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Nanoparticles (NPs) hold great potential as therapeutics, particularly in the realm of

drug delivery. They are effective at functional cargo delivery and offer a great degree

of amenability that can be used to offset toxic side effects or to target drugs to

specific regions in the body. However, there are many challenges associated with

the development of NP-based drug formulations that hamper their successful clinical

translation. Arguably, the most significant barrier in the way of efficacious NP-based drug

delivery systems is the tedious and time-consuming nature of NP formulation—a process

that needs to account for downstream effects, such as the onset of potential toxicity

or immunogenicity, in vivo biodistribution and overall pharmacokinetic profiles, all while

maintaining desirable therapeutic outcomes. Computational and AI-based approaches

have shown promise in alleviating some of these restrictions. Via predictive modeling

and deep learning, in silico approaches have shown the ability to accurately model

NP-membrane interactions and cellular uptake based on minimal data, such as the

physicochemical characteristics of a given NP. More importantly, machine learning

allows computational models to predict how specific changes could be made to the

physicochemical characteristics of a NP to improve functional aspects, such as drug

retention or endocytosis. On a larger scale, they are also able to predict the in vivo

pharmacokinetics of NP-encapsulated drugs, predicting aspects such as circulatory

half-life, toxicity, and biodistribution. However, the convergence of nanomedicine and

computational approaches is still in its infancy and limited in its applicability. The

interactions between NPs, the encapsulated drug and the body form an intricate network

of interactions that cannot be modeled with absolute certainty. Despite this, rapid

advancements in the area promise to deliver increasingly powerful tools capable of

accelerating the development of advanced nanoscale therapeutics. Here, we describe

computational approaches that have been utilized in the field of nanomedicine, focusing

on approaches for NP design and engineering.
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INTRODUCTION

Nanoparticle (NP)-based therapeutics have gained increased
popularity in recent years. This is attributed to the many
advantages that nano-formulated therapeutics such as nanoscale
drug delivery systems can offer over free drugs, including
the ability to bypass biological barriers with ease, improved
amenability without having to chemically alter the drug and the
option to direct NPs to desired target sites (1). They have been
represented in many forms, ranging from synthetic polymer-
based or liposomal formulations to metal or silica-based NPs
and, more recently, the naturally-derived class of lipid bilayer-
enclosed vesicles commonly termed extracellular vesicles (EVs).
The design and engineering of these NPs has been at the forefront
of many studies in the years since the introduction of these
nanoscale vectors, with groups working to improve various
aspects such as delivery efficacy, specificity and safety.

However, despite the surge in preclinical studies in the field,
there are few NP-based drugs approved for clinical use due
to unforeseen difficulties faced in numerous stages of research
and development (2, 3). Data obtained from clinicaltrials.gov
records thousands of trials using different classes of NP for a
multitude of applications including imaging, diagnosis and drug
delivery. Given the vast heterogeneity between different classes
of NPs, different types of NP classes are preferably used for
specific indications. For instance, lipid NPs or protein-bound
NP-based therapies are frequently applied in some solid cancers,
such as breast cancer, ovarian cancer, pancreatic, and lung cancer,
whereas metallic NPs aremore commonly used to treat infections
(4, 5). More recently, natural extracellular vesicles are being
explored as natural nanoscale vectors for drug delivery in the
treatment of a wide range of diseases.

Instances of FDA-approved NP-based formulations for use in
the clinic include ONPATTRO, VYXEOS, and NBTXR3 to treat
transthyretin amyloidosis, acute myeloid leukemia and locally
advanced squamous cell carcinoma, respectively (2). The success
of these approaches in effect, contributed to rapid advances in
NP formulation and the development of many subclasses of NPs
in the clinical landscape, some of which have reached clinical
trials (Table 1). Despite this, the percentage of NP-formulated
drugs that successfully make it to clinical use is still staggeringly
low, as highlighted in a review by Anselmo and Mitragotri
(2, 6), wherein they contrasted the large numbers of trials vs. the
sparse number of approved NP-based drugs. More importantly,
they highlighted the challenges associated with controlling NP
pharmacokinetics and pharmacodynamics in vivo, which traced
back to the outcomes in the clinical stage, an issue also discussed
by Mitchell et al. (3). As is clear from these studies, there is a gap
in translating the pre-clinical efficacy of NP-based drugs to the
clinical stage, an issue that underpins the need to develop more
robust and translatable NP designs that can facilitate a higher rate
of successful clinical translation.

Predicting the in vivo behavior of NPs is a daunting task.
Indeed, many factors inherent to the NP, functionalization
approaches and the in vivo model in use could potentially affect
the therapeutic outcome and safety profile.While in vitro delivery
of NP behavior can be optimized relatively easily, these results

are rarely translatable in vivo (7). Given the large number of
variables such as route of administration, drug bioavailability,
spatial and temporal targeting and the need to overcome
physiological barriers, in vivo drug delivery remains a major
challenge (8). Moreover, minute changes in the physicochemical
characteristics of these complex structures can drastically alter a
NP’s pharmacological profile. The plethora of associated variables
also make it impractical to use high throughput methods to
determine optimal in vivo treatment conditions in most cases.

Exploiting technological advancements such as in silico
modeling can help direct the design of better nanomedicine
platforms while the application of novel computational
approaches can expedite the process of NP development.
By combining data from advanced imaging systems with
computational approaches, scientists are able to interpret data
more accurately, allowing them to model improved NPs and
understand the impact of specific modifications on the fate
of NPs upon administration. Moreover, molecular dynamic
simulations can be used to develop, predict and optimize uptake
of NPs with distinct physicochemical properties in in silico
models, streamlining the research and development process
to successfully guide drug and vehicle selection for clinical
trials (9). Through computational learning, it is also possible to
predict physiochemical properties of targets, biodistribution and
quantitative assessment of NPs on the spatial scale (10, 11). In
this way, many aspects of NP-based drug delivery platforms such
as physicochemical-functional relationships, dose quantification
for determining therapeutic and side effects and evaluation of
drug efficacy over time can be predicted. Figure 1 outlines aspects
of the NP design process where computational approaches have
been successfully applied.

More recently, Al has allowed us to study the aforementioned
challenges using in silico models entirely, even in areas where
there is sparse data. This is possible via novel machine learning
approaches such as deep learning, which allows computers
to incorporate large data sets of established knowledge into
powerful algorithms that are able to learn to efficiently and
accurately predict outcomes for previously unexplored events
(12–14). Together with other computational approaches,
AI enables researchers to obtain a more holistic view of
NPs, taking into account the multitude of interactions
that mediate the properties of the NP itself (such as
polydispersity or drug encapsulation efficiency) and its in vivo
pharmacokinetic parameters, such as cellular uptake, adsorption
and biocompatibility (7, 12–14). However, while AI and deep
learning are extremely powerful tools, the application of true
AI-based approaches in the field of NP design is still in its infancy
and studies of this nature are few and far between.

