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Dengue infection is a global threat. As of today, there is no universal dengue fever
treatment or vaccines unreservedly recommended by the World Health Organization.
The investigation of the specific immune response to dengue virus would support
antibody discovery as therapeutics for passive immunization and vaccine design.
High-throughput sequencing enables the identification of the multitude of antibodies
elicited in response to dengue infection at the sequence level. Artificial intelligence can
mine the complex data generated and has the potential to uncover patterns in entire
antibody repertoires and detect signatures distinctive of single virus-binding antibodies.
However, these machine learning have not been harnessed to determine the immune
response to dengue virus. In order to enable the application of machine learning, we have
benchmarked existing methods for encoding biological and chemical knowledge as
inputs and have investigated novel encoding techniques. We have applied different
machine learning methods such as neural networks, random forests, and support vector
machines and have investigated the parameter space to determine best performing
algorithms for the detection and prediction of antibody patterns at the repertoire and
antibody sequence levels in dengue-infected individuals. Our results show that immune
response signatures to dengue are detectable both at the antibody repertoire and at the
antibody sequence levels. By combining machine learning with phylogenies and network
analysis, we generated novel sequences that present dengue-binding specific
signatures. These results might aid further antibody discovery and support vaccine
design.

Keywords: dengue, antibody repertoire analysis, machine learning, neural networks, long short-term memory
networks, encoding, artificial intelligence, antibody discovery

INTRODUCTION

Large-Scale Sequencing Data Enables Machine Learning to Detect
Patterns in Antibody Repertoires
In the field of bioinformatics, machine learning is broadly applied to a wide array of data such as
electronic healthcare records and omics data to achieve a multitude of tasks such as disease
classification or discovery and development of novel therapeutics. Lately, sequencing
technologies have improved in terms of quality and costs declined by a factor of 50,000
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resulting in the generation of tremendous amount of large-scale
data (Goodwin et al., 2016). Applying machine learning (ML) to
high-throughput sequencing (HTS) data can lead to a meaningful
insight of the human biology. A subfield of HTS is focusing on
unmasking the high complexity of the human adaptive immune
receptor repertoire (AIRR) which can reach up to 1012 antibody
clones. As the immune repertoire contains information about the
past and current immune events such as infections and diseases,
sequencing of such data could enable the prediction of health and
diseases in patients and subsequently lead to the discovery of
novel vaccines or therapeutics (Widrich et al., 2020). Even though
the number of interactions within the AIRR is numerous, they
can be described with a finite, universal vocabulary of interaction
motifs (Akbar et al., 2021). Within AIRR sequences, each single
amino acid is characterized by a series of biochemical/biophysical
properties (e.g., hydrophobicity) which is recurrent in any
antibody, even in sequences of antibodies with unrelated
interactions. Therefore, ML can be used to extract patterns
from sequence motifs in order to classify them. By studying
the repertoire convergence, it is subsequently possible to generate
new antibody candidates which can be used to develop new
therapeutics and design novel vaccines (Greiff et al., 2015; Cinelli
et al., 2017; Greiff et al., 2017). Research has successfully
demonstrated the classification of diseased individuals by using
deep neural networks on the immune repertoire data (Ibrahim
et al., 2005; Hill et al., 2018; Widrich et al., 2020) but to our
knowledge not on dengue repertoires.

Dengue Virus is a Global Threat
The dengue virus (DENV) is a fever-causing virus of the
Flaviviridae virus family classified into four different serotypes
DENV I–IV (Muller et al., 2017). Additionally, a new serotype V
was discovered recently with outbreaks restricted to Malaysia
(Mustafa et al., 2014; Joob and Wiwanitkit, 2016). Dengue is a
mosquito-transmitted disease often infecting an individual
multiple times. While the primary infections are mostly
asymptomatic or flu-like, the secondary infection can result in
dengue haemorrhagic fever which can lead to death if it
originated from another serotype than the primary infection.
This happens because during the primary infection, antibodies
are produced that lead to an exacerbation of the disease upon
reinfection with a heterologous serotype (WHO, 2019;
Parameswaran et al., 2013). Yearly, over 390 million cases are
reported globally. Thereof, 500,000 patients need to be
hospitalized with a mortality rate of approximately 2.5%
(WHO, 2019). While five vaccines against dengue are still in
clinical trials (WHO, 2020), a first vaccine has been developed: in
2019 FDA has approved a vaccine targeting previously infected
patients. However, this vaccine is known to show efficacy only if
the patient has had a primary infection and a secondary infection
from a heterologous serotype and exhibits a more sever course of
disease compared to previously uninfected patients (Godói et al.,
2017). As of today, there is neither universal dengue fever
treatment nor vaccines unreservedly recommended by the
World Health Organization. Approximately half of the world’s
population lives in dengue risk areas (Africa, Latin America, and
Asia), and the disease is having an alarming impact on human

health as well as global economies (WHO, 2019). Additionally,
the lack of early-stage biomarkers makes it difficult to detect the
dengue virus (Muller et al., 2017). Novel dengue diagnostics and
treatments could have a beneficiary impact on both human well-
being and economy. This and the promising results of machine
learning-based analysis of HTS data have intensified efforts also
in the field of dengue. Recently, scientists have started to sequence
dengue and dengue-related antibody repertoires directly from
human samples, leading to a tremendous amount of genomic
data and an increased understanding of the genetic composition
and diversity of the virus and its elicited antibodies
(Parameswaran et al., 2013; Galson et al., 2014; Appanna
et al., 2016; Huang et al., 2017).

