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Thérapeutique, Institut de Médecine Tropicale du Service de Santé des Armées, Marseille, France, 4 Service de Chirurgie Cardiaque, Hôpital de la Timone, Marseille, France

Abstract

Infective endocarditis (IE) is an infectious disease that is mainly caused by Staphylococcus aureus and Streptococcus sp. It
usually leads to valvular destruction and vegetation formation. Its pathophysiology is badly understood and likely involves
immune and coagulation systems with close interactions with the microorganism. Our objective was to evaluate host
response by comparing transcriptional profiles of cardiac valves from IE patients with controls. Hierarchical clustering
revealed a signature of IE consisting of 146 genes. Among the 89 up-regulated genes, we identified two genes strongly
associated with IE: metalloproteinase 12 (MMP-12) and aquaporin-9, a member of the aquaglyceroporin membrane channel
family. The up-regulation of MMP-12 gene is strengthened by the down-modulation of the gene encoding its inhibitor
TIMP3. In addition, MMP-12 was expressed in macrophages infiltrating EI valves. We also found that aquaporin-9 was
expressed in endothelial cells lining neo-vessel lumen, suggesting that aquaporin-9 might be associated with
neovascularization of infected valves leading to tissue oedema secondary to the inflammatory process. The Gene Ontology
annotation and the resulting functional classification showed that most up-regulated genes account for recruitment of
inflammatory cells in vegetations, angiogenesis and remodelling of endocardium tissue. A network analysis confirmed the
involvement of molecules related to the remodelling of endocardium tissue and angiogenesis in IE. It also evidenced the
role of caspases, especially that of caspase-9 and intrinsic apoptotic pathway in IE. Based on this study we propose a
scenario for the natural history of IE in humans. Some parameters identified in this work could become tools for measuring
the disease activity and should be tested as biomarkers for diagnosis or prognosis assessment in future studies.
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Introduction

Infective endocarditis (IE) is a rather common disease causing

high morbidity and mortality despite the availability of

antimicrobial agents and cardiac surgery. Usually, IE is

diagnosed by the culture of microorganisms (mainly Staphylococcus

aureus and Streptococci sp.) from blood and echocardiographical or

histological detection of vegetations. This lesion results from the

formation of a coagulum consisting of plasma and platelet

proteins [1]. Pathogens associated with IE bind the coagulum

and colonize the lesion [1–3]. Most of the studies on IE

pathophysiology have been obtained in experimental animals

and show that the recruitment of circulating cells including

neutrophils and monocytes is secondary to tissue reorganization

and bacterial colonization [4,5]. Cell recruitment leads to the

release of cytokines and procoagulant factors and, consequently,

to the enlargement of the vegetation. In addition, whereas

normal heart valves are not vascularized, because of the

expression of the anti-angiogenic factor chondromodulin-1, IE

is associated with neo-vascularization [6]. Infecting pathogens

survive inside vegetations by avoiding host defences, and the final

step of IE consists of the dissemination of septic embols to distant

organs and the destruction of valve tissues [7]. To investigate this

complex host response, we studied the whole transcriptional

activity of patient valves in the attempt to identify the major

molecular pathways involved in IE pathophysiology. We

consequently propose a scenario for the natural history of IE in

humans and also suggest that some parameters identified in this

work could become tools for measuring the disease activity and

should be tested as biomarkers for diagnosis or prognosis

assessment in future studies.

Results and Discussion

As IE is histologically characterized by infiltrates of inflamma-

tory cells and neo-angiogenesis, we studied the expression of CD15

and CD68 as markers of neutrophils and macrophages, respec-

tively, and Factor VIII as an angiogenesis marker. In valves from

controls, no neutrophil, macrophage and factor VIII-expressing

cells were detected (Fig. 1A–B). In contrast, the valves from

patients with IE due to Streptococcus (Fig. 1C–D) or S. aureus

(Fig. 1E–F) expressed CD15, CD68 and Factor VIII. CD15

represented 1–3%, and CD 68 and Factor VIII about 5% of the

total area of the valves (Fig. 1G).
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Using whole genome approach, we investigated the transcrip-

tional profiles of cardiac valves from 5 patients with IE, caused by

either S. aureus or Streptococcus sp. and 7 controls with uninfected

valvular heart diseases. In addition, we included one cardiac valve

from a patient with suspected IE, i.e. exhibiting histological

features of IE (low expression of CD15 and CD68, and high

expression of Factor VIII, Fig. 1G) but negative blood culture.