Thus, in this review we focus primarily on in silico modeling
and computational approaches that have been used in the area of
NP design. Here, we refer to NPs as any structure (synthetic or
natural) with at least one nanoscale dimension. The first section
of this review discusses how in silico modeling approaches can
accelerate the design of nanotherapeutics to optimize cellular
interactions and uptake. The biochemical and physicochemical
properties of the NP and the effect of specific NP modifications
are discussed in detail in this section. We will also discuss in
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TABLE 1 | Various NP types used for clinical studies.

Class Diameter (nm) Clinical development

Description Phase Target condition or disease Status NCT identifier

Lipid NP 100–200 PEGylated liposomal doxorubicin IV Anticancer (breast neoplasms) Completed NCT00128778

mRNA-lipid NP III Antiviral vaccine (SARS-CoV-2) Recruiting NCT04368728

Active NCT04470427

Protein-bound NP 100–300 Albumin-bound paclitaxel combined

with cisplatin

IV Anticancer (squamous cell carcinoma

of head and neck)

Recruiting NCT04766827

Albumin-bound paclitaxel followed by

anthracycline regimens

III Anticancer (breast cancer) Active NCT01822314

EVs 30–1,000 Tympanoplasty with platelet- and

EV-rich plasma

II/III Anti-infective (chronic otitis media),

Restoration (tympanic membrane

perforation)

Recruiting NCT04761562

Tumor antigen-loaded dendritic

cell-derived exosomes

II Anticancer (non-small cell lung

cancer)

Completed NCT01159288

Mesenchymal stem cell-derived

exosomes

I/II Antiviral vaccine (SARS-CoV-2),

disorder (acute respiratory distress

syndrome), and inflammation

(SARS-CoV-2 pneumonia)

Not yet recruiting NCT04798716

Bone marrow mesenchymal stem

cell-derived extracellular vesicles

I/II Restoration (acute respiratory distress

syndrome)

Not yet recruiting NCT05127122

Mesenchymal stem cell-derived

exosomes and microvesicles

II/III Restoration (Diabetes mellitus type I) Unknown NCT02138331

Polymeric NP 10–1,000 Chitosan NP with norovirus virus-like

particle and monophosphoryl lipid A

I Antiviral vaccine (Norovirus) Completed NCT00806962

Dendrimer-conjugated Bcl-2/Bcl-xL

inhibitor

I Anticancer (Advanced solid tumors,

lymphoma, multiple myeloma, and

hematological malignancies)

Completed NCT04214093

Polyamidoamine dendrimer NP with

pulpine

N.A. (clinical) Restoration (Deep caries) Completed NCT04262076

Holmium-166 polylactic microspheres II Anticancer (liver neoplasms) Completed NCT01612325

Metallic NP 1–100 Spherical Nucleic Acid (SNA)-based

gold NP

Early I Anticancer (gliosarcoma and

recurrent glioblastoma)

Completed NCT03020017

Silica-gold (iron-bearing) NP and

plasmonic photothermal therapy

N.A. (clinical) Restoration (stable angina, heart

failure, atherosclerosis, and

multivessel coronary artery disease)

Completed NCT01270139

Gold NP conjugated to CD24 N.A. (clinical) Diagnostics (carcinoma ex

pleomorphic adenoma, pleomorphic

adenoma)

Completed NCT04907422

Solution with silver NP, chitosan and

fluoride

III Anti-microbial (dental caries) Completed NCT03186261

Superparamagnetic iron oxide NP IV Imaging (pancreatic cancer) Completed NCT00920023

Novel magnetic NP with and

indocyanine green

I/II Tracking (colorectal cancer) Not yet recruiting NCT05092750

Magnetic iron NP and thermoablation Early I Anticancer (prostate cancer) Completed NCT02033447

Hafnium oxide NP (radioenhancer)

with radiation therapy

II/III Anticancer (soft tissue sarcoma of

extremity and trunk wall)

Completed NCT02379845

Silica NP 2–1,000 Fluorescent cRGDY-PEG-Cy5.5-C

dots

I/II Imaging (head and neck melanoma) Recruiting NCT02106598

Photothermal ablation via silica NP

with gold shell

N.A. (clinical) Anticancer (prostate neoplasms) Recruiting NCT04240639

Quantum dots 2–10 Veldoreotide-coated CdS/ZnS

core-shell type quantum dots

I Anticancer and imaging (breast

cancer, skin cancer)

Recruiting NCT04138342

Graphene quantum dots combined

with nanowire photoelectrical

immunosensor

N.A. (clinical) Diagnostics (acute myocardial

infarction)

Not yet recruiting NCT04390490

Carbon nanotubes 0.4–40 Buckypaper I/II Restoration (hernia of abdominal wall,

incisional hernia)

Unknown NCT02328352
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FIGURE 1 | Aspects where computational modeling can be applied to improve NP design and functionality.

section three how computational modeling can be used to predict
the NP’s in vivo behavior, focusing on the aspects of tissue
penetration, circulatory flux, and the tumor microenvironment
(TME). In particular, we explore existing computational models
and software that have been utilized for predicting specific
aspects of in vivo NP administration and provide examples of
their usage.

The promise and potential of nanotechnology, enhanced by
the implementation of computational approaches, is the future
of precision nanomedicine. In silico approaches such as those
discussed in this manuscript will be instrumental in realizing
the next generation of NP-based therapeutics. Hence, this review
aims to put in place fundamental concepts that could further
scientific investigations in this emerging field.

COMPUTATIONAL APPROACHES FOR NP
DESIGN

This section will discuss the computational approaches that
have been implemented to study the various physicochemical
properties of NPs in relation to their interactions with cell
membranes, and how they may be optimized to attain efficient
functional delivery of encapsulated drugs to target cells.
While the utilization of computational approaches for drug
design is not a new concept, in silico approaches for NP
design differ significantly from approaches used for traditional
drug design. Traditional computer aided drug discovery relies
on approaches such as structure-based drug discovery of
ligand-based drug discovery together with in silico modeling

software to design drugs capable of targeting specific disease
targets to exert desired therapeutic effects (15). However,
computational approaches dedicated to NP-based drug design
focus primarily on the interactions of NPs with cellular
membranes and the how NPs could be modified to achieve
desirable uptake kinetics.

Three different simulation methods are predominantly used
in computational modeling of the NP’s interactions with
cell membranes. These include all-atom molecular dynamics
(AAMD), coarse-grained molecular dynamics (CGMD) and
dissipative particle dynamics (DPD). AAMD is a useful technique
to obtain detailed and reliable information on simple structures
at the atomic level. However, due to its low efficiency and
demanding resource requirement, other methods have been
used for more complex structures. This is due to the inability
to simulate physiological phenomena in real-time, its limited
spatiotemporal scale and its high calculation costs. Therefore,
there has been a shift to the use of CGMD (16). CGMD is
a simplified version of AAMD and uses the concept of beads,
where each bead is a cluster of various pseudo-atoms with similar
properties. Every bead can be a group of 3–5 heavy atoms. Hence,
this allows the bead interactions via chemical properties to be
modeled based on the similarities within each cluster. Although
this technique is simpler, more caution is needed to reproduce
factors such as the distribution of the chemical functional groups.
It also only provides rough information at the atomic level.
Lastly, DPD is the most simplified computational simulator
amongst the three, comprising only two classifications of beads:
hydrophilic beads and hydrophobic beads. With retainment of
Brownian motion characteristics, it consists of overlapped beads
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in space. The beads’ interactions are also artificially defined in this
method (17).

