-β.41 The effectiveness of differentiation 
to Langerhans cells was previously demonstrated by detecting 
CD1a, Langerin, and E-cadherin.36,37 Maturation effects on 
Langerhans cells were examined by detecting increased mean 
fluorescence intensity of CD40, CD80, CD86, and HLA-DR 
using antibodies (eBioscience, Inc, San Diego, CA) 48 h after 
exposure with PSA peptides (10 µg/peptide/ml, individually 
and combined) or with Candida (150 µl/ml of Candin). 
Zymosan, a preparation of cell wall from Saccharomyces cer-
evisiae, (10 µg/ml, InvivoGen, San Diego, CA) was used as a 
positive control, and media containing no peptide served as a 
negative control.

Ex vivo IFN-γ enzyme-linked immunospot assay 
for assessing immunogenicity of the PSA peptides

An additional goal of this pilot study was to assess the immu-
nogenicity of the PSA peptides. Patients were approached by 

their physician or by a study coordinator at their routine 
clinic visits to enroll in this study (University of Arkansas for 
Medical Sciences IRB Protocol Number 204374). After 
obtaining a written informed consent, 60 ml of whole blood 
was drawn in tubes containing sodium heparin from patients 
(n = 10) diagnosed with prostate cancer or with a history of 
prostate cancer with the following inclusion criteria: (1) his-
tological documented diagnosis of prostate cancer and (2) 
18 years of age or greater. A sample size of 10 patients was 
selected, since the antigenicity of these PSA peptides was 
expected to be common based on data published by Podrazil 
et  al.42 (i.e. 11 of 23 patients with metastatic, castration-
resistant prostate cancer enrolled in a Phase I/II clinical trial 
of a PSA-based dendritic cell immunotherapy had responses 
to PSA peptides at baseline prior to vaccination). We 
excluded subjects who had other malignancies, unless they 
have been disease free for five or more years prior to the time 
of enrollment (Table 2).

PBMCs were isolated as described above. Briefly, 96-well 
plates (MultiScreen-HA; EMD Millipore, Bedford, MA) were 
coated overnight with 5 μg/ml of primary anti-IFN-γ monoclo-
nal antibody (Mabtech AB, Stockholm, Sweden). The plates 
were washed four times with phosphate-buffered saline (PBS) 
and blocked using Roswell Park Memorial Institute (RPMI) 
1640 with 5% pooled human serum for 1 h at 37°C. Three hun-
dred thousand PBMC per well in triplicate were presented with 
10 µg/ml each of the PSA peptides described above (individu-
ally and combined). Phytohemagglutinin (10 µg/ml) was used 
as a positive control, while media containing no peptide served 
as a negative control. Human recombinant IL-2 (R&D Systems, 
Inc, Minneapolis, MN) at 20 units/ml was added to all wells. 
After a 40-h incubation at 37°C, the plates were washed four 

Table 1.  Characteristics of the PSA peptides included in the immunotherapy design.

Peptide sequence Amino 
acid 
position

Amino 
acid 
length

Chemical 
formula

Hydrophobic 
amino acid 
residues (%)

Hydrophilic 
amino acid 
residues 
(%)

Molecular 
weight 
(grams per 
mole)