Machine Learning is Applied to the Dengue
Data at the Antibody Repertoire and
Sequence Level
HTS technologies generate an increased number and diversity of
sequencing data compared to traditional methods (Goodwin
et al., 2016). Therefore, using machine learning to analyze
HTS data might lead to impactful discoveries of rare and
novel broadly neutralizing dengue antibodies (bNAbs) against
all four serotypes that could serve as antibody therapeutics for
passive immunization. In addition, the identification of DENV
antibody repertoire signatures is an important milestone toward
vaccine design and commercial development.

Our findings contribute to the discovery of DENV bNAbs by
investigating different amino acid encoding methods and
introducing a novel, physicochemical property-based encoding
strategy, and benchmarking various machine learningmethods to
predict dengue progression and dengue-specific antibodies from
high-throughput sequences of antibody repertoires.

MATERIALS AND METHODS

Data
Dataset 1: Parameswaran et al. (2013) analyzed dengue antibody
heavy-chain IgG signatures in 60 acute, post-recovery and
healthy samples from Nicaragua containing 1) 44 samples
with DENV in different phases: infection-associated signatures
(acute), persistence of signatures post-clearance of infection
(convalescent), and baseline profiles (pconv) within the same
individual; 2) eight samples with non-dengue illnesses (non-
dengue); and 3) eight healthy samples (healthy). Sequencing
was performed twice by independent GS FLX (454 Life
Sciences/Roche) runs.

Dataset 2: Godoy-Lozano et al. (2016) analyzed dengue
antibody heavy-chain IgG signatures of 19 acute (den_A)
samples from Mexico. Six months later, 11 post-convalescence
samples were taken (den_PC). All samples are available as
BioProject with ID PRJNA302665. Sequencing was performed
using a Roche 454 sequencer.

Dataset 3: Huang et al. (2017) analyzed dengue antibody
heavy-chain IgG/IgA signatures of 14 hemorrhagic, simple and
healthy samples from Taiwan available as BioProject with ID
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PRJEB13768 (IgG and IgA antibodies). Since several repertoires
were taken from each patient throughout the progress of the
disease, a total of 59 repertoires were available. Sequencing was
performed as 150 bp paired-end sequencing using an Illumina
NextSeq machine.

Dataset 4: While datasets 1 through 3 provide mostly
signatures found in dengue-challenged repertoires, additional
sequences from healthy patients were collected from iReceptor,
a public repository of sequencing data. The selection criteria were
set accordingly so that only heavy chain, productive sequences of
healthy samples were retrieved. In total, approximately 62 million
sequences were downloaded with all of them being annotated
with IMGT blast.

Annotation and Pre-processing
Reads were labeled according to the dataset. In dataset 1 reads were
labeled either as acute, convalescent, postconvalescent (p-convalescent),
healthy, or non-dengue. In dataset 2 reads were labeled as acute
or p-convalescent. Dataset 3 distinguishes between hemorrhagic
dengue, simple dengue, and healthy. To distinguish sequences
of dengue infected individuals from healthy individuals, we
mapped the original 21 classes into two new classes: dengue-
challenged and non-dengue-challenged that can be considered
as a binary classification problem (Supplementary Figure 1).
Raw sequences across datasets were annotated with IgBLAST.
CDR3 sequences were filtered for productivity, minimum CDR3
sequence length of four amino acids, and only sequences which
were present more than once were retained for further analysis
in order to filter out potential spurious results from sequencing
errors (Smakaj et al., 2019). After performing initial filtering, a
total of 2.7 million sequences were analyzed and pulled into one
dataset used for benchmarking the encoding methods and
training of the machine learning models.

Encoding
Encoding refers to the process of transforming text or sequence
data into numeric data which can be input to a machine learning
algorithm. The same input data were represented differently in
order to select among different encoding methods and, therefore,
each encoded input had a variable impact on machine learning
measures. In computational biology, encoding of amino acids can
be achieved by considering amino acids’ physicochemical
properties, for instance, using the BLOSUM substitution
matrix, or by a generic character-wise encoding like one-hot or
integer encoding used also in other ML domains (Zamani and
Kremer, 2011).