These computational models are useful tools that enable
us to better understand the interactions of NPs. However,
most currently used modeling approaches are unable to
take into account a holistic view of NP physicochemical
characteristics, particularly with highly complicated structures
such as biologically derived EVs that consist of a complex
milieu of proteins, lipids, and glycans with diverse patterns of
organization. Nevertheless, these modeling approaches are able
to predict with high degrees of accuracy how specified parameters
such as size, shape, surface chemistry (charge/hydrophobicity),
or specific surface modifications can impact characteristics of
simpler models of NPs. However, care should be taken when
implementing these approaches as there is a great deal of
interplay between these characteristics and interactions with
cellular membranes and uptake is rarely dependent on a single
characteristic alone.

Moreover, while computational models allow a faster rate of
screening or analysis of NP properties in silico, care should be
taken when implementing conclusions drawn from modeling
approaches across different studies. Existing literature has
documented a myriad of NPs with different sizes, formulations
and physicochemical properties, some of which were outlined
briefly in Table 1. The distinct profile of a given NP is a key
factor to take into consideration when it comes to modeling
NP bahavior. Empirical means have deduced that the delivery
efficiency fluctuates with the material make-up of NPs with
the caveat that the repertoire of synthetic, organic and natural
NPs currently in use all require distinct parametric input for
computation, given the large variations in their physicochemical
properties. The change in the physicochemical properties of
the NP would affect their behavior and function in biological
systems. Therefore, prior investigation into factors that govern
and differentiate NPs is a prerequisite and it should be noted that
trends in NP behavior obtained with a particular NP may not be
universally be applicable to all NPs.

Size of NPs
With sizes ranging from 1 to 1,000 nm, determining the optimal
size of NPs for a specific purpose is essential because it directly
affects a number of important factors such as tissue permeability,
interaction with cell membranes and uptake kinetics that
ultimately determine the pharmacokinetics of the encapsulated
drug (18). However, the optimal size of NPs is dependent on a
number of different variables, including the recipient cell type,
the route of uptake and the nature of the NP itself. Despite this,
a number of simplified models have been developed that use
computational modeling to determine how the size of various
NPs can impact rates of uptake.

For instance, given that cellular uptake of NPs is highly
dependent on their size (19, 20), using DPD simulation, Gao et al.
(21) investigated the endocytosis dynamics uponNPs’ interaction
with the cellular membrane and, in particular, the impact of
the NP size on this process. The authors demonstrated that, in
the case of weak interactions between NPs and the membrane,
a membrane bending determined the wrapping of large NPs

(35.7 nm). However, oversized NPs could cause membrane
disruption during penetration, which encourages scientists to
optimize the NP surface by balancing translocation efficiency and
toxicity to the cells (22–24).

The effect of size on NPs was also elucidated in another study
by Huang et al. The authors leveraged the CGMD model to
demonstrate that the size of NPs is crucial in the determination
of complete endocytosis (20–22). It is thought that the wrapping
process of NPs by cell membranes determines whether the
endocytosis of the NPs is successful. Generally, this process is
greatly dependent on size and thus, NPs have to be of a certain
size for successful induction of wrapping and, subsequently,
endocytosis (18). In the study conducted by Huang et al., they
found that NPs of smaller sizes (R= 5.0 σ , where R is radius; σ is
∼2 nm) were not effectively endocytosed as compared to NPs of
a slightly larger size at R= 7.5 σ . However, it was also noted that
NPs should not be too large.

On the contrary, another study investigated the sizes of gold
NPs (AuNPs) coated with dodecanethiol, termed dodecanethiol-
coated neutral hydrophobic AuNPs. The authors found that the
AuNPs that had smaller sizes (∼2 nm) were able to penetrate
the cell membrane most efficiently, as compared to sizes of 3, 4,
and 5 nm (25). However, this finding might have been attributed
to the dodecanethiol, a type of surface modification that has a
hydrophobic nature, thereby facilitating the entry of smaller NPs.

Another study used the DPD simulation to investigate the
sizes of NPs in endocytosis. They found out that clustering
multiple NPs allowed for the emergence of cooperative endocytic
behavior (26). By clustering multiple NPs, the large energy
barrier of overcoming the wrapping process of a single NP can
be lowered. The study showed that clustering of NPs with a
diameter of 2.5 nm formed close-packed aggregates and those
with intermediate sizes of 4 nm were seen in a linear pearl-chain-
like formation. On the other hand, larger NPs of size 6 nm do not
partake in cooperative endocytosis as they were large enough to
be endocytosed independently. Similar to another study, smaller
NPs with diameters of 3 nm formed isotropic patch-like clusters,
whereas larger NPs with diameters of 7.5 nm formed pearl chain-
like structures (27). Therefore, the way that these NPs aggregate
based on their size could also affect endocytosis.

Surface Modification of NPs
Computational approaches have been used to improve the
loading and retention of drugs within NPs by modifying
their surface chemistry. Previous studies have shown that
NPs could be primed by modifications to their surface. For
example, drug loading and release can be controlled via silane
modification of surface properties as demonstrated by Manzano
et al. (28), where amine-functionalized MCM-41 micro-spheres
demonstrated longer drug retention in comparison to particles
that are irregularly shaped. Another common type of chemical
modification to improve drug delivery includes the process
known as PEGylation, a process involving the addition of
a hydrophilic polymer consisting of repeated ethylene ether
units of PEG that are passivated onto the NPs’ surface. Jung
et al. showed that this could extend the drug circulation time
by preventing aggregation and protecting against phagocytosis
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and opsonization. Cavitation has also been utilized to obtain
smaller and more stable metallic NPs that can be used for drug
delivery (29, 30). In this regard, Lachaine et al. (31) created a
computational framework to efficiently screen a large database of
metallic structures and materials in silico. With this framework,
the nano-cavitation ability of NPs could be identified by the
prediction of the laser fluence needed to prompt cavitation
around NPs made of varying materials and compositions. The
article concludes that nanoshell structures consisting of silica-
metals are able to decrease the cavitation threshold due to their
extensive spectral tunability, thus enhancing cavitation. Sviridov
et al. (32) also showed that porous silicon NPs with reduced
cavitation threshold could aid in cancer cell destruction.

Shapes of NPs
In addition to size, the NP shape also plays an important role
in the interaction of NPs with phospholipid membranes, which
determines the internalization efficacy (33, 34).

NPs come in all kinds of shapes or geometries, which include
spheres, rods, cones, ellipsoids, discoids, and clubbed shapes. The
diversity in distinctmorphologies of NPs indicates that it is highly
likely that the shapes of NPs are an important factor to consider
for delivery. In fact, NP morphologies play a crucial role in their
uptake, delivery, and distribution (35). Generally, NPs that are
cylindrical tend to have increased numbers of binding sites, and
therefore, the interaction between cylindrical NPs and the cell
membrane often results in better uptake as compared to spherical
NPs, despite having the same size (36, 37).

