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Progranulin haploinsufficiency reduces amyloid beta 
deposition in Alzheimer’s disease model mice
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Abstract: Granulin (Grn) mutations were identified in familial frontotemporal lobar degeneration 
(FTLD) patients with TAR DNA-binding protein of 43 kd (TDP-43) pathology. Grn transcript 
haploinsufficiency is proposed as a disease mechanism that leads to the loss of functional progranulin 
(PGRN) protein. Thus, these mutations are strongly involved in FTLD pathogenesis. Moreover, recent 
findings indicate that Grn mutations are associated with other neurodegenerative disorders with tau 
pathology, including Alzheimer’s disease. To investigate the influence of PGRN on amyloid beta (Aβ) 
accumulation, amyloid precursor protein (APP) transgenic mice were interbred with Grn-deficient 
mice, producing APP transgenic mice harboring the Grn hemizygote (APP/Grn+/−). Brains were 
collected from 16–18-month-old APP and APP/Grn+/− mice and sequential extraction of proteins, 
immunoblotting and immunohistochemical analysis were performed. Immunohistochemical analysis 
showed that the number and area of Aβ plaque was significantly decreased in APP/Grn+/− mice as 
compared to APP mice. Immunoblotting analysis revealed that Aβ was reduced in the sarkosyl-
insoluble fraction of 16–18-month-old APP/Grn+/− mice as compared with that of APP transgenic mice. 
Our data suggest that PGRN haploinsufficiency may decrease accumulation of Aβ.
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Introduction

Progranulin (Pgrn) is a growth factor which is en-
coded by a single gene on chromosome 17q21. it is a 
593-amino acid, cysteine-rich protein with a signal pep-
tide (17 amino acids) and highly conserved 7.5 tandem 
granulin repeats of a 12 cysteinyl motif. Pgrn is in-
volved in the regulation of multiple functions, including 
neuronal cell growth [7, 36], wound healing [11, 38] and 

inflammation [37]. It has also been strongly linked to 
tumorigenesis [26]. Moreover, it has a chemoattractive 
effect for microglia [28]. In 2006, granulin (GRN) null 
mutations were identified in familial frontotemporal 
dementia (FTd) linked to chromosome 17q21 with tau-
negative, ubiquitin-positive inclusions. Many mutations, 
including frame shift by insertion and deletion or sub-
stitution of a nucleotide, have been reported, which 
generate premature termination codons. GRN transcript 
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haploinsufficiency is the proposed disease mechanism 
that leads to the loss of functional Pgrn protein. Pre-
mature stop codons are not translated into the mutant 
transcript, since translation is blocked by nonsense-
mediated rna decay. The mutation in the signal peptide 
may cause mislocalization of Pgrn in a protein secre-
tion pathway or Pgrn loss of function by impairment 
of Pgrn transport [1, 25]. Thus, these mutations are 
strongly involved in FTd pathogenesis.

grn mutations causing loss of function have been 
confirmed in patients clinically diagnosed with Alzheim-
er’s disease (AD) [3–6, 9, 16, 18–20, 30]. The rs5848 
(3′UTR + 78C>T) variant in the 3′ untranslated region 
of GRN is known to reduce GRN mrna levels in the 
brain and peripheral mononuclear cells in patients. The 
rs5848 variant was also found in ad [8] and associated 
with a risk for ad [21]. GRN mutations were also found 
in corticobasal syndrome, another tauopathy [1, 2, 23, 
27, 31]. These findings suggest that decline or dysfunc-
tion of Pgrn may cause tau abnormalities, leading to 
the formation of tau pathology by activation of cyclin 
dependent kinases (CDKs) [12], TYROBP network 
genes [32] or lysosomal dysfunction [33, 35].

There has been an interesting report by Minami et al. 
[24] on Aβ accumulation with GRN deficiency. They 
used aPPhigh LysM-cre+ Grnflox/flox mice and showed that 
PGRN reduction increased Aβ deposition in these mice 
model and that overexpression of PGRN by lentivirus 
decreased Aβ plaque load. Very recently, Takahashi et 
al. [32] reported that APP/PS1 mice harbouring the Grn 
homozygote knock-out (APP/PS1/Grn −/− mice) exhib-
ited less Aβ pathology. These two reports suggested that 
PGRN null condition might affect Aβ pathology in mice. 
However, the influence of PGRN haploinsufficiency on 
Aβ accumulation is still unknown.