In addition to taking into account the existing encoding
schemes indicated in Table 1, we additionally introduced a
novel encoding scheme where the encoding was based on each
amino acid within the CDR3 sequence. Each amino acid
represents different physicochemical properties, for instance,
amino acid A (alanine) represents the property aliphatic;
therefore, the compound contains carbon and hydrogen which
make up an aliphatic functional group on the side chain
(Schelonka et al., 2007; Ritmahan et al., 2020). We compiled
this information in a rule library (Figure 1A) which enabled the
comparison of each amino acid within a given CDR3 sequence

against the library (Figure 1B). We aimed to further improve the
results by combining the rules for those properties which were
shown to have the highest impact on the antibody–antigen
interaction (Figure 1C; Supplementary Appendix S1 for all
rules). By random subsampling of five rules from the rule
library, additional insights on which rules are most
contributing to favourable classification results shall be
obtained (Figure 1C).

Machine Learning Models
After determining the best suitable encoding schema, the different
models were trained with the labeled CDR3 sequences encoded
accordingly. To do so, 80% of the data was randomly assigned to a
train and validation set while 20% of the data was kept aside as a
test set. To prevent the models from overfitting, training was
performed using k-fold cross-validation with k � 5. This means,
the train and validation data were split into five partitions and the
models were trained five times, using every partition once as a
validation set and then taking the mean measure as the final
measure. With this procedure, the measures do not reflect
results of only one validation set and chances of overfitting
were lowered. Cross-validation was applied among all machine
learning models: multilayer perceptron (MLP), recurrent neural
network (RNN), long-short term neural network (LSTM), random
forest, and support vector machine (SVM) algorithms which are
shortly introduced below.

Artificial neural networks (ANNs) are a supervised learning
algorithm (Figure 2B) that recognize and learn patterns in data
that are often not visible to the human eye. The algorithm then
applies these patterns to new data and is thus able to make
forecasts and predictions (Hansen and Salamon, 1990). Although,
there are a large variety of different ANN architectures, this
research focuses on three architectures. The multilayer
perceptron (MLP) was chosen as it is often used as a baseline
model to compare more complex models again. The recurrent
neural networks (RNNs) and the long-short term memory
network (LSTM) have been chosen because of previous
success in predicting protein binding and secondary structure
(Sønderby et al., 2015; Lipton et al., 2017).

Deep feed forward (DFF) neural networks are used to predict
the progression of dengue infection from antibody repertoires. In
order to avoid bias in the training data, the labels and the classes
were balanced by upsampling the data using the caret R package
(function upSample). Upsampling here means that we have
sampled with replacement from the subset which contains
fewer data points in order to obtain an equal amount of
training data to the other classes (Table 1).

Quantifying statistical data from texts is necessary in order to
extrapolate text into numbers and subsequently apply machine
learning in a numeric representation of the data. For this purpose,
the CDR3 amino acid sequences were further transformed into
series of trigrams (series of 3 consecutive letters from a string, e.g.,
trigrams of the string “example” are “CAR, TAR, KLE, ERA, and
GIT”) and the resulting vectors were transformed into tensors
using the tf-idf function.

tf-idf (term frequency * inverse document frequency) is a
numerical statistic of word occurrences in a given body of texts. In
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our case, the body of texts is the whole data, a document is an
individual sequence and a word is an individual trigram. The list
of all possible trigrams is called a dictionary. tf-idf computes the
frequency of the word in a dictionary then multiplies it by the
frequency of the document in the body of texts. This numerical
representation is preferred over other methods of quantifying text
frequency because it scales the occurrence frequency of an
individual word (in our case a trigram) based on the
occurrence frequency of the document (in our case a.a.
sequence) in which the word is found.

By combining the dictionary with tf-idf for each trigram, it is
possible to obtain a numerical trainable matrix representing the
whole data. Finally, to obtain the training tensors, each tuple

(sequence + class label) is defined as a dictionary matrix where
each row corresponding to trigrams not available in the original
sequence has been multiplied by 0. This gives a sparse matrix of
tf-idf values present only in the row coordinates of trigrams in the
sequence in question. Since the number of rows in this sparse
matrix is equal to the number of terms in the dictionary, the
resulting training tensor is very large in one dimension. For
instance, a dictionary of 3-grams created from amino acid
sequences has a theoretical maximum term count of W � 20̂n
(n � 3 for trigrams,W � 8,000, in general form this method allows
to vary n by reproducing with another type of n-gram). In order
to achieve realistic training times, we have reduced the dictionary
size to 2048 top terms by frequency. We have justified this value

FIGURE 1 |Benchmark of encodingwith different physicochemical rules. (A) 93 rules were defined that describe the physicochemical properties of an Abwhich are
expressed as different amino acids in a CDR3 sequence. (B) Each rule is represented by 1’s and 0’s which are extracted from the CDR3 a.a. sequence by using a regular
expression (RegEx). (C) As the rules can be combined differently, we benchmarked different encoding methods which all depend on the rule library to find the best
combination of rules. First, every numeric representation of the rules is chained together (Goodwin et al., 2016) or the sum for each a.a. position is calculated
(Widrich et al., 2020). Second, as some rules are repeated because some properties are expressed in the same manner and some physicochemical properties are
known to influence the antibody–antigen interactionmore than others, a subset of 19 rules was selected (Akbar et al., 2021). Additionally, a randomly selected subset of 5
rules out of the 19 rules from step 3 was combined with 3 rules to analyze the contribution of single properties to the prediction results. As shown in the fivefold validated
benchmark, chaining of the selected subset outperforms chaining and summing of all rules. As no subset of five rules was able to contend with more extensive
encodings, we come to the conclusion that not a few single properties but the combination of various properties is accountable for proper sequence classification.
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heuristically on a 20/80 rule applied to term frequencies in the
dictionary as a whole.