Utilizing the DPD simulation model, Yang and Ma (38)
showed that the shape and orientation of NPs have a multiplex
impact on their translocation, so that modifying the parameters
can improve the interaction between NPs and cell membranes.
Using a large-scale CGMD model, the effect of NP shape
on the endocytosis process was shown to be rather complex
(39). For instance, spherical particles were demonstrated to
be easier to internalize than ellipsoidal ones due to the lower
bending energy required (40). But in another example using
the CG model, spherical particles appeared to facilitate less
efficient delivery than same-sized spherocylinders (41). As shown
previously, NPs which possessed rod-like morphologies had a
high internalization rate as compared to spherical NPs. In the
study, Vacha et al. (41) performed CGMD simulations using
NPs in the shape of spherocylinders. A spherocylinder is a shape
which is cylindrical along its length with hemispherical caps on
both ends. The spherocylindrical NP was shown to be capable
of assuming various spatial positions, such as being parallel or
perpendicular to the plane of the cell membrane. The CGMD
simulation illustrated that the spherocylindrical NP can rotate to
become parallel to the cell membrane surface. After the rotation,
it can further get encapsulated and subsequently endocytosed.
When compared to NPs that are spherical and of the same
diameter, the authors found out that spherocylinders were more
favorably encapsulated.

The time of encapsulation is another factor to be considered.
NPs that have elongated morphologies such as clubbed
shapes tend to have higher wrapping times, thereby impeding
internalization rates. Therefore, elongated NPs can have a lower

uptake rate as compared to spherical NPs (42). A study has
shown that NPs with a discoid morphology showed higher
internalization rates into HeLa cells when compared to rod-
shaped NPs, despite having similar sizes (43). In addition, a
different study has elucidated that cylindrical NPs displayed a
lower internalization rate as compared to spherical NPs, where
these NPs were prepared via self-assembly of poly(acrylic) acid
and polystyrene diblocks (37). Therefore, the aforementioned
findings showed that spherical NPs could also display comparable
internalization rates (35).

With increasing advancements in nanotechnology, newer
computational platforms such as the COMSOL Multiphysics
simulation software have been used in the quest to determine the
best NP shapes. Through simulation, researchers found that NPs
that have twinned morphology were able to deliver the highest
concentrations of drugs as compared to oval-shaped NPs (44).

Surface Chemistry of NPs
Cell membranes are negatively charged in nature, and therefore
the surface chemistries of NPs are an important factor in
mediating the interactions between NPs and cells. Nangia and
Sureshkumar (45) used computational modeling of negatively-
charged cell membranes to investigate how negative or
positive charges on NPs affected NP uptake. Using a CGMD
model, the authors simulated the interaction between NPs
and negatively charged membranes (3:1 ratio of neutral
distearoyl phosphatidylcolinel and negatively charged distearoyl
phosphatidylglycerol). Accordingly, they demonstrated that
positively charged NPs showed high affinities to the lipid
membranes. This was further attributed to the shapes of the NPs.
For instance, positively charged rice-shaped NPs were seen to
cause severe disruption once they came into proximity with the
lipid bilayer because they were able to orientate themselves in
parallel with the lipid bilayer, which maximized adhesion and,
subsequently, causing substantial membrane damage. Hence,
they conclude that the interplay between shape and surface
charge could affect translocation rates by 60 orders of magnitude.

Another study combined both the use of experimental
methods and DPD simulation to investigate the effects of the
internalization of NPs (46). Experimental results showed that
NPs that were positively charged entered the cells cooperatively,
although repulsion was observed between the NPs. Although the
positively charged NPs were also expected to repel each other,
these NPs were seen aggregating on the surface of the negatively
charged cell membrane, before being endocytosed by the cell via
a single vesicle. Subsequently, DPD simulations were conducted
to confirm experimental findings. In their simulation, the authors
coated small-sized NPs with positively charged ligands (diameter
of 3.23 nm) and simulated using two NPs for simplicity. They
found out that a ligand density of 0.1 is the minimum number
to induce endocytosis (46). In addition, endocytosis is positively
correlated with the density of charged ligands. The higher the
density, the more likely endocytosis of the NPs will occur.
However, simulations using one positively charged NP of the
same size did not induce endocytosis, which proves that the
internalization of these NPs is indeed a cooperative process.
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Concentration of NPs
NP concentration is a key factor affecting cellular uptake—
failure to meet an optimal concentration would diminish efficient
NP-mediated drug delivery. In a study conducted by Chen
et al., they used DPD simulations to investigate the effects
of NP concentrations on the uptake of these particles by the
cells. Cooperative chain-like penetration of NPs was seen as
they tend to aggregate before penetration—a finding that was
also observed in Yue et al.’s study (26, 27). However, if the
concentrations of the NPs are too low, the cooperative process
is unable to take place, thereby leading to poorer uptake rates.
On the other hand, higher concentrations of NPs will run the
risk of vesicle ruptures. Hence, efficient uptake of NPs requires
administration of NPs at optimal concentrations appropriate for
their size. This is because smaller NPs will aggregate together
to reduce the energy needed to bend the cell membrane for
penetration. Therefore, at high concentrations of small NPs
(diameter: <2.5 nm), they will undergo cooperative chain-like
penetration where they either display the isotropic patch-like
clusters or the linear pearl-chain-like clusters. On the other hand,
NPs possessing diameters larger than 2.5 nm can penetrate the
membranes directly, hence, NPs of larger sizes do not have to be
used in high concentrations to achieve membrane penetration.
Therefore, both NP concentration and size work in synergy to
achieve translocation, albeit via different pathways.

Elasticity of NPs
Shen et al. (47) implemented the CGMD model to demonstrate
that soft NPs were able to be wrapped by the membrane faster
than stiff NPs, indicating that elasticity affects their cellular
uptake. This is due to the lower energy barrier that soft NPs must
overcome in order to induce membrane wrapping. However, this
observation was only seen in the earlier stages of membrane
wrapping. The energy barrier for soft NPs increased over time
due to the change in elastic energy, and thus, the membrane
wrapping process gradually slowed down. Therefore, the stiff
NPs eventually clocked a shorter wrapping time and were more
efficiently internalized as compared to the soft NPs. Shen et al.
went to further investigate the reasons why soft NPs had a
slower membrane wrapping process, by similarly using the
CGMD model. They found that soft spherical NPs had to recruit
several more receptors via lipid-mediated endocytosis to drive
membrane wrapping as compared to stiff NPs to overcome
the deformation due to their elasticity, thereby delaying the
endocytosis of the soft spherical NPs (48). The energy barrier that
needed to be overcome increases as the size (radius) of the NP
increases, thus making likely an interplay of the elasticity and size
properties. Although this similar trend can be seen in both the
soft and stiff NPs, the wrapping time for soft NPs is still higher as
compared to stiff NPs, given at any size. Therefore, both elasticity
and size are interlinked and would impact rates of endocytosis.