Charge Attribute

Ac-MWVPVVFLTLSVTWIGAA
PLILSRIVGGWECEKHSQPW
QV-NH2

1–40 40 C217H329N53O52S2 12 60 4576.5 1 Basic

Ac-LVASRGRAVCGGVLVHPQ
WVLTAAHCIRNKSVILLGRH
SL-NH2

41–80 40 C192H323N63O47S2 20 50 4330.2 8 Basic

Ac-FHPEDTGQVFQVSHSFPHP
LYDMSLLKNRFLRPGDDSSHD-
NH2

81–120 40 C210H305N59O63S1 32 38 4696.2 1 Basic

Ac-EPEEFLTPKKLQCVDLHVI
SNDVCAQVHPQKVTKFMLC
AG-NH2

161–200 40 C201H323N53O58S4 28 45 4538.4 1 Basic

Ac-RWTGGKSTCSGDSGGPLV
CNGVLQGITSWGSEPCALPE
RP-NH2

201–240 40 C174H274N52O57S3 15 32 4102.6 0 Neutral

Ac-
SLYTKVVHYRKWIKDTIVANP-
NH2

241–261 20 C121H190N32O30 29 43 2573.1 4 Basic
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times with PBS containing 0.05% Tween-20. A secondary anti-
body (biotin-conjugated IFN-γ monoclonal antibody from 
Mabtech AB) at a final concentration of 1 µg/ml was added, 
and the plates were incubated for 2 h at 37°C. The plates were 
washed four times with PBS containing 0.1% Tween-20. 
Avidin-bound biotinylated horseradish peroxidase H 
(Vectastain Elite ABC kit; Vector Laboratories Inc, Burlingame, 
CA) was added, and the plates were incubated for 1 h at 37°C. 
After four washings with PBS containing 0.1% Tween-20, sta-
ble diaminobenzene (Invitrogen, Carlsbad, CA) was added to 
develop the reaction. The plates were washed with distilled 
water three times and air-dried overnight. The spots formed by 
IFN-γ-secreting T-cells were counted with an automated 
enzyme-linked immunospot (ELISPOT) analyzer (AID 
ELISPOT Classic Reader; AID Autoimmun Diagnostika 
GmbH, Strassberg, Germany). The average spot-forming units 

(SFU) per well were calculated. As previously described, a 
response was considered to be positive when the average SFU 
in wells with a given peptide was at least twice that of the aver-
age SFU in the no-peptide control wells.43

Epitope prediction

A number of potential epitopes contained in the PSA pep-
tides described above were assessed. Predictions of PSA 
major histocompatibility complex (MHC) Class I (HLA-
A*01:01, -A*02:01, and -A*03:01) and II (HLA-
DRB1*04:01, -DRB1*07:01, and -DRB1*11:01) epitopes 
were made on 28 April 2016 using the Immune Epitope 
Database and Analysis Resource (IEDB) analysis consensus 
tool.44 It combines predictions from artificial neural network 
(ANN) aka NetMHC (3.4),45,46 stabilized matrix method 

Table 2.  Characteristics of prostate cancer patients evaluated for immunogenicity of the PSA peptides using IFN-γ ELISPOT assay.

Patients Age Race Disease status 
at blood draw

TNM stage at 
diagnosis

Gleason 
score

PSA at 
time of 
diagnosis

PSA at 
blood 
draw

Treatments Androgen 
dependence

Site(s) of 
metastasis

1 66 White Remission, off 
Tx

Stage I (T1b, 
N0, M0)

6 (3 + 3) 1.2 0.2 RP No ADT None

2 75 White Active 
disease with 
metastasis, on 
Tx

Stage IIB 
(pT2c, N0, 
M0)

7 (3 + 4) 5 6.1 RP, bicalutamide, 
ADT, docetaxel

AI Lung

3 68 White Remission, on 
Tx

Stage IV 
(pT3b, N1, 
M0)

7 (3 + 4) 13.2 <0.1 RP with lymph 
node dissection, 
ADT, XRT

AD Lymph 
node

4 73 White Recurrence, 
on Tx

Stage IIB 
(pT2c, N0, 
M0)

6 (3 + 3) NA 5.2 XRT, ADT, 
abiratone with 
prednisone

AI None

5 72 Black Recurrence, 
on Tx

Stage IIB (T2c, 
N0, M0)

NA NA 28.1 Brachytherapy, 
ADT, bicalutamide, 
enzalutamide, RCP

AI Lymph 
nodes

6 83 White Active disease, 
on Tx

Stage IV (Tx, 
Nx, M1)

9 (4 + 5) 201 41.3 ADT, bicalutamide, 
docetaxel

AD Bone

7 68 White Remission, off 
Tx

Stage IIA 
(pT2a, N0, 
M0)

6 (3 + 3) 15 <0.1 RP No ADT None

8 64 Black Active disease, 
on Tx

Stage IV (Tx, 
Nx, M1)

NA >1500 <0.1 ADT, bicalutamide, 
XRT, enzalutamide, 
abiraterone with 
prednisone

AI Bone, 
ischial 
bursa, 
lymph 
node

9 86 White Active 
disease with 
metastasis, on 
Tx

Stage IIA (T2a, 
N0, M0)

7 (4 + 3) NA 12.4 Orchiemictomy, 
prostatectomy, 
bicalutamide, 
abiraterone with 
prednisone

AI Bone

10 69 White Active 
disease with 
metastatsis, 
on Tx

Stage IV (Tx, 
Nx, M1)

9 (4 + 5) NA 4 ADT, bicalutamide, 
abiraterone with 
prednisone, 
sipuleucil-T

AI Bone

Tx: treatment; NA: not applicable; RP: radical prostatectomy; ADT: androgen deprivation therapy; AI: androgen independent; AD: androgen dependent; 
XRT: radiation therapy; RCP: radical cystoprostatectomy.
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(SMM)47 and Comblib48 for MHC I, and algorithms by Wang 
et al.49,50 for MHC Class II.