We proceed in using these tensors in training a keras deep
learning network to classify each CDR3 with one of the given labels
using a sequential model. The model consisted of a DFF architecture
with rectifier linear unit (ReLU) activation function. The network’s
input structure was generated depending on the vocabulary size (in
this case 2048x1 as described above). The overall network structure
used was (W x ReLU) + (W/2 x ReLU) + (10 x ReLU) + (5 x
softmax). Once themodel was trained, it predicted the class of each
sequence of a given repertoire. The repertoire label was assigned
based on a majority vote for the sequence labels it contained.

For random forests (RF), multiple, uncorrelated decision trees
(called single predictors) were built. Each tree was grown on a
random subset of the training data. The features used for each tree
were a random subset of features contained in the training data
subset. This randomization led to a forest of trees with different
shapes and depths. For classifying a new sample, each single
predictor was run through and the resulting class of each
predictor was counted. The class with the most votes was
considered the final prediction (Breiman, 1999; Livingston,
2005; Polaka et al., 2010).

Support vector machines (SVMs) are used to predict bNAb-
like CDR3 sequences. We discriminated dengue bNAb-like
(based on a database of 26 bNAbs) versus non-bNAb-like

CDR3 clones based on the CDR3 sequence using the KeBABS R
package (Palme et al., 2015). In brief, KeBABS enables the kernel-
based analysis of biological sequences using a position-independent
gappy pair kernel that divides sequences into features of length k
with gaps up to length m. For example, the sequence CARTA is
decomposed by the gappy pair kernel with parameters k� 1 andm �
2 into monomers with gaps of zero to two amino acids in between:
CA, C.R, C.T, AR, A.T, A.A, RT, R.A, and TA.We first calculated the
balanced accuracy of the two classes of sequences versus each other
as previously described (Greiff et al., 2017; Miho, 2017): dengue-
challenged and non-dengue-challenged. We built an SVM model
from equilibrating the input sequences for the classes.We trained the
classifier by setting 80% of sequences as a training dataset and 20%of
the sequences as a test dataset.

Tuning Machine Learning Models
The ANN are hypertuned on the parameters shown in
Supplementary Table 1S with the R package keras and the
random forest is tuned on the parameters shown in
Supplementary Table 2S with the R package Random Forest.

SVM parameters were set to k � 3, m � 1, and C � 1 (C is the
cost for the misclassification of a sequence) after searching the
parameter space for the optimal model by nested cross-validation.
The prediction accuracy of class discrimination was quantified by
calculating the balanced accuracy (0.5 * (Specificity + Sensitivity)),

FIGURE 2 | Machine learning reveals dengue-specific antibody sequence signatures at the repertoire and sequence level. (A) Encoding. Five different encoding
schemes were benchmarked using a simple multilayer perceptron (MLP). (B) Classification of CDR3 sequences was performed using supervised machine learning
classification as for each repertoire and sequence the label (dengue/non-dengue) was known. (C) Dengue datasets were annotated using IgBAST and preprocessed in
R (see Methods). Labelled (dengue/background) CDR3 sequences were subsequently encoded. ML models were tuned, trained, and compared with regard to
accuracy, sensitivity, specificity, and efficiency at the repertoire-level and sequence-level classification. (D) Sequence classification was performed based on bNAb
sequences and constructing de novo bNAb networks to detect extended sequence-patterns in repertoires. Benchmarking various encoding methods.
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where specificity was defined as TN/(TN + FP) and sensitivity as
TP/(TP + FN) with TP, TN, FP, and FN being true positive, true
negative, false positive, and false negative, respectively.

For all classification methods, the receiver operating
characteristic (ROC) curve and the thereof derived area under
the curve (AUC), which are reliable performance meassures, were
calculated are reliable performance measures are were calculated.
The ROC is a probability curve where the true positive rate
(sensitivity) is plotted as a function of the false positive rate (100-
Specificity) for each possible data point. A high discrimination
(limited overlap in two distributions) has a ROC curve close to
the upper left corner (Zweig and Campbell, 1993).

Dengue Antibody Repertoire and Antibody
Sequence Classification
After selecting the appropriate encoding and machine learning
methods, the models were trained to classify repertoires of
individuals as dengue-challenged or non-dengue-challenged
based on a cross-repertoire signature found by training on
multiple repertoire data. Therefore, for each sequence within
the repertoire, the probability of being a dengue sequence was
calculated. If the mean probabilities per repertoire were above a
threshold of 0.5, the repertoire was assumed to be dengue-
challenged. Furthermore, the models were trained on dengue-
specific CDR3 sequences reported by Xu et al. (2017a) and Hu
et al. (2019a). In order to increase the number of dengue-specific
sequences, random mutations were computationally introduced
to dengue-specific sequences. Specifically, the germlines were
analyzed in order to determine conserved positions by means
of phylogenetic trees. Each non-conserved position was

subsequently randomly substituted by any other amino acid
creating additional sequences which could be used for training
the models on a sequence-level.

