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Abstract: Trans-active response DNA-binding protein (TDP-43) is a multifunctional regulatory
protein, whose abnormal deposition in neurons was linked to debilitating neurodegenerative diseases,
such as amyotrophic lateral sclerosis, frontotemporal lobar degeneration, Limbic-predominant age-
related TDP-43 encephalopathy, and Alzheimer’s disease with a secondary pathology. Several reports
showed that TDP-43 proteinopathy as a comorbidity can form aggregates with other pathological
proteins. The co-deposition of alpha synuclein and TDP-43 inclusions was previously reported in glial
cells and by observing TDP-43 proteinopathy in Lewy body disease. In this study, it was hypothesized
that alpha synuclein and TDP-43 may co-aggregate, resulting in comorbid synucleinopathy and TDP-
43 proteinopathy. A solid-phase microplate-based immunoassay was used to map out the epitopes
of anti-TDP-43 antibodies and locate the interaction of TDP-43 with α-synuclein. A region of the
low complexity domain of TDP-43 (aa 311–314) was shown to interact with full-length α-synuclein.
Conversely, full-length TDP-43 was shown to bind to the non-amyloid beta component of α-synuclein.
Using in silico sequence-based prediction, the affinity and dissociation constant of full-length TDP-43
and α-synuclein were calculated to be −10.83 kcal/mol and 1.13 × 10−8, respectively. Taken together,
this microplate-based method is convenient, economical, and rapid in locating antibody epitopes as
well as interaction sites of two proteins.

Keywords: epitope mapping; TDP-43; alpha synuclein; ELISA; comorbidity; proteinopathy; aggregation

1. Introduction

Trans-active response DNA-binding protein (43 kDa) (TDP-43) is a regulatory protein
linked to various roles in transcriptional repression, mRNA splicing, and regulation of pro-
tein translation. It was discovered as an HIV-1 expression regulatory element that functions
by binding to trans-active response (TAR) elements [1]. TDP-43 has four main domains,
starting from the N-terminus: a nuclear localization signal (NLS), two RNA-recognition
motifs (RRMs), and a low-complexity C-terminal domain (LCD) [2–4]. Structural muta-
tions in the C-terminal region of TDP-43 cause abnormal localization and deposition of
the protein within neuronal cytoplasm, resulting in diseases such as amyotrophic lateral
sclerosis (ALS), and frontotemporal lobar degeneration (FTLD) [4,5]. TDP-43 pathology
in these diseases is widely varied and affects different cell types and brain regions. This
heterogeneity may be a result of genetic and environmental risk factors, giving rise to varied
distribution patterns of the underlying pathology in specific brain regions as the disease
progresses [6]. TDP-43 was reported to co-localize with other protein species characteristic
in other neurogenerative diseases, namely Huntington’s disease, Parkinson’s disease (PD),
dementia with Lewy bodies (DLB), and Alzheimer’s disease (AD) [7–11]. Interestingly,
TDP-43 isoforms were observed in brain tissue of neuropathologically confirmed AD cases
using different antibodies that target full-length or are restricted to the C-terminal regions
of TDP-43 [12].

Alpha synuclein is a 14.4 kDa presynaptic neuronal protein commonly associated with
PD and DLB. The protofibrillar species of α-synuclein is commonly considered toxic and
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leads to disruption of cellular homeostasis by interfering with several intracellular targets
as well as synaptic function [13]. Propagation of synucleinopathy is then aggravated by
seeding and accumulation of proteinaceous aggregates. Alpha synuclein has three main
domains: N-terminal lipid binding α-helix, non-amyloid-binding central domain (NAC),
and C-terminal acidic tail [14]. The NAC is hydrophobic and promotes aggregation [15–17].
Interestingly, TDP-43 pathology was identified through immunohistochemical analysis in
31% of DLB with AD cases, 7.2% in PD cases, and 19% on PD cases with dementia (PDD),
while none were found in DLB and one case in normal controls [8]. Hence, the possible
interaction of TDP-43 and α-synuclein warranted further investigation.

In this study, a solid-phase microplate-based approach was used to locate epitopes
of anti-TDP-43 antibodies, and to characterize the location of interactions of TDP-43 with
full length recombinant alpha synuclein. This method was used similarly to map affinity
interactions of prion with amyloid-beta (Aβ)-42, and to investigate interactions between
myofilament proteins [18,19]. Here, epitopes of different anti-TDP-43 antibodies were iden-
tified, as well as the sites of interaction of recombinant TDP-43 with full length recombinant
alpha synuclein, and the sites of interaction of recombinant alpha synuclein with full length
recombinant TDP-43.