Proteomics

To uncover the mechanisms of how Candida may confer 
immune stimulation, proteomes differentially expressed in 
Langerhans cells treated and untreated (PBS) with Candida 
were examined. The Langerhans cells were generated as 
described above from healthy donors (n = 10, Key Biologics, 
LLC) and were treated with Candida (150 µl/ml) or PBS for 
24 h which was the duration which most frequently resulted 
in detection of IL-12.36,37 Candida-treated and PBS-treated 
cell pellets (3 × 106 each) were lysed in 4% sodium dodecyl 
sulfate (SDS), 100 mM Tris-HCl pH 7.6, and 0.1 M dithio-
threitol. DNA was sheared by sonication, and the lysate was 
clarified by centrifugation. Then, the DNA was run on 
NuPAGE 4%–12% denaturing gradient sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis (SDS-PAGE) gel 
(Thermo Fisher Scientific, Waltham, MA). Each SDS-PAGE 
gel lane was cut into 3-mm slices and subjected to in-gel 
trypsin digestion as follows. Gel slices were destained in 
50% methanol (Thermo Fisher Scientific), 100 mM ammo-
nium bicarbonate (Sigma-Aldrich, St. Louis, MO), followed 
by reduction in 10 mM Tris [2-carboxyethyl]phosphine 
(Thermo Fisher Scientific) and alkylation in 50 mM iodoacet-
amide (Sigma-Aldrich). Gel slices were then dehydrated in 
acetonitrile (Thermo Fisher Scientific), followed by addition 
of 100 ng porcine sequencing grade modified trypsin 
(Promega, Madison, WI) in 100 mM ammonium bicarbonate 
(Sigma-Aldrich). The gels were incubated at 37°C for 12–
16 h. Peptide products were then acidified in 0.1% formic 
acid (Thermo Fisher Scientific). Tryptic peptides were sepa-
rated on reverse phase Jupiter Proteo resin (Phenomenex, 
Torrance, CA) on a 200 × 0.075 mm column, using a  
nanoAcquity ultra-performance liquid chromatography sys-
tem (Waters Corporation, Milford, MA). Peptides were 
eluted using a 30-min gradient from 97:3 to 65:35 buffer A:B 
ratio (0.1% formic acid and 0.5% acetonitrile in buffer A and 
0.1% formic acid and 99.9% acetonitrile in buffer B). Eluted 
peptides were ionized by electrospray (2.35 kV) followed by 
mass spectroscopy (MS)/MS analysis using collision induced 
dissociation on an Orbitrap Fusion Tribrid mass spectrome-
ter (Thermo Fisher Scientific) in top-speed data-dependent 
mode. MS data were acquired using the Fourier transform 
mass spectrometry analyzer in profile mode at a resolution of 
240,000 full length at half maximum (FWHM) over a range 
of 375–1500 m/z. MS/MS data were acquired following 
higher-energy collisional dissociation activation using the 
ion trap analyzer in centroid mode and normal mass range, 
with precursor mass-dependent normalized collision energy 
between 28.0 and 31.0. Tandem mass spectra were extracted 
by Thermo MS File Reader, version 2.2. Charge-state decon-
volution and deisotoping were not performed. All MS/MS 
samples were analyzed using MaxQuant (Max Planck 

Institute of Biochemistry, Martinsried, Germany; version 
1.5.3.8) to search the UniProt human protein database (20 
December 2015 release, 70,625 entries), assuming the diges-
tion enzyme strict trypsin using 1.0% false discovery rate 
thresholds for both protein and peptide identification. 
Following an initial re-calibration of peptide masses at 5 ppm 
tolerance, MaxQuant analysis was performed with a frag-
ment ion mass tolerance of 0.5 Da and a parent ion tolerance 
of 3 ppm. Carbamidomethyl of cysteine was specified  
as a fixed modification. Oxidation of methionine and acety-
lation of protein N-termini were specified as variable 
modifications.