Similarity Networks
Networks were constructed with each CDR3 amino acid sequence
representing a node linked to its most similar sequences with the
Levenshtein distance (LD) � 1, edit of one amino acid.

RESULTS

Machine Learning can Classify
Dengue-Challenged Antibody Repertoire
Sequences
We used machine learning to classify sequencing data of dengue-
challenged antibody repertoires (Figure 2). We investigated
different amino acid encoding methods and introduced a novel,
physicochemical property-based, encoding strategy (Figure 2;
Supplementary Figure 1S). We tested the feasibility of applying
machine learning to classify dengue high-throughput antibody
repertoire sequences by testing a neural network model to
classify repertoires of dengue stages (Supplementary
Figure 2S). Various ML methods were applied to multiple
dengue antibody repertoire sequencing datasets in order to
identify sequence patterns within the complementarity-
determining region 3 (CDR3) representing a DENV-specific
signature on the antibody repertoire and sequence levels. The
methods enabled a repertoire-level classification of dengue
progression and identified dengue-challenged versus non-
dengue repertoires. We focused on the CDR3 region because

TABLE 1 | Seven encoding methods were benchmarked for their suitability to represent CDR3 a.a. sequences.

Encoding Type Explanation

One-hot Numeric
encoding

Each amino acid (A to Y) is represented by a binary vector leading to a total of 20 vectors with a length equal to
the longest CDR3 sequence in the dataset. Each position in the vector represents the amino acid at that
position within the sequence. If the amino acid at a specific position equals to the amino acid represented by the
vector, the position becomes 1 otherwise 0. An CDR3 sequence with a length of three would therefore be
represented, by twenty binary vectors, each of length two.

Integer encoding Numeric
encoding

Each amino acid ismapped to a number such that a number represents always the same amino acid character.
An amino acid sequence with length three would therefore be represented, by one integer vector of length
three.

k-mers Property based Each amino acid sequence is split into several smaller subsequences of length k. Each subsequence is then
treated as a token which is compared to other tokens found (Zamani and Kremer, 2011; Hill et al., 2018). By
then applying term frequency-inverse document frequency (or any other information retrieval algorithm) a
numeric weight is applied to each token.

BLOSUM50/62/80 Property based Sequence alignment using the BLOSUM50, BLOSUM62 and BLOSUM80 substitution matrix (Henikoff and
Henikoff, 1992). BLOSUMwith high numbers are used for highly related proteins while lower numbers are used
for more distantly related proteins. Although BLOSUM 62 was proven to be miscalculated and therefore not
being precisely accurate, it still delivers high performance results explaining why it is broadly used in protein
sequence alignment and encoding (Styczynski et al., 2008).

Physicochemical rules, chained Property based Sequence alignment using a set of physicochemical rules (Figure 3,Supplementary Appendix S1). The rules
are chained back-to-back together creating a numeric fingerprint per CDR3 sequence.

Subset of physicochemical rules,
chained

Property based Research has shown, that some physicochemical properties, for instance hydrophobicity, contribute stronger
to the antibodies ability to bind to an antigen (Schelonka et al., 2007; González-Muñoz et al., 2012; Laffy et al.,
2017; Ritmahan et al., 2020). Therefore, a subset of rules was chosen according to the estimated binding
contribution (Figure 3, Supplementary Appendix S1).

Physicochemical rules, summed Property based Sequence alignment using a set of physicochemical rules (Figure 3,Supplementary Appendix S1). The rules
then are then column-wise summed together.
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this is themajor site of antigen recognition and therefore represents
the most attractive target for sequence-based antibody specificity
predictions (Thakkar and Bailey-Kellogg, 2019). Additionally, ML
was applied at the antibody sequence level to distinguish between
dengue and non-dengue sequences within a dengue-challenged
repertoire. By trainingMLmethods with DENV bNAbs sequences,
we detected intrinsic sequence features that allow uncovering
sequence-associated signatures of dengue-specific antibodies.

To apply any ML methods to dengue sequencing data, we
investigated various encoding methods (Table 2; Figure 1). To
evaluate different encoding methods, the data were encoded with
eachmethod (Table 2) and then fed into anMLP network. First, the
rule-based encoding methods were benchmarked. To establish a
benchmarking baseline, 20 * 5 random rules were selected from the
library resulting in validation accuracies shown in Figure 3A. Then,
for a better understanding of which amino acid accounted for high
accuracy, only one amino acid was encoded as 1 while other amino
acids were encoded as 0 leading to 20 different trainings of the
model as shown in Figure 3B. Results indicated that amino acids D,
G, P, R, S, V, and Y alone have the highest accuracy rate. However, a
combination of these amino acids (Figure 3C, black bar) was still
outperformed by larger signature sizes as indicated in Figure 3C.
Figure 3D shows validation accuracy for integer, one-hot, k-mers,
physicochemical rules-based, and BLOSUM/62/80 encoding. For
a balanced dataset (equal number of samples in all classes) with
two classes, random guessing would lead to approximately 50%

accuracy. Therefore, the benchmarked encoding methods need to
achieve more than 50% accuracy to perform better than random
guessing.