2. Materials and Methods
2.1. Peptide Synthesis and Preparation

Twenty-three non-overlapping peptides that cover the complete amino acid sequence
of TDP-43 (Figure 1), and 43 overlapping peptides that cover alpha synuclein (Figure 2)
were synthesized (Lugen Sci Co., Ltd., Bucheon, Korea). Each peptide has a length of 18
to 20 amino acids, except 2 that cover the first few residues of RRM-1 (13-mers) and the
last residues of the LCD (10-mer) in TDP-43. A terminal cysteine was added to all peptides
without an internal cysteine residue. These lyophilized peptides were stored in an airtight
container inside a dehumidifier at room temperature until use. In preparing the peptides
to be coated on to a maleimide-activated microplate (ThermoScientific®, Waltham, MA,
USA), 0.5 to 1.0 mg peptide were dissolved in an appropriate volume of dimethyl sulfoxide
(DMSO, Amresco, Dallas, TX, USA) to make a stock solution of 10 mg/mL. These peptides
were then diluted to a final concentration of 5 µg/mL in phosphate buffer saline (PBS)
solution with 10 mM EDTA. One hundred µL of each peptide solution was then transferred
to a corresponding well of a maleimide-activated plate (ThermoScientific®, Waltham, MA,
USA), and incubated overnight at 4 ◦C.

2.2. Microplate-Based Epitope Mapping of Antibodies and Recombinant Proteins

After washing all coated wells three times with PBS with 0.05% Tween-20 (PBST),
100 µL of 10 µg/mL of L-cysteine (Sigma, Burlington, MA, USA) dissolved in PBS was
added to all wells and left to incubate at room temperature for 1 h to block remaining
exposed maleimide groups. After washing three times with PBST, 100 µL of 0.1 µg/mL of
interacting recombinant protein to be tested was added next and left to incubate for 1 h at
37 ◦C. In mapping the epitopes of the antibodies for each peptide, no recombinant protein
was added, and the antibodies were directly added instead on to the coated wells (Figure 3).
After washing, 100 µL of 0.1 µg/mL of the biotinylated detection antibody diluted in
PBST (10% BlockAce; Bio-Rad, Hercules, CA, USA) was added and left to incubate for 1 h
at 37 ◦C. After washing, 100 µL of streptavidin conjugated with horseradish peroxidase
(ThermoScientific, Waltham, MA, USA) was diluted 5000 times in PBST with 10% BlockAce
and left to incubate for 30 min at room temperature. After a final washing, 100 µL of
tetramethylbenzidine (TMB; ThermoScientific) was added and left to incubate at room
temperature until a significant color change relative to the background was observed
(around 15 to 20 min). The reaction was stopped using 50 µL of 1 M sulfuric acid, and
absorbance values were measured at 450 nm using a PerkinElmer Victor 3 multilabel reader.
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Figure 1. Synthesized TDP-43 peptides aligned with the complete sequence of TDP-43. The sequence
starts with the N-terminus at the upper left corner of the figure and ends with the 414th residue at
the bottom. Peptides are represented by black bars with cysteine tags and are numbered at the left.

1 
 

 

1 

 

2 
Figure 2. Overlapping α-synuclein peptides aligned with the complete sequence of α-synuclein. The
sequence starts with the N-terminus at the upper left corner of the figure and ends with the 140th
residue at the lower right corner. Peptides are represented by black bars with cysteine tags and are
numbered at the left.
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2.3. Interaction of α-Synuclein and TDP-43