Hydrophobicity of NPs
Cell membranes are made up of phospholipids which are
arranged in a bilayer that consists of both hydrophobic and
hydrophilic molecules. Thus, the amphipathic property of cell
membranes challenges NP design in obtaining the optimal

balance between hydrophobicity and hydrophilicity. In a study
using computational DPD model, Ding and Ma (49) figured that
the hydrophilic gradient of the NPs determined the translocation
time of the NPs, since hydrophobic particles were more likely to
insert into cell membranes. A study using CGMD simulations
found that the hydrophobicity of NPs affected the interaction
with the cell membrane. NPs which were fully hydrophobic were
able to penetrate through the lipid portion of the cell membrane.
On the other hand, NPs that were semi-hydrophilic were unable
to penetrate through the cell membrane but were able to be
adsorbed on the surface of the membrane (50).

One other study conducted by Gupta and Rai (51) also
used CGMD to simulate skin lipid membranes with different
constructs of NPs by tweaking the levels of hydrophobicity and
hydrophilicity. By adjusting the ratios of both the hydrophobic
and hydrophilic beads during the simulation, they found out
that the best ratio was a 2:1 ratio of hydrophobic to hydrophilic
beads. This ratio resulted in cell membrane penetration, followed
by endocytosis through the skin cell membrane. Subsequent
experiments also showed that proteins could be successfully
delivered. However, other ratios used resulted in NPs being
adsorbed on the surface. Therefore, a good balance of both
hydrophobic and hydrophilic regions of NPs can help to
facilitate the delivery of these NPs, which can be packaged with
therapeutic drugs.

Safety of NPs
Apart from improved drug efficacy, computational approaches
can also be used to improve the safety of the NPs. A article
by Burello showcased a computational method to design safe
yet functional NPs (52). This method sifts out functional core
structures that meet the functionality requirements yet have
the lowest toxicity from a library of potential NPs. These core
structures were then coated with a biocompatible metal oxide
shell, called core@shell in the article, which protected the reactive
core material from ultraviolet light. The core@shell particles
were scored based on a list of physicochemical properties to
identify potential shell materials. Based on the scoring, silica
was identified as a promising material for drug delivery systems
and biosensors. This system was proven useful in anticipating
the safety of the materials in the R&D phase, making it more
efficient to remove those that do not meet the requirements.
Apart from safety, these computational core-shell systems can
be used to increase the catalytic activity through a continuum-
based strategy to screen the surface strains (53). By accurately
screening the surface strains and creating core-shell models with
the least input, they showed the system’s ability to control the
shell thickness, as well as the NPs’ core sizes.

COMPUTATIONAL APPROACHES TO
PREDICT IN VIVO BEHAVIOR OF NPS

As we have described before, NPs present many advantages
when used as drug carriers, as they are able to reduce the
side effects of many drugs, increase drug half-life in circulation
and improve drug accumulation at the target sites inside the
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body (54, 55). However, there are conflicting reports on the
in vivo therapeutic efficacy of NP-based drugs, with a previous
study indicating that NP-based delivery resulted in relatively
low delivery efficiency (56). This is corroborated by the fact
that there are only a few NP-based therapeutics available for
clinical use (2). The key reason for these failures is most likely
the unpredictable barriers in the in vivo environment and the
heterogeneity amongst patients leading to inefficient delivery
of certain drug loads to the target sites. To overcome these
challenges, it is necessary to fully understand the scope of NP
behavior in vivo and their interactions with a multi-dimensional
environment, rather than solely considering isolated factors; as
much as in vitro experimentation and empirical derivations can
be measured in a quick and manageable manner, correlation of
these models with their more complex in vivo counterparts is
difficult to achieve. Moreover, translation of in vitro findings and
measurements onto in vivo bodies would often be an erroneous
extrapolation, proving translational treatments to be difficult.
Fundamentally, in vitro and in vivo environments are distinct; a
controlled in vitro environment can be calibrated to allowNP and
therapeutics alike to function optimally, while their introduction
into in vivo bodies would in essence strip most external control
out of our hands.

Generally, NPs face problems when applied in biological
systems, such as inevitable interaction with the immediate
surrounding biomolecules when administered to the vasculature.
Given the stark difference between in vitro and in vivo,
compounded with the technical barrier to readily measure
NP activity or function in biological systems, turning to
computational models may elucidate and shed some light on
problems stemming fromNP use in vivo. Computational models,
which can simulate the effects of NP properties (size, shape,
surface functionalization, stiffness, composition, drug loading
and retention, etc.) on their interaction with the in vivo
environment, can help to reduce cost and speed up in vivo
optimization. More than just simulating the characteristics of
the particles, a multi-parameter computational model can also
comprehensively and simultaneously take into consideration
most factors present in an actual biological environment that
influence the outcome of drug delivery. Table 2 consists of
potential tools for simulation and visualization of NP behavior
at different scopes of NP-environment interactions. Intrinsically,
these platforms can be used to establish multi-parameterized
modeling in the future, for achieving a more representative
biological environment. In conjunction, interactions between
NPs and various in vivo barriers and their subsequent effects on
NP fate will be discussed in this section.

Modeling Circulation and Clearance
Immediately following in vivo administration, NPs come into
contact with biological fluids, resulting in the formation of
a protein corona that covers the NP. This phenomenon
essentially coats the surface of the NP and affects their surface
functionality. As shown by Palchetti et al. (79), mimicking
in vitro and in vivo incubations of PEGylated liposomes for
protein corona interaction yielded a different composition of
the corona. Different protein coronas in different types of NPs

would in turn affect their biodistribution and circulatory flux
in dissimilar manners (80). With immaculate detail, molecular
dynamic simulations can capture protein corona formation and
their interactions, such as protein binding competition, in the
form of AAMD (81). A study by Ramezani and Rafii-Tabar
(82) simulated the adsorption of human serum albumin (HSA)
onto AuNPs, which in turn led them to uncover key docking
amino acids (being Lys464, Thr504, Phe505, and Lys464) on
HSA and highlighted the event of HSA primary denaturation.
Nevertheless, the more multi-protein-NP interactions that full
atomistic models can capture, the closer it is to resembling in vivo
conditions, while the rigor required exponentially increases.
The counterpart to full atomistic models (AAMD)—a coarse-
grained model (CGMD)—can also capture these aspects without
the luxury of rendering simpler molecular complexes; details
such as atomic structure or polarity would be excluded in
a coarse-grain model. A study by Hu et al. (83) using a
CGMD approach had found that in the pulmonary surfactant
layer, the simulated inhalation of aerosolized NPs of different
charges allowed different surfactant proteins to specifically
adsorb onto the NPs. Another study by Lopez and Lobaskin (84)
with a CGMD approach of protein corona formation, showed
possible application of their model in predicting plasma protein
adsorption onto hydrophobic NP surfaces.

Software tools on molecular dynamics could be an avenue
to predict molecular corona formation on NP (Table 2). Along
this chain, Pal et al. (85) managed to illustrate in silico binding
of Gemcitabine to AuNP via Desmond, a software capable of
visualizing interactions with NP, due to its allowance on both
atomic and molecular level of analyses. Ultimately, the protein
corona of the NPs affects their subsequent physicochemical
properties, and thus molecular exchanges with the biological
system. Hence, this calls for a further traction of NP corona
elucidation, which further helps to uncover more in vivo
NP behavior.