Statistical analysis

Prior to assessing statistical significance, a log2 transforma-
tion was applied to the data. The analysis comparing 
Candida-treated with PBS-treated samples was performed in 
R, version 3.2.4, using the limma package.51,52 For each pro-
tein, linear models accounting for the paired nature of the 
data were fit to the log2-transformed data. These models are 
analogous to a paired t-test except that empirical Bayes 
methods have been used to borrow information between pro-
teins. P-values were adjusted using the Benjamini–Hochberg 
method to control the false discovery rate.53

Results

Design and solubility screening of the PSA 
peptides

The attributes of five of the selected PSA peptides are basic 
and that of PSA peptide with amino acid position (201–240) 
is neutral (Table 1). PSA (121–160) was excluded from the 
design due to its acidic nature, making it unlikely to dissolve 
in the same solution with a low pH, when other peptides are 
combined. The six peptides were tested individually for sol-
ubility at pH 4 or 5 with 10 mM succinate or 10 mM gluta-
mate, and they were soluble in all four solutions except for 
PSA (1–40). It had the lowest turbidity reading (OD 630 nm 
of 0.805) in 10 mM succinate at pH 5 solution. The OD 
630 nm of the remaining peptides were 0.037 for PSA (41–
80), 0.038 for PSA (81–120), 0.041 for PSA (161–200), 
0.037 for PSA (201–240), and 0.038 for PSA (241–261). 
When six amino acids were added individually, the results 
showed that the PSA (1–40) peptide at 5 mg/ml was most 
soluble in 10 mM succinate at pH 5.0 with 5% glycine with 
OD 630 nm of 0.695.

In order to dissolve all six peptides in a single solution, 
we dissolved the PSA (1–40) peptide at 3 mg/ml in 10 mM 
succinate at pH 5 with 5% glycine. The remaining PSA pep-
tides were dissolved at 7.5 mg/ml in the same solution. The 
OD 630 nm of each peptide was 0.695 for PSA (1–40), 0.041 
for PSA (41–80), 0.037 for PSA (81–120), 0.039 for PSA 
(161–200), 0.153 for PSA (201–240), and 0.143 for PSA 
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(241–261). The PSA peptides (41–80), (81–120), (161–200), 
(201–240), and (241–261) were sequentially added one at a 
time to the PSA (1–40) peptide with the final concentration 
of each peptide being 1 mg/ml. The OD 630 nm of the com-
bined PSA peptides was 0.077. Therefore, it is possible to 
solubilize all six PSA peptides in a solution of 10 mM suc-
cinate at pH 5 with 5% glycine.

Assessing phenotypic maturation of Langerhans 
cells

Individual PSA peptides, combined PSA peptides and 
Candida did not show any increases in mean fluorescent 
intensities compared to the untreated Langerhans cells 
(Figure 1). Therefore, no maturation effects on Langerhans 
cells as determined by expression of CD40, CD80, CD86, 
and HLA-DR on the cell surface were observed.

Assessing immunogenicity of the PSA peptides

We enrolled the patients from September 2015 through January 
2016 (Table 2). Peripheral immune cells from 4 of 10 prostate 
cancer patients examined had positive responses in ELISPOT 

assay to one or more PSA peptides (Figure 2). For the remain-
ing six prostate cancer patients, no positive responses were 
detected except to the phytohemagglutinin-positive control 
(positivity indices of 57.3, 197.0, 154.5, 131.4, 186.0, and 
253.3, respectively for patients 2, 5, 6, 7, 9, and 10). Therefore, 
immune responses to the PSA peptides are detectable in some 
prostate cancer patients without vaccination.

Epitope prediction

Using the IEDB analysis consensus tool, 759 potential PSA 
MHC Class I epitopes (Table S1) and 741 potential Class II 
epitopes (Table S2) were identified. Of those, 144 Class I 
epitopes and 162 Class II epitopes would be lost by not 
including the PSA (121–160) peptide resulting in 615 poten-
tial Class I epitopes and 579 potential Class II epitopes.