To investigate the influence of PGRN haploinsuffi-
ciency (Grn+/−) on Aβ accumulation, we produced APP 
transgenic mice harboring the Grn hemizygote (APP/
Grn+/−) by interbreeding aPP transgenic mice with Grn-
deficient mice, and found that the PGRN haploinsuffi-
ciency decreases Aβ deposition.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with 

the recommendations provided in the Guide for the Care 
and Use of Laboratory Animals of the Ministry of Health, 

Labour and Welfare of Japan and the Ministry of Educa-
tion, Culture, Sports, Science and Technology of Japan. 
The protocol was approved by the Committee on the 
Ethics of Animal Experiments of the Tokyo Metropolitan 
institute of Medical science (Permit numbers: 22–23 
and 11–028). All experiments were performed under 
isofluran anesthesia and every effort was made to mini-
mize suffering.

Animals
The aPP transgenic mice (Tg2576) [15] were pur-

chased from Taconic (Hudson, NY, USA). Granulin 
(Grn) deficient (knock-out: KO) mice were obtained 
from RIKEN Bioresource Center (Tsukuba, Japan), 
which was established by kayasuga et al. [17]. Grn-ko 
(Grn−/−) mice had been back-crossed to C57BL/6J mice 
for more than 10 generations. Male APP homozygote 
transgenic mice were interbred with female Grn-ko 
mice so that aPP transgenic mice harboring the Grn 
hemizygote (APP/Grn+/−) were produced. Control mice 
(aPP hemizygote) were produced by interbreeding male 
APP homozygote transgenic mice and female C57BL/6J 
mice. we used three female aPP mice and three female 
APP/Grn+/− mice (age range: 16–18-month-old) in this 
study. Minami et al. reported that PGRN expression 
level of Grn+/− mice was half of the wild type mice 
(Grn+/+) [24]. The mice were reared in the animal facil-
ity of Tokyo Metropolitan institute of Medical science 
under conventional conditions at 24 ± 2°C and were 
maintained on a commercial diet (CE-2, Nihon CLEA, 
Shizuoka, Japan) ad libitum.

Mice were sacrificed under quick anesthesia with iso-
fluran (Mylan Pharmaceutical Co., Ltd., Tokyo, Japan) 
and the brains were removed quickly. Brains of each 
group were cut in the sagittal plane and the left hemi-
sphere was frozen and stored at −80°C for biochemical 
analyses. The right hemisphere was fixed in 4% parafor-
maldehyde in 0.1M phosphate buffer for 36 h at 4°C. 
Brain blocks were then transferred to a maintenance 
solution of 20% sucrose in 0.01 M PBS, pH 7.4.

Sequential fractionation of brain extracts
Frozen left hemispheres (approximately, 0.2 g) were 

homogenized in 10 volumes of buffer H (10 mM Tris-
HCl, pH 7.5, 0.8 M NaCl, 1 mM ethylene glycol bis-N, 
n, n’, n’-tetraacetic acid, 1 mM dithiothreitol). The 
hemisphere included the olfactory bulb, cerebral cortex, 
striatum, thalamus, hypothalamus, cerebellum, midbrain, 
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pons, medulla oblongata and the upper part of the spinal 
cord. The method used for sequential fractionation of 
brain extracts was originally described by Greenberg et 
al. [10]. Briefly, each brain homogenate was centrifuged 
at 100,000 × g for 20 min at 4°C, and the supernatant 
was collected as the Tris-soluble fraction. The resultant 
pellet was homogenized in 10 volumes of buffer H, fol-
lowed by an incubation for 30 min at 37°C with 1% 
Triton X-100. The homogenate was then centrifuged at 
100,000 × g for 20 min at 4°C. The Triton X-100 in-
soluble pellet was sonicated in 5 volumes of buffer H, 
followed by an incubation for 30 min at 37°C with 1% 
sarkosyl and centrifuged at 100,000 × g for 20 min at 
4°C. The pellet was sonicated in 1 volume of SDS-PAGE 
sample buffer [13].