On the one hand, methods which do not preserve any information
about the sequence order like the physicochemical rules-based
summation or the integer encoding, tended to achieve lower
accuracy measures. These procedures consider only the position of
a single a.a., but not which a.a. is found up- or downstream in the
sequence.On the other hand, encodingmethodswhich do preserve the
sequence order achieved a higher accuracy. One-hot encoding
achieved the highest accuracy (more than 91% balance accuracy),
followed by BLOSUM62 and chaining of physicochemical rules. All
BLOSUM encodings obtained a score of ≈90%. k-mers, which also
preservers the sequence order, achieved an accuracy of 85.6% but
started to overfit after five epochs (data not shown). k-mers could
potentially be further improved by expanding the key size.Nonetheless,
this was not further assessed as the one-hot encoding offered the
highest and sufficient accuracy to be used for further training.

Comparison of the Performance of Different
Machine Learning Architectures
After identifying one-hot as the encoding method, the encoded
data were fed into different ML models in order to investigate the
best suited architecture and parameter set. The tuned ANN
validation accuracy and validation loss during training is

FIGURE 3 | Benchmarking of encoding methods. (A) Validation accuracy for random chaining of five physicochemical rules. (B) Validation accuracy for encoding
with only one single amino acid per model. (C) Comparing the rule-based methods with traditional methods revealed that one-hot encoding achieved the highest
accuracy. Highest accuracy among the rule-based encoding is achieved by chaining the subset of 19 rules.
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shown in Figure 4. As expected, LSTM and RNN both
outperformed a more naïve MLP as these models are aware of
the regions upstream in the sequence.

Additionally, a random forest was trained. While all models
achieved an accuracy over 90%, the MLP is the lowest performing
ANN achieving an accuracy of 95.62%. RNN and LSTM achieved
similar accuracies 96.42 and 96.67%, respectively. The random
forest performs lower compared to the ANN achieving 92.66%
accuracy. All models have a higher specificity than sensitivity,
therefore these models were more accurate in predicting the
negative class as negative (i.e., background sequence as
background). However, a higher sensitivity is for this prediction
favorable as it is more relevant to correctly predict the disease than
predicting the background. The area below the ROC, referred to as
AUC, represented how well the models could distinguish between
two classes (Table 2 for AUC and Figure 5A for ROC).

Random forest is by far the most computationally expensive
model regarding training times (Figure 5B). It needed 684 min to
train a single fold making it more than four times slower than that
of the other models. The RNN and the MLP were equally efficient
and needed approximately 90% less time making them the most
efficient models in the comparison. The LSTM needed only 21%
of the time compared to random forest making it the most
inefficient out of the benchmarked ANN models.

While accuracy and ROC showed how accurately the models
performed the prediction, they did not indicate how confident the

model was in its prediction. For our binary classification purpose,
a probability of 100 and 52% return the same predicted class as
both are above the threshold 50. However, a prediction
probability of 100% would be preferred, indicating that the
model is more confident in its prediction. The prediction
confidence of each model for the positive class (dengue) is
shown in Figure 5C, and the prediction confidence for each
model for the negative class (background) is shown in Figure 5D.
ANNs are more confident with their positive and negative
predictions compared to the random forest model.

From the ANNs, the simple MLP was the most inaccurate
while also being faster during training than the LSTM and the
RNN models. The LSTM model has a slightly higher accuracy
while the training times are considerably slower than the
proposed MLP and RNN architecture. Even though, the
random forest achieves accuracy measures close to the ANN
models the ANN tend to make more confident predictions.
Therefore, LSTM seems to be the most suitable architecture
for the given classification task.

Antibody Repertoire-Level Dengue
Classification
After encoding data with one-hot, themodels were trained to classify
repertoires of individuals as dengue-challenged or non-dengue-
challenged based on a cross-repertoire signature found by
training on multiple repertoire data. Figure 6 indicates the
repertoire-wise classification per original dataset for non-dengue-
challenged (A and D) and dengue-challenged repertoires (B, C, and
E). In total 118 dengue-challenged repertoires and 19 dengue-
challenged repertoires were classified, both classes with ≈125,000
sequences each. From the 118 dengue-challenged repertoires, all
were classified correctly regardless of the model while from the 19
non-dengue-challenged repertoires only 5 were classified correctly
by the ANNs and 1 by the random forest. The 5 correctly classified

FIGURE 4 | Comparison of the validated NN models (A) accuracy and (B) loss. The X-axis shows the number of epochs while the Y-axis shows the validation
accuracy or the validation loss respectively.