Three µg/mL of α-synuclein and TDP-43 diluted in PBS were coated on separate
polystyrene plates (ThermoFisher, Waltham, MA, USA), and incubated overnight at 4 ◦C.
The plates were then washed three times with PBST and blocked with 200 µL of 3% bovine
serum albumin (BSA; Millipore, Burlington, MA, USA) diluted in PBS for 1 h at room
temperature. After washing, 100 µL of serially diluted (50, 10, and 2 ng/mL) of recombinant
TDP-43 and α-synuclein in PBST were applied on to α-synuclein and TDP-43 coated wells,
respectively. The plates were then left to incubate for 1 h at 37 ◦C. After washing, 100 µL
of 0.1 µg/mL of biotinylated TDP-43 antibodies (10782-2-AP and 12892-1-AP; Abcam,
Cambridge, UK) diluted in PBST with 10% BlockAce, and anti-α-synuclein antibodies
(FL-140; Santa Cruz Biotechnology, Dallas, TX, USA) were applied on wells treated with
TDP-43 and α-synuclein, respectively, and left to incubate for 1 h at 37 ◦C. After washing,
the wells were treated with 100 µL of HRP-conjugated streptavidin diluted 10,000 times
in PBST with 10% BlockAce and left to incubate for 30 min at room temperature. After
washing, chemiluminescent substrate (SuperSignal ELISA Pico, Thermo Scientific) was
added to achieve greater sensitivity. The resulting luminescence was then measured using
a Victor 3 multilabel reader.
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Figure 3. Microplate-based epitope mapping using maleimide-coated plates. Peptide sequences
are coated separately on the well surfaces and bind through covalent interaction of cysteine with
maleimide. Protein interactions are detected through a visible colorimetric reaction on the well.

2.4. In Silico Sequence-Based Prediction

ISLAND is an online program that incorporates machine learning to calculate the affin-
ity and dissociation constant (kd) of two protein sequences. The sequences of aa 310–329
(and full length α-synuclein were entered into the program, and their affinity and kd
were calculated.

2.5. Statistical Analysis

Assays were performed in triplicate and an independent t-test was used to evaluate any
statistical significance between the generated absorbances and the background absorbance
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(JASP, University of Amsterdam, Amsterdam, The Netherlands). The differences were
considered significant at p < 0.05.

3. Results and Discussion
3.1. Epitope Mapping of Anti-TDP-43 Antibodies

Three antibodies were selected from a systematic literature review of 671 anti-TDP-43
antibodies featured in publications from 2006 to 2014 [20]. The list of publications was
condensed by excluding ones that utilized non-human subjects or did not directly apply
anti-TDP-43 antibodies such as in genetics studies. Further refining the list and remov-
ing duplicates amounted to 38 unique antibodies, Ab-1 (10782-2-AP) ranked first in the
10 highest-ranking antibodies based on positive scores resulting from immunostaining
or Western blot assays [20]. Results of the microplate-based approach showed two pep-
tides with a positive reaction: peptide 1 (aa 1–19), and peptide 11 (aa 194–213) (Figure 4).
Peptide 1 belonged to the NTD, and peptide 11 belonged to RRM-2. This antibody was
documented to have two epitopes, aa 203–209, and a residue near the NTD [21]. Ab-2
(2E2-D3; Abnova, Taipei, Taiwan) ranked second and binds to aa 205–222 [22]. How-
ever, no identifiable reaction resulted in all peptides treated with this antibody (Figure 5).
TDP-43 residues 205–222 were fragmented between peptides 11 and 12, which consisted of
aa 194–213 and aa 214–232, respectively. This demonstrated the limitation of the approach
in this study if the epitope happens to be fragmented across multiple peptides. Finally,
Ab-3 (12892-1-AP) was ranked fifth in the list [20]. A significant reaction was observed
in the well coated with peptide 15, aa 272–290 (Figure 6). Still, Ab-3 was selected for this
study since it was generated from protein immunogens and was likely to be non-specific or
influenced by epitope variations. In contrast, the other antibodies that ranked third and
fourth were also specific for the LCD but were generated from peptide immunogens and
were not as specific.
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anti-TDP-43 antibody (10782-2-AP).

3.2. Full Length Alpha Synuclein Interacts with a Region of the LCD in TDP-43

Using the same microplate-based approach, the TDP-43 peptides were separately
treated with three different recombinant proteins: albumin, tau, and α-synuclein. Results
showed that only full length α-synuclein produced a significant reaction in the well coated
with peptide 17 (aa 310–329), a region in the LCD of TDP-43 (Figure 7). To better resolve the
residues that contributed most to the interaction within this region, overlapping peptides
that shift every five residues and span aa 291–347 (peptides 16–18) were designed (Lugen
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Sci Co., Ltd., Bucheon, Korea). However, only three out of six peptides were successfully
synthesized. The remaining peptides were then treated with full length α-synuclein, and
only aa 295–313 and aa 305–323, as well as aa 310–329 showed a significant binding reaction
(Figure S1). MNFG (aa 311–324) residues were shared between these regions, and likely
contributed to the interactions with full length α-synuclein (Figure 8).
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3.3. Full Length TDP-43 Interacts with the NAC Region of α-Synuclein