As part of circulation, it is necessary to also consider cellular
components of the blood, which have been shown to greatly
impact the mobility of NPs in circulation. As a result, the design
of NPs should be optimal for them to drift to the vessel wall,
which facilitates the chance that NPs can penetrate the blood
vessel wall and migrate to the target tissues. In circulation, red
blood cells (RBCs) are separated from each other in the blood
flow but cluster to form a layer in the center, leaving a cell-
free layer (CFL) close to the blood vessels. For computation,
modeling fluid flow with rigid bodies (RBCs, NPs, etc.) is a Fluid-
Structure Interaction (FSI) problem. Employing Immersed Finite
Element Method, Lee et al. studied the influence of spherical
NP size on their interaction with RBCs in vascular transport,
on how NPs tend to move in the CFL, a phenomenon called
“margination” (86). Their work inferred that without RBCs,
NPs only flowed along with the circulation without lateral drift,
but had a propensity to move away from this middle stream
in the presence of 15–30% hematocrit. In addition, they also
found that the larger NPs (1,000 nm) were concentrated close
to the vessel walls while the smaller NPs (200 nm) preferred to
flow with the middle layer. Lee et al. (86) also characterized
the influence of hematocrit concentration on particle dispersion.
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TABLE 2 | Potential simulation tools for modeling NP in vivo behavior.

Overarching

platform

Software Modeling allowance Open-source for

academic use

Dimension Scale References/Weblink

Molecular

dynamics

Desmond All-atom molecular dynamics,

coarse-grained molecular

dynamics, dissipative particle

dynamics

Open 2D/3D Simulations with molecular dynamics, allowing atomic, and molecular

level analyses for elucidation on physicochemical outcome

https://www.schrodinger.com/

products/desmond

https://www.deshawresearch.com/

resources_desmond.html

GROMACS Open 2D Highly supported and highly efficient simulation systems available https://www.gromacs.org/ (57, 58)

Cell-based

models

TumourSimulator On-lattice Open 3D Cell and tissue (e.g., cell division, intratumor heterogeneity) [modeling

up to 109 cells]

https://www2.ph.ed.ac.uk/~

bwaclaw/cancer-code/ (59)

CompuCell 3D Open 2D/3D Generic cellular mechanisms (e.g., cell adhesion, division, haptotaxis

and chemotaxis) [modeling up to 105 cells]

https://compucell3d.org/

(60, 61)

Chaste Open 2D/3D Multicellular modeling (e.g., angiogenesis, tumor growth, intra- and

extravascular transportation, cell proliferation in complex 3D

geometries) [able to modeling more than 106 cells]

https://www.cs.ox.ac.uk/chaste/

(62, 63)

Tumopp Open 2D/3D Cell and tissue (e.g., cell division, intratumor heterogeneity) [able to

modeling more than 104 cells]

https://github.com/heavywatal/

tumopp

https://heavywatal.github.io/tumopp/

(64)

CellSys Off-lattice Closed 2D/3D Multi-cellular systems (e.g., cell-cell, cell-matrix interaction, cell growth

and migration, cellular environment) [Able to modeling more than 106

cells]

http://msysbio.com/

(65)

PhysiCell Open 2D/3D Multicellular systems, tissue (e.g., cell cycling, apoptosis, necrosis,

solid and fluid volume changes, mechanics, and motility) [able to

modeling more than 106 cells]

http://physicell.org/

(66)

Biocellion Closed 2D/3D Multicellular systems (e.g., cell behavior, extracellular environment, pair

interaction) [able to modeling more than 109 cells]

https://biocellion.com/ (67)

IBCell Open 2D/3D Multicellular structure development (e.g., cell membrane, cell-cell and

cell-environment interaction) [modeling a small number of cells in detail]

https://tanakas.bitbucket.io/lbibcell/

index.html

(68–70)

Stochastic

biochemical

reaction

simulations

Smoldyn Multiscale reaction-diffusion

simulations

Open 3D Cellular biochemical processes with spatial and stochastic detail (e.g.,

cell membrane, subcellular structures, or individual molecule diffusion,

molecule-membrane interactions and chemical reactions) [modeling a

small number of cells in detail]

https://www.smoldyn.org/

(71, 72)

STEPS Stochastic reaction-diffusion

simulations

Open 3D Cellular reaction–diffusion systems. http://steps.sourceforge.net/STEPS/

default.php

(73, 74)

URDME Open 2D/3D General simulations and modeling for stochastic reaction-transport. http://urdme.github.io/urdme/

(75)

Multi-feature

platforms

Morpheus Multiscale (deterministic,

stochastic reactions, spatial

stochastic, hybrid

deterministic/stochastic, and

agent-based)

Open 2D/3D Models interactions between discrete cells [modeling up to 105 cells] https://morpheus.gitlab.io/

(76)

VirtualCell Open 2D/3D Cell membrane and subcellular structures in high spatial resolution or

modeling individual molecule (e.g., molecules diffuse, interaction with

surfaces, and their chemical reactions) [modeling a small number of

cells in detail]

https://vcell.org/

(77, 78)
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In another work utilizing combinations of DPD and smoothed
DPDmethods byMüller, Fedosov andGompper, themargination
of NPs was found to be highly dependent on the particle size
and shape (87). Specifically, they found that micro-size particles
marginated better and could deliver more efficiently than sub-
micron carriers. With even more detail, the simulation model
indicated that the ellipsoidal particles were less likely to bear the
drag pressure from circulation flow, making them a better choice
for delivery.

Interweaved with circulation, the in vivo pharmacokinetic
profile of NPs can be formulated quantitatively, in the form
of physiologically based pharmacokinetic (PBPK) modeling.
However, the intrinsic differences between NP classes, such as the
material make-up and physicochemical properties, would call for
each NP (sub)class to have its own specific PBPK models, with
tuned parameters according to their Absorption, Distribution,
Metabolism, and Excretion (ADME) profiles. Hence, different
PBPK models are required for different kinds of NPs (88). For
instance, ADME and toxicokinetic profiles of nanoparticulate
silver allowed Bachler et al. (89) to construct a PBPK model
applicable for silver NPs, which allows the elucidation of silver
NPs in silico.

To justify the computational power required for modeling
circulation and clearance, it is necessary to acknowledge
that this problem is compounded by the prevalence of NP
variety (hence their PBPK variability). In this regard, the
computationally demanding, yet beneficial step forward for an
even more thorough exploration of protein corona, circulation
and clearance, would be a merger of functions, as performed by
software tools on molecular dynamics—(Table 2) on FSI—such
as COMSOL Multiphysics (https://www.comsol.com/comsol-
multiphysics) and Converge CFD (https://convergecfd.com/)—
to derive a merger with specific PBPK parameterization tailored
for specific NP types in the future.

In addition to the points discussed above, NP circulation
and mobility is further impeded through clearance mechanisms,
such as by circulating immune cells or macrophages in the
liver and spleen (90–93). Nevertheless, effort has been made
to steer NPs away from immune interference and increase
their circulation time, through surface modification via CD47
coating (94), lactose coating (90), and PEGylation to mitigate NP
opsonization (95, 96).

The discussed points vide supra are aspects that need
to be integrated and considered for more accurate in silico
modeling of NP’s behavior under circulation and clearance. It
is introspective that future computational models and software
could be galvanized to spearhead in this direction.