A comparison of proteomes of Langerhans cells 
treated and untreated with Candida

Candida- and PBS-treated Langerhans cell pellet samples 
were obtained from 10 subjects, from which spectral count 
information was captured. In total, 4637 proteins that were 

Figure 1.  Fluorescence-activated cell sorter analysis of Langerhans cells from healthy donors treated with PSA peptides to assess 
maturation effects by measuring surface expression of CD40, CD80, CD86, and HLA-DR. The error bars represent standard error of 
means.
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detected in at least one of the 20 samples were identified. As 
a consequence, some proteins exhibited zero counts or very 
low counts for almost all samples. In order to ensure model 
stability, the data were filtered so that only proteins having 
spectral counts ⩾5 for at least 10 samples were included in 
the analysis. This reduced the number of proteins to 2277. 
Twelve proteins (filaggrin-2, zinc finger RNA-binding  
protein, Ras-related protein Rab-33B, endophilin-A2, mito-
chondrial electron transfer flavoprotein-ubiquinone oxidore-
ductase, four types of keratin, cytochrome b-c1 complex 
subunit 7, REST corepressor 1, and microtubule-associated 
protein 4) had unadjusted p-values less than 5%, and none of 
the adjusted p-values were found to be significant at the 5% 
level of significance.

Discussion

PSA is an ideal tumor antigen to target with immunotherapy 
because it is likely exclusively expressed in prostate.13,14 In 

order to assess whether cross-reactivity with closely related 
Kallikrein-related peptidases (KLKs) may be of a concern, 
comparisons of PSA amino acid sequence with the published 
sequences of serine proteases were evaluated from available 
literature. A strong homology between PSA and the various 
enzymes in the kallikrein family was uncovered. The 
sequence identity of PSA with γ-nerve growth factor is 56%. 
Homology was also seen with other serine proteases, includ-
ing tonin (54%), epidermal growth factor-binding protein 
(53%), a nerve growth factor (51%), trypsin (42%), and chy-
motrypsin (35%).14 Possible cross-recognition of these pro-
teins with amino acids sequence homology is of concern in 
developing the PSA-based immunotherapy, although the 
overall homology does not appear to be high enough to cause 
adverse effects. Nevertheless, a close monitoring for adverse 
events is warranted in future clinical trials.

This study is considered the first in development of a new 
prostate cancer treatment by administering Candida as an 
adjuvant with PSA peptides, although other PSA-based 

Figure 2.  IFN-γ ELISPOT assay results assessing the immunogenicity of the PSA peptides in prostate cancer patients (n = 10). The 
results of patients with positive response to at least one PSA peptide or peptide pool are shown (n = 4). The error bars represent 
standard error of means, and the boxed numbers represent positivity indices, which are calculated by dividing the mean SFUs in peptide 
wells with the mean SFUs in media only wells.
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vaccines have been described as mentioned earlier. We were 
also the first to use it as a vaccine adjuvant in humans.38,39 
The Phase I clinical trial of the HPV therapeutic vaccine 
enrolled 52 subjects, and 34 subjects qualified for vaccina-
tion, as they were confirmed to have biopsy-proven high-
grade squamous intraepithelial lesions. The vaccine consisted 
of four current good manufacturing-grade HPV type 16 E6 
synthetic peptides and Candida. A total of 132 injections of 
the HPV therapeutic vaccine have been administered to 34 
subjects, and no serious toxicity was observed. The injec-
tions were administered intradermally in any limb. Most fre-
quently forearms were chosen, but they were also given in 
outer thighs. A total of four injections were given every 
3 weeks. Histological regression was observed in about half 
of those who completed the study which is double the rate of 
spontaneous regression shown in a historical placebo 
group.38,39 Immunological response has been detected in 
61% of the vaccine recipients.38

Evaluation of the PSA peptide solubility was the main 
challenge. Some of the selected peptides contain high per-
centage of hydrophobic residues. To overcome this problem, 
we added hydrophilic or charged amino acids to enhance 
solubility. In order to be able to solubilize all peptides in a 
single solution, PSA (161–200) which was the only acidic 
peptide was not included. While this resulted in decreased 
number of potential epitopes that can be recognized by 
T-cells, sufficiently larger number of potential epitopes 
seems to exist in the remaining portions of the PSA. 
Furthermore, the sequence of how peptides are combined 
seemed to be critical.