To investigate the region in α-synuclein which full length TDP-43 interacts with,
43 overlapping peptides of α-synuclein that shift every three residues were coated on to
the wells and treated with full length TDP-43. Amino acids 61–76 of α-synuclein showed
the highest reaction with TDP-43 (Figure 9). Interestingly, this sequence marked the first
16 residues of the hydrophobic non-amyloid β component (NAC) of α-synuclein. The
NAC region was known to induce aggregation in synucleinopathies. This result showed
that the same region was not limited to induce self-aggregation but may interact with
other proteins with high affinity like TDP-43 within its proximity. The co-localization of
TDP-43 and α-synuclein was reported in glial cytoplasmic inclusions in paraffin-embedded
tissue sections of the amygdala and basal forebrain of autopsy-confirmed multiple system
atrophy (MSA) cases using double stain immunohistochemistry and immunogold electron
microscopy [23]. This supported the likelihood that the two proteins could interact. TDP-43
pathology was also reported in Lewy body diseases, like PD, but were not co-localized
with α-synuclein staining. However, this rare co-localization of the two proteins was still
observed in dystrophic neurites [8,24]. Recently, the interaction of the LCD of TDP-43 and
full-length α-synuclein was characterized through nuclear magnetic resonance (NMR),
and chemical shifts were more prominent in the N and C-terminal ends of α-synuclein
after incubation with TDP-43 LCD [25]. The authors stated that TDP-43 LCD was likely to
interact electrostatically in these regions since these were hydrophilic and acidic. Binding
to TDP-43 LCD can then gather the NAC regions of α-synuclein with enough proximity
for aggregation to occur [25]. This was interesting, since the peptide containing the first
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15 residues of the NAC region of α-synuclein showed the highest absorbance for bound full-
length TDP-43 (Figure 9). Perhaps the difference resulted from shorter segments (15-mer)
of α-synuclein coated on separate wells and that these were incubated with full-length
TDP-43. The shorter peptides from the N and C-termini of α-synuclein may not have had
enough residues to produce a sufficient affinity towards full length TDP-43, but there may
have been enough hydrophobic residues in the peptides within the NAC region to bind
to TDP-43. In contrast, the NMR result of Dhakal et al. was acquired from the incubation
of full-length α-synuclein and TDP-43 LCD and it can be surmised that this increased the
likelihood for TDP-43 to preferably interact with the hydrophilic regions of α-synuclein.
In addition, Dhakal et al. mentioned a loss in cross-peaks in the NAC region due to
aggregation [25]. In our approach, a region of the NAC was isolated as a peptide, coated,
and incubated with full-length TDP-43. Bound TDP-43 was then quantified using Ab-1.
Thus, a significant interaction of full length TDP-43 was identified in the first 15 residues of
the NAC region of α-synuclein. It seemed then that the NAC region of α-synuclein also
had an essential role in TDP-43 interaction apart from aggregation.

3.4. Three-Dimensional Scatterplots of the Peptides Reveal Similar Properties That Influence
Their Interaction

To understand the properties that allowed the peptides to bind to their protein coun-
terparts, a 3-D scatterplot of the hydrophobicity (x-axis), charge at neutral pH (y-axis), and
the generated absorbances (z-axis) of the proteins that bound to the peptides was generated
for TDP-43 (Figure 10) and α-synuclein (Figure 11). All values were calculated using an
online Peptide Analyzing Tool (ThermoFisher). TDP-43 peptides that produced significant
reactions by binding to full length α-synuclein have neutral charges (pH 7.0) and hydropho-
bicity indices that fall within the optimal region of 20–40 (Figure 10). On the other hand,
non-overlapping peptides that cover the entire sequence of α-synuclein were selected and
plotted similarly and these also had neutral charges (pH 7.0) and hydrophobicity indices
within 20–30 (Figure 11). The similar properties of these peptides can be observed when
the two graphs were overlapped. Neutral charges and hydrophobic values ranging from
20–40 were optimal for interaction to occur.
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3.5. Conventional ELISA Did Not Show Any Interaction between the Full-Length Proteins