Immunoblotting analysis
For immunoblotting, brain extracts from the mice were 

boiled for 5 min with SDS-PAGE sample buffer (60 mM 
Tris-HCl, pH 6.8, containing 2% SDS, 10% glycerol, 
0.025% bromophenol blue and 5% mercaptoethanol) and 
loaded onto a 10% acrylamide minigel. Loaded samples 
were electrophoresed for 45 min at 200 V with molecu-
lar weight markers (Bio-Rad, Hercules, CA, USA). 
electrophoresed proteins were transferred onto a poly-
vinylidene difluoride membrane (Millipore, Billerica, 
MA, USA) for 60 min at 200 mA. The printed mem-
branes were blocked with 3% gelatin for 30 min and then 
incubated in a primary antibody solution (6E10, 1:1,000, 
Covance, Dedham MA, USA or anti-α-tubulin, 1:10,000, 
Sigma, St. Louis, MO, USA) overnight at room tem-
perature. antibody labeling was performed by incubation 
with horse radish peroxidase-conjugated anti-mouse IgG 
(1:50,000, Bio-Rad) for 1 h. Following incubation with 
avidin-biotinylated horseradish peroxidase complex 
(ABC Elite, Vector Laboratories, 1:400), immunoreactiv-
ity was detected by the chemiluminescence method using 
a Super Signal West Dura (Thermo Scientific, West Palm 
Beach, FL, USA) and was visualized with LAS-4000 
mini (GE Healthcare UK Ltd.). Densitometric analysis 
of Aβ level was performed using Image J software (Na-
tional Institutes of Health, Bethesda, MD, USA).

Analysis of Aβ deposition
For Aβ immunohistochemistry, sagittal sections from 

left hemisphere were cut serially on a freezing microtome 
at 30 µm thickness, collected in the maintenance solution, 
and immunostained as free-floating sections. Sections 

were incubated for 24 h with biotinylated anti-Aβ anti-
body (6E10). The antibody labeling was visualized by 
incubation with avidin-biotinylated horseradish peroxi-
dase complex (ABC Elite, Vector Laboratories, 1:1,000) 
for 3 h, followed by incubation with a solution containing 
0.01% 3,3′-diaminobenzidine (DAB), 1% nickel ammo-
nium sulfate, 0.05 M imidazole and 0.00015% H2o2 in 
0.05 M Tris-HCl buffer, pH 7.6. Counter nuclear staining 
was performed with kernechtrot stain solution (Merck, 
darmstadt, germany). The sections were then rinsed with 
distilled water, mounted on glass slides, treated with 
xylene, and coverslipped with Entellan (Merck).

Photographs were taken with a BZ-X710 (Keyence, 
Osaka, Japan). The dark-purple plaques were counted in 
the area of the cerebral cortex and hippocampus. Two 
sagittal sections from each mouse were subjected to 
counts of the Aβ plaque number and area by Keyence 
BZ-710.

Statistical Analysis of Aβ deposition
data are presented as mean ± se. The statistical sig-

nificance of differences in the mean values between 2 
populations was assessed with the student t-test, wheth-
er variances were equal was determined by an F-test, 
and otherwise we used Mann-whitney’s U-test. P<0.05 
was considered significant.

Results

Aβ deposition was decreased in APP/Grn+/− mice by 
immunohistochemical staining

Brains were collected from 16–18-month-old mice of 
APP or APP/Grn+/− and immunohistochemical staining 
was performed. Aβ deposition was visualized using an 
anti-Aβ antibody, 6E10. A 6E10 immunoreaction was 
observed in the cortex and hippocamups of APP mouse 
and APP/Grn+/− mouse (Fig. 1a). Two sagittal sections 
from each mouse were subjected to counts of the Aβ 
plaque number and area by Keyence BZ-710. The num-
ber of 6E10 positive Aβ plaques which were larger than 
4 µm2 in the cortex and hippocampus was significantly 
decreased in APP/Grn+/− mice (441 ± 5) compared with 
aPP mice (978 ± 149) (P=0.0495 by Mann-Whitney’s 
U-test) (Fig. 1B). The area of 6E10 positive plaques was 
also significantly decreased in APP/Grn+/− mice (181,358 
± 15,246 µm2) compared with aPP mice (412,777 ± 
53,369 µm2) (P=0.014 by Student t-test) (Fig. 1C).
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Aβ deposition was decreased in the sarkosyl-insoluble 
fraction of APP/Grn+/− mice