Among the 33,492 sequences (41,000 reporters) of the microarray,

only annotated genes (18,083 genes) and those with

P-valuepres ,0.01 and a coefficient variation .0.3 (11,404 genes)

were used for global clustering analysis and differential analysis

between IE and controls; genes with P-valuediff ,0.01 and an

absolute fold change (FC) .3.0 were considered as differentially

expressed. The IE signature consisted of 146 genes, 89 being up-

regulated with FC ranging from 3.1 to 58.9 (Table S1), and 57

genes down-modulated with FC ranging from 23.1 to 214.9

(Table S2). The transcriptional profiles of patients were organized

in a common cluster placed on a branch distinct from controls

(Fig. 2). Interestingly, the transcriptional profile of the cardiac

valve from the patient with suspected IE (patient IE6) clustered

with those of IE patients (Fig. 2). This suggests that the gene

expression profile of heart valves enables to discriminate patients

with IE from controls. It is noteworthy that the transcriptional

programme of IE valves reflected the level of leucocyte infiltration.

We identified the neutrophil signature (27 genes) but not the

lymphocyte signature (Fig. S1) previously reported in isolated cells

[8].

We then analyzed IE-associated genes by using the Gene

Ontology (GO) annotation and the resulting functional classifica-

tion. We found enriched GO terms related to immune response,

inflammatory response, chemotaxis, proteolysis, cellular defence

response, defence response to bacteria, cell-cell signalling, calcium

homeostasis and positive regulation of cell proliferation (Fig. 3).

They may be classified in four functional groups: immune

response, structural organization or remodelling, proliferation/

Figure 1. Histological analysis of cardiac valves. (A–F) Samples of
cardiac valves from controls (A, B) and patients with IE due to
Streptococcus (C, D) or S. aureus (E, F) were stained with haematoxylin-
eosin-saffron. Representative micrographs are shown. Note the absence
of vegetations and inflammatory infiltrates in controls. In IE patients,
inflammatory infiltrates are mainly developed on the surface of the cusp
of valves, within the vegetations. Left and right, 625 and 6100
magnifications, respectively. (G) Valve sections were analyzed by
immunohistochemistry and quantitative image analysis to determine
the expression of CD15, CD68 and Factor VIII. The normalized results are
expressed as the percentage of valve sample area covered by
neutrophils, macrophages and endothelial cells, respectively. They
represent the mean values, and the minimum and the maximum are
shown in parentheses.
doi:10.1371/journal.pone.0008939.g001

Figure 2. Hierarchical clustering analysis of transcriptional
profiles of patients. Only 18,083 genes, which were expressed with a
P-value ,0.01 and a CV .0.3 in at least one condition, were included in
the analysis. Data were converted to z-score prior gene and sample
classifications by unsupervised hierarchic clustering using the average
linkage method and Cosine correlation coefficient as the distance
metric. The hierarchical clustering of a selection of 146 genes
differentially expressed by IE and controls is showed, with a colour
gradient (Z-score) from green (down-regulation) to red (up-regulation).
doi:10.1371/journal.pone.0008939.g002
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death, and metabolism/miscellaneous (Table S1). This is consis-

tent with mechanisms described in animal models of IE, i.e.,

recruitment of cells in vegetations, remodelling of endocardium

tissue and neo-angiogenesis [4]. The down-modulated genes in IE

valves mainly belong to structural organization or remodeling

(n = 9), proliferation/death (n = 7), metabolism (n = 7) and miscel-

laneous (n = 31) functional groups. No gene involved in inflam-

matory, immune and defence responses to bacteria was down-

modulated (Table S2).