Applying the same microplate-based approach to investigate the interaction between
the two full length monomeric proteins did not produce any significant signal relative to
the background. The signals peaked at 2 ng/mL when the second protein was applied
but the signals decreased when the concentrations were increased to 10 and 50 ng/mL.
The luminescence values produced were very low and considered negligible (Figure S2).
This may have resulted from the inhibition of the secondary structure of aa 310–329 in
TDP-43, which contained a portion of helical domain. This helical domain and its proximity
to the high affinity RRM domains may produce structural conformations in the solution
that prevent this sequence from binding to full length α-synuclein. Additionally, binding
may have been interrupted due to the steric hindrance from neighboring domains in the
N-terminus of TDP-43. The domains on their own may have enough hydrogen, electrostatic
and van der Waals forces to induce an interaction, but neighboring domains in the full-
length sequence may have had an inhibiting influence on this interaction. C-terminal
fragments (CTFs) are not an uncommon pathology of TDP-43 proteinopathy [26–28], and
aa 310–329, particularly aa 311–314, may be influential in comorbid synucleinopathies.
NMR analysis by Dhakal et al. showed that the TDP-43 LCD likely interacts with the N and
C-termini of α-synuclein, evidenced by greater peak shifts in these regions [25]. However,
these shifts were muted by the self-aggregation of TDP-43 LCD following incubation with
α-synuclein [25]. Still, it is worth noting that only the LCD of TDP-43 was incorporated
and without the interference of N-terminal domains.

3.6. In Silico Prediction of Protein Binding Affinity

Using ISLAND, the binding affinity and the kd between full-length TDP-43 and full-
length α-synuclein were calculated to be −10.83 kcal/mol and 1.13 × 10−8 respectively.
ISLAND incorporates machine learning to calculate ∆G and kd based on amino acid
sequences. Kd, in this case, was significantly low, thus the dissociation between the two pro-
teins is much less likely to take place. This conflicted with the results acquired from ELISA,
therefore other approaches may be recommended like isothermal titration calorimetry (ITC)
to confirm this interaction. Moreover, the affinity prediction of ISLAND is sequence-based
and other factors outside this sequence may affect the calculated parameters. It was stated
that affinity prediction based on the peptide sequence is not satisfactory, and development
of effective and practical methods in this domain is still an open problem [29]. However,
this can still be considered a useful tool to explore the effects of various structural mutations



J. Clin. Med. 2022, 11, 573 10 of 12

on binding affinities and dissociation constants of two proteins to expand on their comorbid
deposition in certain diseases.
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4. Conclusions

Research on the comorbid interactions of TDP-43 with other pathological biomarkers is
growing, and epitope mapping techniques are particularly useful in further characterizing
interactions in these comorbidities. Here, a microplate-based immunoassay was used
to determine interaction sites between TDP-43 and α-synuclein. A significantly high
concentration of full-length α-synuclein was found to bind with aa 310–329 of the LCD in
TDP-43. Using overlapping peptides that cover this region, MNFG residues (aa 311–324)
were common to peptides that resulted in a high signal of bound α-synuclein. Thus, not
only do TDP-43 CTFs initiate the formation of cytoplasmic inclusions by aggregating
amongst themselves, but they can potentially create hybrid TDP-43/α-synuclein fibrils
by interacting indiscriminately with all α-synuclein species. In contrast, a significant
amount of full-length TDP-43 was found to bind with the NAC region of α-synuclein.
Most importantly, co-incubation of human neuroblastoma SH-SY5Y cells with heterotypic
fibrils composed of TDP-43 LCD and α-synuclein showed increased cellular toxicity when
compared to SH-SY5Y cells incubated with either homotypic TDP-43 LCD or α-synuclein
fibrils, reinforcing the pathological significance of this interaction [25].

Though other approaches such as NMR spectroscopy can better resolve these inter-
actions, the self-aggregation of some regions can mute chemical peak shifts that indicate
interaction sites. Separating the proteins as shorter peptides and testing binding for each
peptide separately circumvents this problem. However, this approach can be limited when
the actual site of interaction happens to be fragmented between multiple peptides and
overlapping peptides in the suspected region must be designed and synthesized to resolve
the interaction site. The length of each peptide also has to be estimated well so it can contain
an optimal number of residues for binding to be observable. Finally, it is worth noting that
the results generated herein employed recombinant proteins, thus, it may be necessary to
confirm their physiological relevance via cell or animal models in future studies. Still, this
approach is used because it is relatively convenient, economical, less tedious, and more
rapid than other approaches.
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