TABLE 2 | Accuracy, sensitivity and specificity, and AUC and training time.

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

MLP 95.62 98.51 92.73 98.65
RNN 96.42 97.25 95.54 98.93
LSTM 96.67 97.77 95.56 98.99
Random
Forests

92.66 95.08 90.25 96.04
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repertoires contain more than 12,000 sequences each, while those
repertoires that were misclassified as dengue-challenged are very
small, each consisting of less than 550 sequences; this might be a
potential explanation for the misclassification. If we take into
consideration only the 93 repertoires with more than 1,000
sequences, all repertoires were classified correctly (5 as non-
dengue and 88 as dengue).

In order to understand the misclassification, we further
investigated the repertoires at the sequence level
(Supplementary Figure 3S). By representing the CDR3 amino
acid sequence in a similarity network (Miho et al., 2019), the ML
predictions could be better understood. Adding the ML predicted
and the actual class to each node of the network allowed us to
observe if the model classifies similar sequences equally.
Comparing misclassified sequences in the background
repertoires with the similarity network indicated that these
sequences are highly similar to sequences found in dengue-
challenged repertoires and therefore, classified as dengue
sequences. For the majority of the similarity networks (14 out
of 15 groups), ML classifies all similar sequences equally as either
background or dengue-challenged. For some similarity networks
(i.e., 52, 431, and 1,359) ML classifies all sequences as background
sequences although roughly 10% are dengue sequences. During

the data prepossessing stage, all sequences found within a
dengue-challenged repertoire were labeled as dengue-related.
However, this simplification does not reflect the biology of the
repertoire, as not all CDR3 amino acid sequences present in
dengue patients are dengue specific but rather could be the result
of any other non-dengue infection or background antibodies and
can be considered as a training error. ML classifies these similar
sequences together as background sequences, leading to the
assumption that the ML classification corrects the
simplification leading to a training error.

The SVM model could classify broadly neutralizing antibody
sequence signatures with 89% prediction accuracy, however this
method could not detect these sequence signatures at the
repertoire level (Supplementary Figure 6S). Classification
performed on the repertoire-level with neural networks was
performed using models that have calculated a probability
indicating if a repertoire is dengue-challenged or not.
However, this approach did not indicate whether a single
CDR3 a.a. sequence binds to DENV antigens. We performed
training and testing of ML models on dengue-binding antibody
sequences. Currently, only few Ab are known to bind dengue
(Deng et al., 2013; Hu et al., 2019; Li et al., 2019; Rajamanonmani
et al., 2009; Xu et al., 2017). Because these few sequences are not

FIGURE 5 | Comparison of different machine learning models on dengue CDR3 sequences. (A) Receiver Operating Characteristic (ROC) curves for MLP, RNN,
LSTM, and random forest provides a specificity based on the sensitivity. The X-axis shows the specificity in function of the sensitivity (100-Sensitivity, false-positive rate)
while the Y-axis shows the sensitivity (true positive rate). (B) Training times of one k-fold (Y-axis) for the givenMLmodels (X-axis) indicating that random forest is by far the
most computationally intense models. MLP and RNN are roughly the same while LSTM needs approximately twice as long compared to the other ANNmodels. (C)
Median, confidence intervals, first and third quartile, and min and max values for the positive class (dengue). This indicates that the confidence for most dengue
predictions is highest for the LSTM model, followed by the other ANN and random forest predicting with lowest confidence. (D) Median, confidence intervals, first and
third quartile, min and max values for the negative class (background). This indicates that LSTM and RNN are the most confident in predicting the background class
followed by the MLP.
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sufficient to train an ML model for sequence classification, we
proposed two different approaches that rely both on sequence
similarity to generate sequences that could potentially bind
dengue antigens and therefore could be used for machine
learning (Figure 7). This approach deemed promising as
sequence similarity was shown to be an important
characteristic for ML to correctly classify antibody sequences.
Dengue-neutralizing Ab CDR3 a.a. sequences were collected
from previous research (Supplementary Table 3S). A
phylogenetic tree was used to detect non-conserved a.a. as a
starting point for generating CDR3 a.a. sequences similar to
known dengue antibodies. Sequences similar to known
dengue-binding antibodies were retrieved in dengue-challenged
repertoires. The most similar sequences (coloured sequences)
were analyzed through sequence alignment to identify conserved-
and non-conserved a.a. All non-conserved a.a. were then replaced
by either none or any of the found amino acids for that position
and thus generating approximately 1.3 million mutations of the
original sequences. Those sequences which were most similar in
regards of Levenshtein distance to dengue-binding Ab sequences,
and subsequently selected sequences with LD � 1, were retrieved
in dengue-challenged repertoires (Supplementary Figure 5S).