An important step in vegetation genesis during experimental IE

is leucocyte attraction and angiogenesis [4]. In this study, we

showed a large number of up-regulated genes involved in

chemotaxis with FC ranging from 3.9 to 58.9 (Table S1). These

genes encode both CXC chemokines (CXCL1, CXCL4, CXCL5,

CXCL6, CXCL7, CXCL13) involved in neutrophil recruitment,

and CC chemokines (CCL7, CCL8, CCL13, CCL18, CCL20,

CCL23) involved in the trafficking of myeloid and T cells [9]. The

up-regulation of CCL13, CXCL1, CXCL5 and CXCL6 genes

was confirmed by qRT-PCR in these patients and another set of 9

patients (Fig. S2). CXCL1, CXCL4 and CXCL5 have pleiotropic

functions including neutrophil activation and adhesion of

monocytes to endothelial cells [10]; CXCL6, largely produced

by mesenchymal cells in response to inflammatory mediators, is

cleaved by group A Streptococcus protease, which abrogates its

activity [11]; CCL13 is involved in the migration of monocytes, T

cells and eosinophils [12]; CCL20 mediates the recruitment of T

cells and dendritic cells, and is expressed by Th17 cells [13];

CCL18 is associated with M2 polarization of macrophages [14].

Altogether, this large panel of up-regulated genes encoding

chemokines suggests that the attraction of leucocytes to the

vegetation, including dendritic cells as recently reported [15], is

one crucial step of vegetation development. Chemokines, such as

CXCL1, CXCL6 and CXCL16, are involved in angiogenesis [9],

and the genes encoding these chemokines were up-regulated in

patients. CXCL16 is also expressed in valves from patients with

rheumatic or atherosclerotic diseases, and may be necessary for

the recruitment of CD8+ T cells during inflammatory valvular

heart disease [16].

Tissue remodeling is a prerequisite for vegetation development

by promoting leucocyte transmigration. In vitro experiments show

that recruited monocytes in valvular lesions contribute to the

formation of vegetations by producing tissue factor and enhancing

fibrin deposition [17]. Experimental models of IE using Staphylo-

coccus epidermidis- or S. aureus-infected rabbits reveal the production

of tissue factor by monocytes infiltrating vegetations [4,18].

Moreover, there is a correlation between the numbers of

infiltrating monocytes and bacteria inside the vegetation [18].

Among the 16 genes involved in tissue remodelling that were

Figure 3. GO annotation of modulated genes. Differentially expressed genes in IE were subjected to GO annotation to identify the
corresponding biological process. The major biological processes are shown, including the number of genes for each of the processes, and the
percentage of differentially expressed annotated genes. GO redundancy is due to the involvement of individual genes in multiple biological
processes.
doi:10.1371/journal.pone.0008939.g003
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modulated in patients, 9 belonging to proteolysis process were up-

regulated. They included a disintegrin and metalloproteinase

(MMP12), also known as ADAM12 (Table S1). The expression of

MMP12 was assessed by RT-PCR (Fig. S3) and immunohisto-

chemistry (Fig. S4). MMP-12 transcripts were higher in IE valves

than in controls, and the MMP-12 molecule was expressed in

macrophages infiltrating IE valves, reflecting the inflammatory

response of IE valves. MMPs, a family of endopeptidases that are

secreted as latent zymogens, are involved in the pathogenesis of

vascular disorders [19] and the remodelling of valvular tissues in

endocarditis and degenerative valvular diseases [20]. The activities

of MMPs are controlled at three distinct levels: gene expression,

activation of the proenzyme forms of the MMPs, and inhibition of

activity by complexing with their specific tissue inhibitors (TIMPs)

[21]. Interestingly, TIMP-3 was down-modulated in IE patients

(Table S2 and Fig. S3). Combined with increased expression of

MMP-12, it may exacerbate valvular inflammation. As plasmin

and thrombin activate MMPs, it is likely that the coagulation-

fibrinolysis system can stimulate the MMPs leading to valvular

destruction and embolization.

