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A statistical method for region-based meta-analysis
of genome-wide association studies in genetically
diverse populations

Xu Wang1, Xuanyao Liu2, Xueling Sim3, Haiyan Xu3, Chiea-Chuen Khor4, Rick Twee-Hee Ong2,3,
Wan-Ting Tay5, Chen Suo3, Wan-Ting Poh1, Daniel Peng-Keat Ng1, Jianjun Liu4, Tin Aung5,6, Kee-Seng Chia1,2,3,
Tien-Yin Wong5,6,7,8, E-Shyong Tai1,8 and Yik-Ying Teo*,1,2,3,4,9

Genome-wide association studies (GWAS) have become the preferred experimental design in exploring the genetic etiology of

complex human traits and diseases. Standard SNP-based meta-analytic approaches have been utilized to integrate the results

from multiple experiments. This fundamentally assumes that the patterns of linkage disequilibrium (LD) between the underlying

causal variants and the directly genotyped SNPs are similar across the populations for the same SNPs to emerge with surrogate

evidence of disease association. We introduce a novel strategy for assessing regional evidence of phenotypic association that

explicitly incorporates the extent of LD in the region. This provides a natural framework for combining evidence from multi-

ethnic studies of both dichotomous and quantitative traits that (i) accommodates different patterns of LD, (ii) integrates

different genotyping platforms and (iii) allows for the presence of allelic heterogeneity between the populations. Our method

can also be generalized to perform gene-based or pathway-based analyses. Applying this method on real GWAS data in type 2

diabetes (T2D) boosted the association evidence in regions well-established for T2D etiology in three diverse South-East Asian

populations, as well as identified two novel gene regions and a biologically convincing pathway that are subsequently validated

with data from the Wellcome Trust Case Control Consortium.
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INTRODUCTION

Remarkable achievements have been made in large-scale genetic
studies of common diseases and complex traits.1,2 The identification
of variants in the human genome that are convincingly associated
with different phenotypes has mainly been carried out in individuals
of European descent, although increasingly studies involving non-
Caucasian samples from diverse population groups have been pub-
lished or are currently being conducted. Genome-wide meta-analyses
(GWMA) involving tens of thousands of samples have extended
the success in allowing novel variants with smaller effect sizes to be
discovered.3–7 Despite these triumphs, these findings really account
for only a small fraction of the total disease heritability,8 suggesting
undiscovered genetic mechanisms may be responsible or alternative
methods to analyze these data may be necessary to address the missing
heritability.

Current implementation of GWMA requires the same SNPs to
display consistent evidence of phenotypic association across multiple
populations. This implicitly assumes that across these populations, (i)
the same causal variant is present; (ii) the linkage disequilibrium (LD)
pattern between the causal variant and the assayed SNPs is similar and

(iii) the effect sizes observed at the assayed SNPs are consistent.9,10

Random effects methods for combining data across studies do not
utilize information from neighboring SNPs that may present concur-
ring evidence of disease association in different studies, and often have
the tendency to weaken association signals.9 SNP-based meta-analyses
also require the same SNPs to be genotyped in all the populations,
although this requirement can apparently be addressed by imputation
strategies that effectively standardize the SNP content across different
studies11–13 (Figure 1). However, imputation does not always present
an effective solution, particularly in the absence of appropriate
population reference panels.14,15

Before recent whole-genome sequencing endeavors, SNP discoveries
were predominantly made in populations of European ancestry.16 This
strong ascertainment bias has inadvertently skewed the SNPs surveyed
in the International Hap-Map Project,17 which consequently preju-
diced the SNP content of commercial genotyping platforms to carry
tagging SNPs that are liable to exhibit higher minor allele frequencies
in European populations.18 This means current genotyping arrays may
be less optimal for non-European populations, resulting in attenuated
association signals due to lower allele frequencies and weaker LD.14,15
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The pursuit of evidence stronger than the genome-wide significance
is thus more challenging, and larger sample sizes in non-European
studies and meta-analyses of ethnically mixed populations are
required to compensate for variations in LD patterns from European
populations.14,19 Instead of seeking individual variants that display
convincing evidence of phenotypic association across multiple popu-
lations, a more realistic scenario is perhaps to look for genomic
regions with consistent clustering of SNPs exhibiting moderate signals
in these populations.