Wang et al.37 have demonstrated that the HPV type 16 E6 
peptides can significantly increase expression of CD40 and 
CD80 of Langerhans cells in vitro. However, the PSA peptide 
did not show such partial maturation effects, and only a few 
self-antigens have been shown to have such properties.40

Because PSA is a self-antigen, many PSA-specific T-cells 
are likely to have been deleted during the negative selection 
process in the thymus resulting in no immunogenicity of 
PSA. However, anti-PSA immune response has been dem-
onstrated in a clinical trial of recombinant vaccinia virus 
expressing PSA.54 Using an IFN-γ ELISPOT assay, periph-
eral immune cells from 4 of 10 prostate cancer patients 
examined had positive responses to one or more PSA pep-
tide pools, further supporting the use of PSA as a tumor anti-
gen target in immunotherapy. Many responses were 
detectable but weak. This was expected as we used ex vivo 
ELISPOT assay without in vitro stimulation, and T-cells 
from periphery were tested (not from the prostate gland). 
Although responses with positivity indices of around 2 are 
not robust, our group has been able to show that they repre-
sent true positives in many occasions by isolating peptide-
specific T-cell clones.55–59 As long as there is some detectable 
antigenicity, the novel immunotherapy would likely be able 
to enhance the T-cell responses when they are tested in clini-
cal trials. Future studies should include addressing which 

type(s) of T-cells (CD4-positive versus CD8-positive) is 
being stimulated by the immunotherapy as well as examina-
tion of any role B-cells may play.

Proteomics is the large-scale study of proteins, particu-
larly their structures and functions.60 Visualization methods 
for protein detection following one- or two-dimensional gel 
electrophoresis separation represent a critical step in quanti-
tative proteome analysis.61 Most techniques currently used 
in proteomics use a variety of fractionation and separation 
steps prior to analysis by MS.62 With the aim of uncovering 
additional insights as to how Candida may be stimulating 
cell-mediated immune responses, we analyzed the pro-
teomes of Langerhans cells treated and untreated with 
Candida. While 12 proteins differentially expressed using 
unadjusted p-values were identified, none of them was sig-
nificant after correction for multiple analyses. Therefore, 
the mechanisms of immune activation may only exist in 
secreted proteins such as IL-12 (not in cell pellet) previ-
ously demonstrated to be secreted by Candida-treated 
Langerhans cells.36,37 Alternatively, the sensitivity of prot-
eomic detection may not have been sufficient for identifying 
cytokines such as IL-12, which was the most commonly 
detected cytokine by Candida-treated Langerhans cells 
using a quantitative reverse transcription—polymerase 
chain reaction method.36,37 Indeed, IL-12 was not detected 
in any of the samples tested (data not shown). After all, 
2277 proteins detected and entered into analysis would be a 
fraction of 18,000 human proteins that could be 
expressed.63,64 We have previously examined the induction 
of Th1, T-helper type 2 (Th2), and Th17 responses by intra-
cellular cytokine staining of CD4 cells exposed to Candida-
pulsed Langerhans cells. IFN-γ secretion was increased and 
IL-4 secretion was decreased in CD4 cells of a few healthy 
subjects, but IL-17A was essentially unchanged upon 
Candida treatment.

Sipuleucil-T is an already Food and Drug Administration 
(FDA)-approved immunotherapy for prostate cancer. 
Furthermore, PROSTVAC and DCVAC are in late stages of 
clinical trials (NCT01322490 and NCT02111577). Ultimately, 
the clinical efficacy of our Candida-based prostate cancer 
immunotherapy would need to be tested in clinical trials as 
well; however, there are some obvious advantages it may 
have over sipuleucil-T and DCVAC (both require preparing 
dendritic cells from the patients) as our product will be an 
off-the-shelf agent which does not need to be individually 
produced. It also does not contain an infectious agent like 
PROSTVAC which contains recombinant pox virus as 
Candida extract rather than live Candida is used. While some 
peptide vaccines are designed to be administered to patients 
with selected HLA types,21 our PSA peptides were predicted 
to be presented by a large number of HLA types likely mak-
ing such selection unnecessary. However, a possibility of 
potential competition in HLA binding and whether these pep-
tides are naturally processed by antigen-presenting cells 
would need to be investigated. The limitations of the current 
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study were due to its preclinical nature. Therefore, it was 
beyond the scope of this work to test this immunotherapy in a 
human clinical trial nor to compare its efficacy with other 
modalities of prostate cancer immunotherapy.

Conclusion

We described a human preclinical study of a novel prostate 
cancer immunotherapy consisting of PSA peptides and 
Candida skin test reagent as an adjuvant. As solubility and 
formulation have been developed, it would be feasible to fur-
ther evaluate the utility of this new therapy particularly when 
a proportion of prostate cancer patients seem to have immune 
cells with the ability to recognize these PSA peptides already. 
Therefore, whether this immunotherapy may enhance 
immune responses to PSA leading to tumor regression should 
be examined.
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