An anti-infectious response was also identified in IE valves

(Table S1). First, it included the up-regulated expression of genes

encoding chemokines, including CXCL1, CXCL13, CCL13,

CCL18 and CCL20, with antimicrobial activity against bacteria

such as S. aureus or S. pyogenes [22]. Second, it included members of

C-type lectin domain superfamily, such as CLEC4D (with the

highest FC), macrophage receptor with collagenous structure

(MARCO, see Fig. S3) and leukocyte immunoglobulin-like

receptors (LILR) B2 and B5. C-type lectins, characterized by the

presence of one or more C-type domains, are able to bind

microorganisms, activate complement and exert direct antimicro-

bial activity. These sensors of pathogens and cellular damage are

mainly expressed by myeloid cells found in IE valves [23]. Third,

the over-expression of the gene encoding granzyme B (see Fig. S3),

a protease of cytotoxic CD8+ T cells, may be related to the

presence of CD8+ T cells close to endothelial cells in inflammatory

valve diseases [16] and in IE (our results). Fourth, three

inflammatory cytokines, namely interleukin (IL)-1a (see Fig. S3),

IL-24 and TNFSF14, were over-expressed in IE. Fifth, two

members of the aquaglyceroporin membrane channel family

classification were modulated in IE. The expression of aquaporin

(AQP)-9 gene was increased by 18 fold in IE valves (see Fig. S3)

and that of AQP-7 gene was down-modulated (Table S2). AQPs

are cell membrane-embedded proteins that facilitate movement of

water by increasing membrane water permeability and water flux

in response to osmotic gradients [24]. They differ in their

transcriptional regulation [25]. The AQP family can be divided

into two groups on the basis of their permeability characteristics.

Most members of the first group (AQP) are only permeated by

water. Members of the second group (aquaglyceroporins), which

includes AQP7 and AQP9, are permeated by water to varying

degrees and other small solutes such as glycerol [24]. AQPs are

involved in many pathological processes including myocardial

oedema related to the ischemia-reperfusion phenomena [26].

AQP-7 is preferentially associated with adipose cardiac tissue

[27,28]. At our knowledge, the potential implication of AQPs in

heart valve diseases has never been reported. However, recent

works identified the ubiquitous expression of AQP water channels

in the endothelial cells of most organs and their implications in the

water movement across the capillary bed into the interstitial space

[29]. As we found that AQP9 was expressed in endothelial cells

lining the lumen of neo-vessels as demonstrated by immunohis-

tochemistry (Fig. S4), we can speculate that the high increase in

AQP9 expression observed during IE might be associated with the

neo-vascularization of the infected valve leading to tissue oedema

secondary to the inflammatory process.

Functional networks were identified using GO classification and

web-based entry tool. We selected only interactions in which at

least 2 references can be extracted from the literature. The first

network associated with cell adhesion consisted of 13 genes mostly

down-regulated (11 of 13 genes) (Fig. 4A). The second network was

associated with extracellular matrix polymerization (Fig. 4B). The

third network consisted of coagulation-related genes and related

MMP genes (Fig. 4C). The coagulation network included 10 up-

regulated genes such as PLAU, CTSG (cathepsin G) and F12

(coagulation factor 12), and 7 down-modulated genes such as

KLKB1 (kallikrein B1), FVII and X (coagulation factor VII and

X). Moreover, 5 genes encoding MMPs and that encoding furin,

an endoprotease, were up-regulated in the network. This network

analysis is consistent with the expression of coagulation factors and

isolated MMPs in pathological valves [20,30]. Moreover, our

analysis revealed an apoptosis network, including 10 caspases and

5 related molecules (Fig. 4D). The caspase-8 gene was down-

modulated and the caspase-9 gene was over-expressed in IE

patients. As they are involved in the extrinsic and intrinsic

apoptotic ways [31], respectively, it is likely that only caspase-9 is

involved in IE. This is in accordance with recent data that showed

activated caspases in leucocytes from patients with valvular

diseases [32]. In an animal model, scintigraphic measurement of

apoptosis confirms the presence of apoptotic cells in the vicinity of

vegetations [33].

The whole genome analysis of cardiac valve transcriptome led

us to propose a scenario for IE pathophysiology that relies gene

expression and tissue lesions. In patients with valve defect, the

blood flow is turbulent rather than linear [34] and this leads to the

apoptosis of cells projected on cardiac valve (apoptosis network)

(Fig. 5A). This is the initial event leading to tissue remodelling

(extracellular matrix polymerization and coagulation networks)

generating primary aseptic clot (Fig. 5B). Modified tissues enable

microbial colonization and the recruitment of neutrophils and

monocytes (chemotaxis) leading to the constitution of the

vegetation (Fig. 5C). Then, tissue remodelling and neo-angiogen-

esis components (proteolysis and chemotaxis) destroy progressively

the valve generating a risk of cardiac embolization and cardiac

insufficiency (Fig. 5D). Based on this scenario, we suspected that

the detection of apoptotic cells in the blood of patients with valve

lesion may be associated with an increased risk of IE. This may be

of great clinical impact to identify patients at risk. The prognosis

value of circulating levels of MMP-12 and AQP-9 should be

investigated in patients.