Brains were collected from 16–18-month-old mice of 
APP or APP/Grn+/−, then sequential protein extraction 
and immunoblotting were performed. Aβ in the sarkosyl-
insoluble fraction was visualized by western blotting 
using the 6E10 antibody. The results suggest that the 
level of sarkosyl-insoluble Aβ was decreased in the APP/
Grn+/− mice (n=3) as compared with the aPP mice (n=3) 
(Fig. 2a). The Aβ level in sarkosyl-insoluble fraction 
was significantly decreased in APP/Grn+/− mice (19,719.8 
± 936.7) compared with APP mice (35,148.3 ± 3,007.0) 
by the densitometric analysis. (P=0.009 by Student t-
test) (Fig. 2B). The Aβ40 and Aβ42 levels in Tris-soluble 
fraction were no significant differences between APP and 
APP/Grn+/− mice by ELISA (data not shown).

Discussion

The results of the present study show that Pgrn hap-
loinsufficiency reduce Aβ deposition in the APP mice. It 
suggests that GRN mutations causing Pgrn reduction 
may not be causative or risk factor for Aβ pathology. 
However, our previous report suggested that Pgrn hap-
loinsufficiency may cause tau abnormalities, leading to 
the formation of tau pathology by activation of CDKs 
[12]. Very recently, we have revealed that accumulation 
of phosphorylated tau was found in the brains of FTLD 
associated with GRN mutation [14].

These opposing effects of GRN deficiency against Aβ 
and tau might be explained as follows. Microglia produce 
Pgrn and it suppresses hyper-activation of microglia 
by an autocrine effect [34]. PGRN deficiency may cause 
activation of microglia and they phagocyte extracellular 

Fig. 1. Immunohistochemical analysis of Aβ deposition in 16-18-month-old APP or APP/Grn+/− mice. (a) immu-
nohistochemical analysis was visualized using the 6E10 antibody for detecting Aβ deposition in 16-18-month-
old APP or APP/Grn+/− mice. The scale bar applies to all photomicrographs (1.0 mm). (B, C) A comparison 
of relative Aβ plaque number (B) and area (C) in 16-18-month-old mice. The Aβ plaque numbers and areas 
of Aβ deposition (µm2) in the two different strains were compared. Two sagittal sections from each mouse 
were subjected to counts of the Aβ plaque number and area, then the average of them were plotted on the 
graph. P<0.05 was considered to represent a statistically significant difference.
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Aβ. On the other hand, PGRN deficiency leads to lyso-
somal dysfunction in neuronal cells and may thus favor 
abnormal tau deposition. a schematic diagram of the 
opposing effects of GRN deficiency against Aβ and tau 
is shown in Fig. 3.

The inference of PGRN reduction on Aβ accumula-
tion, has been reported by Minami et al. [24]. They used 
aPPhigh LysM-cre+ Grnflox/flox mice and showed that 
PGRN reduction increased Aβ plaque load in these mice 
model. The discrepancy between their results and ours 
might be explained by the difference in mouse strain as 
indicated in a recent study [32]. aPPhigh LysM-cre+ Grn-
flox/flox conditional mice were used in their study and 
LysM-cre mice lack endogenous Lyz2, which is mark-
edly increased in Grn−/− mice [22, 29]. Microglia from 
Grn−/− mice showed upregulation of phagocytic activity 
[32], but phagocytic activitiy was down-regulated in 
aPPhigh LysM-cre+ Grnflox/flox mice [24].

recently, Takahashi et al. [32] reported that global 
PGRN reduction induces microglial TYROBP network 
genes expression and increases AD risk by exacerbating 
neuronal injury and tau pathology, rather than by accel-
erating Aβ pathology [32]. They utilized APP/PS1- 
Grn+/+, − Grn+/−, and − Grn−/− mice. The APP/PS1- Grn−/− 
mice showed reduction of Aβ deposition compared with 
16-month old APP/PS1-Grn+/+ or APP/PS1-Grn+/− mice. 
Their study could not elucidate the effect of PGRN hap-
loinsufficiency on Aβ deposition. However, global PGRN 
reduction decreased Aβ accumulation clearly. Their re-

sults supported our previous report [12] and this study.
Our results suggested that PGRN haploinsufficiency 

may reduce Aβ deposition and may not be causative or 
represent a risk factor for Aβ pathology.
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