Modeling Extravasation and Tissue
Penetration
Following theNPs’ escape from the circulation, extravasation into
tissues takes place. Extravasation of NPs out of capillaries and
into tissues is central to NP-based therapeutics, as it allows the
NPs to come into contact with target cells. This section discusses
attempts at modeling NP extravasation and approaches used to

model the interactions between NPs and in vivo barriers such as
the endothelium.

In this respect, a study by Moradi et al. (97) demonstrated
that positively charged elongated NPs were capable of crossing
the endothelial barrier more easily than other particles due
to electrostatic interactions. Furthermore, the NPs’ exit from
the vasculature to tissues was affected by particle geometry,
surface chemical properties, endothelial vessel walls and local
hydrodynamics conditions. To add on, Shah et al. (98) had
shown that with their Brownian Dynamics simulation, particles
of varying geometries (prolate spheroids, oblate spheroids, and
spheres) would have drastically different extravasation rates in
different flow conditions. Following the extravasation of NPs
into tissues, the NPs encounter a host of additional factors
that mediate uptake kinetics by tissue-resident cells. Given the
vast differences in architecture and cellular composition between
different tissues, it is reasonable to assume that these factors vary
based on the type of tissue and the presence of other determinants
such as disease or inflammation. In this subsequent portion,
computational approaches for modeling NPs’ delivery efficiency
in anti-tumorigenic studies will be discussed within the scope of
tissue penetration.

Wilhelm et al. (56) analyzed NP delivery efficiency to solid
tumors by collating data from studies conducted from 2005 to
2015 and showed that the median percentage of administered
NPs that reached their target tumors was∼0.7%. Thus, increasing
this efficiency of delivery is a major hurdle for the translational
application of NPs for the treatment of solid tumors. Currently,
active or passive targeting can be used to direct NPs to
tumors. Regardless of the mode of targeting, better knowledge
of the tumor and its environment can facilitate improved
delivery efficiency to solid tumors. Computational models allow
consideration of certain key properties of tumors for modeling.
Importantly, tumor cells are not isolated elements that can be
looked at individually; the TME affects many aspects of a tumor
and its proliferative and metastatic capabilities can also greatly
impact NP behavior. Overall, the intrinsic tumor and TME
properties are spatially heterogeneous or non-uniform in genetic,
chemical and physical landscapes.

Another aspect to be considered with respect to NP delivery
in the TME is the concept that solid tumors exert an enhanced
permeability and retention (EPR) effect, which allows for passive
targeting of NPs to the tumor; this EPR effect can be altered
based on certain NP properties. NP size, ionic charge types
and aspect ratio can influence the EPR effect, which will alter
passive targeting efforts. Modeling of the EPR effect requires
computation of extravasation, diffusion and convection of the
NPs. However, even these factors together are insufficient to
precisely predict the effect of the EPR effect, as noted by Subhan
et al. (99), who reported that there are other parameters that
might contribute to the EPR effect on NP extravasation, which
are not yet known.

Paradoxical to the EPR effect of tumors which can be
exploited for passive targeting, tumors have higher interstitial
fluid pressure. After extravasation, deep penetration of the NPs
to the tumors can be deflected due to the resistance faced by
higher interstitial fluid pressure. LoCastro et al. (100) concluded
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that computational fluid modeling based on dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) could allow
DCE-MRI to be a feasible interstitial fluid pressure (and velocity)
modeling apparatus in neck nodal metastases. It is important
to explore this area, as this affects the dose of NPs required for
optimal therapeutic efficacy against the tumor.

Attributed to angiogenesis and invasive growth and/or
migration of tumors, the neovasculature encapsulating tumors
is spatially irregular, differing from the regular vascular network
of a tumor-absent biological system. Angiogenesis leads to
differential circulation of blood in different parts of the
tumorigenic tissue. One consequence that cells within a tumor
face as a result of this is hypoxia variance, a microenvironmental
factor which can also generate tumor heterogeneity (101).
Hypoxic areas develop where oxygen consumption outpaces
oxygen supply. Previous attempts to explore the oxygenation
status of tumors were done through biomarkers or polarographic
needle electrodes, which do not provide spatial information. As
noted by Powathil et al. (102), exploitation of the knowledge of
the vascular environment around or in the tumor could allow in
silico simulation on the tumor oxygenation status. Taking into
consideration the oxygenation status of cancer cells is crucial
as it affects hypoxia-responsive NP functionality. Hence, spatial-
temporal models that include the interplay of the components
of a dynamic vascular network, with simultaneous depiction of
tissue models, could shed some light on the tumor oxygenation
status. Welter and Rieger (103) managed to generate a discrete
yet dynamic blood vessel network simulation, along with
other continuous equations that accounted for heterogeneous
parameters such as oxygen levels and interstitial fluid flow.

Presently, physically fabricated microfluidic systems can
achieve a degree of modeling for NP extravasation, and
vasculature variance for generating EPR effect, in the form
of on-a-chip systems. For instance, Wang et al. (104) used a
microfluidic Tumor-Vasculature-on-a-Chip, to investigate the
influence of EPR effect on PEGylated and PEG-PLGA NP
extravasation and selective accumulation in parts of tumors.
Another similar study was performed by Vu et al. (105), which
identified a correlation for greater occurrence of extravasation
(and tumor penetration) with NP at 40 nm in size, or NPs
functionalized with tertiary amines exhibited limited tumor
penetration, as compared to those with carboxylic acid-surfaced
NPs which would be able to improve tumor penetration. The data
from studies like this facilitate the identification of determinants
that need to be taken into consideration for developing holistic in
silico models, that would most likely make future investigations
into these microfluidic interactions more accessible. Moreover,
incorporation of additional parameters such as interstitial fluid
pressures, oxygenation status and mapping of vasculature could
provide a more robust framework for simulating NP behavior in
the TME (106).

Narrowing it down, tumors can be made up of different
cell types to produce a spatially diverse genetic landscape,
which can be attributed to the Cancer Stem Cell Hypothesis
(107). Modeling tumor growth with a heterogeneous cellular
population with cell-based models would thus be beneficial
due to simulations of the spatial positions of the cancer cells,

which can elucidate how the function and behavior of NPs
change. Traditionally, the Eden Lattice Model was constructed
to examine the two-dimensional architecture of cell growth.
Today, this principle has been extended to construct various
cell-based models. Broadly, depending on the discretization
of defined cellular space, focus of spatial states of cells over
time, and the scope (individual cells, tissues, populations, etc.),
these models are either categorized to have on-lattice (lattice-
based) or off-lattice (lattice-free) framework. On-lattice approach
allows visualization on the overall evolution of tissue dynamics
(108), such as TumourSimulator, CompuCell 3D, Chaste and
Tumopp, which could provide visual representations of spatial
heterogeneity (Table 2). Off-lattice approach allows the ability
to describe details at the level of individual cells (109), such as
CellSys, PhysiCell, Biocellion, and IBCell (Table 2). These tools
allow the simulation of multicellular systems, along with the
function to account for cell-cell interactions and morphology.
Regardless on the divergence of foci and framework, cell-
based models can be used to visualize and understand the
heterogeneous landscape of tumors. Waclaw et al. (59) cell-
based model simulated heterogeneous growth and elucidated the
temporal evolution of the genetic landscape of the tumor, affected
by factors such as cell dispersal rates and emergence and/or
takeover by an advantageous mutation. Next, Tsompanas et al.
(110) incorporated in silico optimization of NP design parameters
in PhysiCell, which allowed for the team to conclude that tumors
exposed with different NP types carrying the same therapeutics
was most effective early in the simulation; their results could
advise on period of dosing and therapies to attain optimal NP
treatment by combating the dynamisms of tumors.