Materials and Methods

Patients
Ethics statement. Informed and written consent was obtained

from each subject and the study was approved by the Ethics

Committee of the Université de la Méditerranée.

The study consisted of a retrospective series of heart valve

samples from 15 Caucasian patients hospitalized because of

clinical suspicion of IE [35]. The15 tissue specimens analyzed in

the present study were randomly selected from all the patients who

underwent surgery for a first episode of left-sided native valve

endocarditis between January 2006 and January 2008. The

diagnosis of IE was based on the modified Duke’s criteria [36]

that include clinical data, blood cultures, immunohistochemical

analyses of cardiac valves and molecular detection of organisms in

blood and cardiac valves. Among IE patients, 5 patients (3 males

and 2 females, median age: 59.6 years, range: 45–77 years)

Infective Endocarditis
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suffered from S. aureus infection, 9 patients (8 males, 1 female,

median age: 52.5 years, range: 25–75 years) from IE due to

Streptococcus sp. and 1 patient had an uncertain IE (one male, age:

59 years). As controls, we used cardiac valve samples from 12

patients (10 males and 2 females, median age: 61.8 years, range:

31–83 years) with pre-existing cardiac diseases. Thirteen samples

Figure 4. Network analysis in IE. Differentially expressed genes in IE were subjected to GO annotation according cell adhesion (A), extracellular
matrix polymerization (B), proteolysis (C) and caspase (D) networks. Only entities with binding partners are represented. Note that the proteolysis
network included coagulation and MMP pathways that were connected whereas caspase pathway was isolated.
doi:10.1371/journal.pone.0008939.g004
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(7 controls, 5 IE, 1 suspected EI) were investigated with

microarrays and all the samples were analyzed by real-time

quantitative RT-PCR.

Histological Analysis
Valve tissue samples were fixed in formalin, embedded in

paraffin, cut to 3 mm in thickness and stained with haematoxylin-

eosin-saffron using routine methods. The immunohistological

procedure, in which a peroxidase-based method was used, is

described elsewhere [37]. Paraffin sections were stained with the

ready-to-use CD15 (BD Biosciences, Le Pont de Claix, France),

CD68 and Factor VIII (Dako, Trappes, France). The CD15-,

CD68- and Factor VIII-positive surfaces were analyzed in tissue

samples by quantitative image analysis, as described elsewhere

[38]. In brief, immunohistological images were digitized and the

image analyzer Samba 2005 (Samba Technologies, Alcatel TITN,

Grenoble, France), which provides a visual control of analysis,

allows the calculation of the percentage of the total surface area

covered by the specific marker. For each set of observations, the

surfaces of 10 randomly chosen areas were studied at a

magnification of 6100, and the surface areas covered by

neutrophils, macrophages and endothelial cells, respectively, were

measured. The results are expressed in mean, with the minimum

and the maximal values. MMP-12 and AQP9 were detected

according a similar procedure with specific antibodies purchased

from R&D Systems (Lille, France) and Chemicon (Millipore,

Mosheim, France), respectively.

Total RNA Extraction
Cardiac valve samples were collected in RNase-free tubes

containing RNAlater, a stabilization reagent. Tissue (10 mg) is then

lysed with the TissueLyzer (Qiagen, Hilden, Germany) and total

RNA was extracted using the RNeasy Mini kit (Qiagen) as

previously described [32]. DNase treatment was performed with

the DNase RNase-free set (Qiagen). RNA quality and quantity

were assessed with the 2100 Bioanalyzer (Agilent Technologies,

Santa Clara, California, USA) and the NanoDrop Spectropho-

tometer (NanoDrop Technologies, Wilmington, Delaware, USA).