Non-conserved a.a. were replaced by either none or any of the
found amino acids for that position. 141 sequences similar to
known dengue-binding antibodies were found in dengue-
challenged repertoires. An LSTM model was trained to
provide a sequence-level dengue classification. To validate the
approach, the known dengue-binding antibodies (n � 5), were all
classified correctly by the model. Additionally, sequences
generated based on mutations of these antibodies were
classified with a prediction accuracy of 86.52% and sensitivity
83.36% indicating how many dengue sequences were correctly
predicted as dengue specific. By applying the trained ML
algorithm on dengue-challenged repertoires, antibodies that
could potentially bind to dengue antigens could be selected. A
total of approximately 1 million sequences were presented to the
model with 34,257 sequences being classified as potential dengue-
binding antibody candidates. The 20 highest ranked sequences
are shown in Figures 7B,C. As expected, most of the predicted
dengue-specific CDR3 a.a. sequences were similar to the m366.6
antibody which was the starting point for simulating the a.a.
mutations. These sequences could have also been identified with a
sequence similarity network analysis. However, ML also classified
sequences which were less similar to the m366.6 antibody. For

FIGURE 6 | Classification on repertoire level per used dataset, for readability only four repertoires per class. (A,D) Classification performed for non-dengue-
challenged repertoires found in Parameswaran et al. (2013) and Hwang et al. (2018). While in (A) all repertoires were classified correctly by the ANN models, in (D) all
repertoires were mistakenly classified as dengue-challenged, likely due to a low number of sequences (<1,000) within the repertoires. (B,C,E) Classification performed
for dengue-challenged repertoires found in Parameswaran et al. (2013), Godoy-Lozano et al. (2016); and Hwang et al. (2018) where all repertoires were correctly
classified as dengue-challenged. Sequence-level basis for classification of dengue repertoires and antibodies.
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instance, CDR3 a.a. sequences with a rather large Levenshtein
distance to Ab m366.6 (LD � 9, LD � 10) were classified as
dengue-binding. This result indicates that ML can classify
pontential dengue-binding antibody sequences even if they are
not similar to the trained sequences, thus it is a more suitable
method for this task compared to similarity networks.

DISCUSSION

Despite intensive research to understand dengue and the resultant
human immune response, as of today neither vaccines nor
treatments are available for dengue. The only marketed vaccine
rather focuses on dengue subtypes and its efficacy often depends on

the clinical history of the patient. Therefore, dengue remains an
unresolved thread to global public health, especially in developing
countries in South East Asia and Latin America. With
advancements in HTS technologies, a multitude of dengue
sequence datasets are publicly available and can be used as
starting point for training machine learning models.

We have proposed a novel encoding method that takes into
consideration the physicochemical properties of each amino
acid. By applying a selected set of physicochemical properties
to the CDR3 sequence, we established a unique fingerprint
for each sequence. Even though our proposed method
competes with traditional encoding techniques, we could
not demonstrate an added value by applying encoding
based on physicochemical rule-based scenarios. Our results

FIGURE 7 | Dengue-specific antibody sequences generated with network analysis and machine learning. (A) Sequences with highest similarity to Ab m366.6 are
shown in red andmore distant similar sequences are shown in orange and blue. (B)CDR3 a.a. length of dengue-specific classified antibody sequences. (C) Logo-plot of
the top 20 dengue-specific classified sequences.
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indicate that domain-specific knowledge of physicochemical
properties of aminoacids is irrelevant for encoding sequence
information. Subsequently, we trained different machine
learning models to classify CDR3 amino acid sequences first
on repertoire and subsequently on the sequence level. By
learning intrinsic sequence features from labeled data, the
models classified unseen sequences accordingly. Our results
demonstrated that one-hot encoding combined with a LSTM
ANN architecture led to the highest prediction accuracy of
CDR3 sequences. The accuracy achieved was higher than
the previous models reaching 71.6% (Shemesh et al., 2021).
Similarity networks have potential in mapping and identifying
antibody sequences for machine learning training, while
these models can outperform similarity analysis in the
detection of sequence signatures independently from sequence
similarity.

The prediction of repertoire signatures is dependent on the
size of the antibody repertoire. Our results indicate that machine
learning models perform poorly on small repertoires with less
than 1,000 sequences. This might be due to the fact that
undersampled repertoires do not reflect properties of the
entire repertoire and fail to capture disease-specific
characteristics. It requires further research to investigate if
there is a general threshold that can be set for the detection of
disease-generated patterns in an antibody repertoire.

Our results showed that deep sequencing of the antibody
repertoire in dengue infection enables in-depth decoding of
dengue-antibody signatures at the repertoire and sequence
level. We demonstrated that machine learning can be used to
classify CDR3 sequences for DENV repertoire data which
represents an important milestone toward the identification of
dengue-specific neutralizing antibodies. Further research could
apply the proposed architecture on unseen immune repertoire
data in order to find sequence-associated signatures of DENV
broadly neutralizing antibodies. Therefore, our results show that
potential dengue-specific antibody and broadly neutralizing
antibody candidates can be generated de novo entirely
in silico; however, the expression and binding assays are
necessary for in-vitro validation. The identified broadly

neutralizing antibodies could be used to test novel vaccines
and design treatments for dengue.
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