Hence, even with ample knowledge of the cellular landscape,
barren consideration of the latter’s inclusion in these models,
undoubtedly over-simplifies the problem of understanding how
NP behavior can be inflected. Besides the factors outlined above,
other notable players affect tumor growth and subsequently
NP performance. Endogenous NPs can naturally arise from
cancer cells and be selectively taken up by other cancer cells;
these NPs with lower internal pH can compete or interfere
with administered functionalized NPs and lower their efficacy.
Moreover, cancer-associated fibroblasts (CAF) modulate the
physical properties of the extracellular matrix (111, 112), which
alters tumor growth and metastasis. Prior work has been done
to effectively disrupt their influence on tumor growth (113, 114).
Hence, it is interesting to investigate endogenous-exogenous NP
dynamics and CAF-silencing strategies or modeling approaches,
as alternative anti-tumorigenic avenues in the future.

Modeling Cell Membrane Permeability
The ability to cross the cellular membrane safely and efficiently
is a key feature for most NP-based formulations. In spite
of continuous advances in the field of nanotechnology, the
inability to precisely control the NPs’ entry/trafficking into cells
still remains the major obstacle hampering successful clinical
translation. Given the complexity of the cellular membrane,
scientists have made considerable efforts to understand
the biological pathways behind NP-cell interactions, NP
cellular internalization and the intracellular trafficking of NPs
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upon cellular internalization (115). As mentioned in section
Computational Approaches for NP Design, the ability of NPs to
interact with and penetrate cellular membranes is mostly driven
by their physical properties including shape, size, and surface
charge, and therefore precise tuning of these properties can
critically improve the NPs’ performance (116).

It is well-known that NPs enter cells via either direct
penetration or endocytosis (117). In this respect, the NP’s size
significantly impacts the route of entry, with NPs of very small
dimensions preferentially adopting direct penetration (118, 119).
Although this phenomenon has also been described for NPs
larger than 500 nm (120), the ability to form nano-pores on the
cell membrane and thereby bypass the endolysosomal system
and directly enter the cytosol is a peculiarity of small NPs (10–
500 nm) (121–123). In this regard, an interesting study used a
mesoscale thermodynamic model to investigate the relationship
between several factors including NP size, hydrophobicity and
surface charge density and the formation of pores on a simulated
cell membrane (22).

The term endocytosis refers to a heterogeneous group
of energy-dependent mechanisms that are mainly used by
macro-molecular NPs to enter the cells (124). Briefly, the NP
interacts with a receptor on the cell membrane that activates
a downstream cascade responsible for the uptake of the NP
into the cell. The NP uptake is mediated by cell membrane
characteristics, such as surface receptors (type, diffusion, and
density), lipid composition, charge, membrane surface tension
and membrane rigidity. However, following endocytosis, most
NP-based cargo still needs to reach the cytoplasm where it can
function. Thus, studying the intracellular trafficking of NPs is
of pivotal importance when a given NP is meant to be used
as a delivery system for therapeutic cargoes whose target is in
the cytosol, such as the nucleus or mitochondria. Therefore,
understanding and modeling endosomal escape strategies is
pivotal for designing NPs capable of efficient cytoplasmic delivery
(125–127).

Table 2 outlines multi-feature platforms and modeling
tools that can be utilized to explore and optimize NP
design to achieve efficient cellular permeation and functional
cargo delivery through modeling of cellular permeation and
intracellular trafficking of NPs. In summary, the cellular
permeability and cytoplasmic cargo delivery ability of a NP
is a complex biological process that is often overlooked in
NP design and requires further investigation and optimization.
The lack of comprehensive understanding of intracellular NP
behavior and the obscure mechanisms of endosomal escape
hinders significant progress in this area. However, improved
understanding of intracellular trafficking and powerful modeling
programs that can predict endolysosomal progression of cargo
could hold the key to solving this bottleneck in successful
NP design.

CONCLUSION AND FUTURE DIRECTIONS

Nanomedicine and AI are well-distinguished disciplines that may
meet to share a common goal: to benefit human health.

Nanomedicine adopts a collection of sophisticated and smart
nano-carriers that offer many advantages over traditional “free”
drugs, such as improved stability, enhanced targeting activity and
high tissue penetration, among others. In the present day, the
use of nanomedicine is revolutionizing our approach to diagnose,
prevent, and treat human diseases.

However, as discussed in this review, progressing new
nanocarriers through the development pipeline is timely, costly
and tedious. In addition, the in vivo performance of the majority
of the new technologies rarely meets the initial expectation
observed during in vitro testing. As a matter of fact, we
have limited knowledge about the relationship between biology
and NP-based technologies, as there are countless factors that
could potentially affect the performance of nanocarriers when
applied in in vitro or in vivo models. While we are able
to tune the characteristics of the nanocarrier to maximize
its efficiency upon interaction with a singular cell model,
it is far more complicated to control its behavior in a
complex living animal model, where the exact desired physical
and chemical properties of the nanocarrier are key factors
to ensure safe and efficient drug delivery. Given the above
limitations, it is not surprising that the majority of the new
nanomedicine-based technologies never progress toward the
clinical setting.

Computational methods rely on experienced insights and
patterns from large sets of data to support decision-based
medical tasks. In this regard, progressive enhancements
in computational power, as well as the corroborated
reliability of numerous simulation software programs,
encourage us to harness the properties of these virtual
shortcuts to minimize costly screening and trial-and-
error design methods and to predict the in vivo behavior
of nanocarriers.

To date, we can access an extensive variety of computational
methods that differently assist the nanocarrier development
workflow. However, the lack of the parallel use of different
computational tools might raise doubts regarding their reliability
in assisting decision-making. Hypothetically, to generate a
comprehensive prediction model of the behavior of NPs, we
should adopt a large set of complementary computational
aids that can differentially decode the input data from
relevant research fields to provide a holistic view of NP
performance. This may be possible in the future with the
application of deep learning and AI-based approaches that
will be able to more accurately provide an integrated view on
NP design.

In addition, the ultimate goal is for the nanocarrier to
be substantially efficacious to achieve clinical translation. In
this regard, computational engineers, scientists, and medical
doctors should actively collaborate to accelerate the development
of personalized NP-based therapeutics that can overcome
challenges faced by existing nanoformulations. Being able
to anticipate and prevent the pitfall of NPs under specific
circumstances using computational modeling would enormously
empower researchers. This can streamline the NP design
process, allowing researchers to optimize nanocarriers for specific
applications with greater ease.
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It is difficult to discern how far we are from reaching this
outcome. However, both nanomedicine and computational aids
have recently made tremendous progress toward this pivotal goal.
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