Microarray Experiments
Human 4644k 60-mer oligonucleotide microarray slides

(Agilent Technologies) and one-color experimental design were

used as recently described [39]. All experiments were performed in

an ozone-free area to ensure the stability of the cyanine 3 (Cy3).

Sample labelling and hybridization were performed according to

protocols specified by the manufacturer (One-Color Microarray-

Figure 5. Putative scenario for IE. The natural history of IE may be decomposed in successive steps including cell apoptosis that may be
promoted by blood turbulence in the vicinity of valve lesion (A), procoagulant activity that results in fibrin and platelet deposition (B), bacterial
colonization and chemoattraction of neutrophils increasing vegetation size (C), tissue remodelling and neoangiogenesis leading to the functional
destruction of the valve (D). At this stage, the situation is irreversible and cardiac surgery is necessary.
doi:10.1371/journal.pone.0008939.g005
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Based Gene Expression Analysis). Briefly, 300 ng of total RNA

and Cy3-labeled CTP fluorescent dyes were used to generate

fluorescent cRNA with Low RNA Input Fluorescent Amplification

Kit (Agilent Technologies). The dye-incorporation ratio and the

cRNA quantity were determined using the Nanodrop spectropho-

tometer. For hybridization, 1.65 mg of Cy3-labeled cRNA was

added on microarray slide for 17 hours using the Hybridization

Oven kit procedure provided by Agilent Technologies. Slides were

then washed, dried, and scanned at 5 mm resolution with a

G2505B DNA microarray scanner (Agilent Technologies).

Analysis of Microarray Experiments
Image analysis and intra-array signal correction (one-color

analysis default setting) were performed using Feature Extractor

Software A.9.1.3 (Agilent Technologies). The use of Rosetta error

model is suitable to improve the analysis of experiments with a

small number of samples. Data processing, analysis and visualizing

were performed using Resolver software 7.1 (Rosetta Inphar-

matics, Seattle, WA) and its intensity error model pipeline

optimized for the gene expression analysis of microarrays. The

intensity error model and its applications have been detailed by

Weng et al. [40]. Briefly, reporter mapping to genes was computed

by performing a squeeze operation that created intensity profiles

by combining replicates while applying error weighting. To know

whether a gene was present in transcripts a hypothesis test was

used. Negative control sequences were used to estimate the

parameters of the null distribution and P-value (P-valuepress) was

calculated for each particular sequence. When P-valuepres ,0.01,

we rejected the null hypothesis and accepted the alternative

hypothesis that the sequence transcript was present in the

microarray. Before error-weighted combining of samples in IE

vs. controls, an inter-array global normalization was performed

using the average of intensities from all positive or present genes.

Discrimination between sample groups (IE vs. controls) was

studied using an error-model-based hypothesis test. The null

hypothesis was that the gene is not differentially expressed. A

differential expression of P-value (P-valuepres) involving parameters

of the error model was computed for each particular sequence to

compare gene expression between two category groups. In

addition, FC (ratios in log 10 scale) were also computed using

an error-weighted ratio combination method. For P-valuediff ,

0.01 and absolute FC .3.0, the gene was considered as

differentially expressed.

The GO viewer tool was used to calculate P-value for each GO

term. An exact hypergeometric distribution allowed the comparison

of the frequencies of individual GO terms within the IE signature

with the frequencies of those terms on the entire microarray

(P,0.05 was considered to be significant). In order to increase

meaningfulness and clarity, the output GO term list was filtered to

only keep GO terms constituted of at least 5 genes belonging to the

IE signature. Significant GO terms are separated in 3 categories:

cell component, molecular function or biological process. For each

GO term category, a 2D-cluster was performed considering

significant GO terms vs. sample groups (controls and IE). We

classified the GO terms by unsupervised hierarchic clustering, using

the average linkage method and Cosine correlation coefficient as the

distance metric whereas the sample group order was supervised. All

data were entered in the ArrayExpress database following the

MIAME procedure [41] and can be retrieved using the accession

number E-MEXP-1334. Functional classification was determined

using numerous databases: DAVID Bioinformatics Resources

2008 (http://david.abcc.ncifcrf.gov/), Online Medelian Inheri-

tance in Man (http://www.ncbi.nlm.nih.gov/sites/entrez?db =

OMIM&TabCmd = Limits), SOURCE (http://smd.stanford.edu/

cgi-bin/source/sourceSearch), gand Babelomics Fatigo+ (http://

babelomics2.bioinfo.cipf.es/fatigoplus/cgi-bin/fatigoplus.cgi).

The connection between genes was studied using networks

generated by PathwayStudioTM (Ariadne Genomics) as recently

described [39]. Briefly, networks were built by connecting entities

with binding relations stored in the ResNet 6 mammal database.

Ratio data from microarray experiments were used to colourized

entities. Red colour corresponded to up-regulated genes in valves

from IE patients compared to valves from controls and blue colour

to down-regulated genes.

Reverse Transcription and Quantitative Real-Time PCR
(qRT-PCR)

The cDNA synthesis was carried out with 10 ng of total RNA,

oligo(dT) primer and M-MLV reverse transcriptase (Invitrogen,

Cergy Pontoise, France) according to the manufacturer’s protocol.

PCR was performed using the Light Cycler from Roche

Diagnostics (Meylan, France). Briefly, amplification was conducted

in a 20 ml volume using Syber Green PCR Maxter mixture (Roche

Diagnostics), 2 ml of template cDNA, 1 ml (10 pmol) each of

forward and reverse gene-specific primers, 2 ml of 3 mM MgCl2
and 12 ml H2O. The primers (Table S3) were designed using the

primer3 tool (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_

www.cgi). RT was omitted in negative controls. The FC in target

gene cDNA relative to the b-actin endogenous control was

determined as follows: FC = 22DDCt, where DDCt = (CtTarget -

CtActin)IE - (CtTarget - CtActin)controls. Ct values were defined as

the number of cycles for which the fluorescence signals were

detected [42]. Results from the 14 patients with IE and the 12

controls are represented as FC median with 25 and 75 percentile

distribution, and minimum and differences were considered

statistically significant at a value of P,0.05.

Supporting Information

Figure S1 Cellular signatures of cardiac valves. The list of genes

corresponding to neutrophil (A) and lymphocyte (B) signatures is

shown. Red colour corresponds to up-regulated genes, blue colour

to down-regulated genes and grey colour to unexpressed genes in

IE patients compared with controls.

Found at: doi:10.1371/journal.pone.0008939.s001 (0.16 MB TIF)

Figure S2 Modulation of 4 genes encoding chemokines using

qRT-PCR. The expression levels of 4 genes found up-regulated by

microarray were determined by qRT-PCR and normalized with

the b-actin gene. Results of cardiac valves from 12 controls (C) and

14 IE patients are represented as median with 25 and 75 percentile

distribution, and minimum and maximum values. *P,0.05.

Found at: doi:10.1371/journal.pone.0008939.s002 (0.06 MB TIF)

Figure S3 Modulation of different genes using qRT-PCR. The

expression levels of 6 genes found up-regulated and one down-

regulated by microarray were determined by qRT-PCR and

normalized with the b-actin gene. Results of cardiac valves from

12 controls (C) and 14 IE patients are represented as median with

25 and 75 percentile distribution, and minimum and maximum

values. *P,0.05.

Found at: doi:10.1371/journal.pone.0008939.s003 (0.06 MB TIF)

Figure S4 Immunodetection of MMP-12 and AQP9 in IE

valves. Valve tissue samples from 3 IE patients were freezed and

cut to 3 mm in thickness. MMP-12 and AQP9 were revealed

using specific antibodies (1/100 and 1/200 dilutions, respec-

tively) and secondary antibodies coupled with peroxidase.

Magnification: 6400.

Found at: doi:10.1371/journal.pone.0008939.s004 (4.64 MB TIF)
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Table S1 Genes up-regulated in IE

Found at: doi:10.1371/journal.pone.0008939.s005 (0.18 MB

DOC)

Table S2 Genes down-modulated in IE

Found at: doi:10.1371/journal.pone.0008939.s006 (0.15 MB

DOC)

Table S3 Primers used for qRT-PCR

Found at: doi:10.1371/journal.pone.0008939.s007 (0.03 MB

DOC)
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