In this paper, we propose a novel paradigm for interrogating genetic
data for disease association given either a dichotomous or a quanti-
tative outcome. Our method works by quantifying the degree of over-
representation of associated SNPs in a pre-defined genomic region,
given a specific definition of statistical significance. Through an eigen-
decomposition of the matrix measuring the LD between every possible
pair of SNPs in the region, the effective number of independent SNPs
as well as the number of independent SNPs exhibiting evidence of
phenotypic association can be evaluated (Supplementary Figure S1).
The regional evidence of phenotypic association is thus quantified as
the extent of over-representation of independent associated SNPs
against the effective total number of independent SNPs in the region.
This approach can be applied in a genome-wide fashion by consider-
ing moving windows of a fixed length within a population. In
addition, this presents a natural framework for integrating the results
from multiple studies in a region-based genome-wide meta-analysis,
where we can sum up the number of independent signals and
independent SNPs in each region across the different studies, and to
calculate a single regional P-value for this meta-analysis by quantifying
the joint extent of over-representation. This framework also allows a
straightforward extension to consider evidence across genes and
biological pathways.

METHODS

Region-based analysis
Our region-based meta-analysis approach relies on the principle that when L*

independent hypotheses are tested at a statistical significance threshold of a%

(Pcrit), on average we expect aL*/100 of these hypotheses to display statistical

evidence more significant than a% by chance. In the application within a

genome-wide association study (GWAS), suppose there are 100 SNPs in a

particular genomic window of 250 kb and the threshold for defining statistical

significance has been set at 1%. Under the null hypothesis that none of the 100

SNPs are associated with the phenotype, we expect one SNP on average to

exhibit a P-value that is o0.01 if the 100 SNPs are mutually independent. An

over-representation of independent SNPs with P-value o0.01 in this genomic

region thus corresponds to evidence that suggests the region is associated with

the phenotype. However, the presence of LD implies the assumption of

independence between the SNPs is unlikely to be valid.

In order to evaluate the effective number of ‘independent’ SNPs in each

genomic region, we perform an eigen-decomposition of the L�L symmetric

correlation matrix M between the L SNPs with entry mij denoting the LD in

directional r2 between the ith and the jth SNP, where the direction is

determined by the sign of D¢. Here we assume the minor allele frequencies

of all L SNPs are at least 1%. The resulting eigenvectors effectively represent

mutually independent contributions in explaining the variance in the correla-

tion matrix, and each eigenvector is given as a linear combination of SNPs that

are in at least some degree of LD. The SNP loadings of each eigenvector

measure the extent each SNP contributes to the eigenvector, and the relative

loadings between the SNPs for each eigenvector provide a surrogate for the

degree of correlation between the SNPs. The L eigenvectors thus represent

independent sources of information from all the SNPs in the window, and

the number of eigenvectors Ntotal that cumulatively accounts for t% of

the variance can be determined as argminl

P
i¼1

lliZtL%, for 1rlrL

and where li represents the eigenvalue corresponding to the ith eigenvector

ei. Let w denote a vector of length L with the wi entry corresponding to one if

the observed P-value for the ith SNP is oPcrit, and zero otherwise. Suppose

Figure 1 Illustration of the three scenarios in a meta-analysis, where the genotyped SNPs may be in different degree of LD with the unobserved causal

variant (star): (i) the ideal situation where the same SNPs are genotyped in two studies, and the LD between them and the functional variant is identical in

both populations (black arrow); (ii) a realistic situation where the same markers are genotyped in two studies, but different LD patterns exist between them

and the functional variant (green arrow); (iii) realistic situation where different markers are genotyped in two studies, and cannot be meta-analysed without

resorting to imputation (pink arrow). The LD between the causal variant and each SNP is represented in different color intensity ranging from white (low LD)

to red (high LD).
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eij denote the jth component in the ith eigenvector, then the corresponding

component in the ith scaled eigenvector represented by e’i is |eij|/
P

j¼1
L|eij|. The

effective number of independent SNPs that exhibit P-value oPcrit is thus

calculated as

Nhit ¼
XNtotal

i¼1

w � e
0
i :

The regional evidence for the extent of over-representation of SNPs with

P-values oPcrit is calculated as the upper-tailed P-value of the exact Binomial

test for observing Nhit out of Ntotal SNPs when the success probability is given

as Pcrit. However, as Nhit can be a non-integer, we estimate the P-value associ-

ated with Nhit by linear interpolating between the P-values obtained for the

floor and ceiling integer values of Nhit, or equivalently Pfloor+(Pceiling�Pfloor)�
(Nhit�INhitm), where Pfloor and Pceiling denote the P-values associated with

INhitm (the floor integer value of Nhit) and JNhitn (the ceiling integer value

of Nhit), respectively. Our simulation study suggests this procedure is con-

servative and tends to underestimate the evidence (Supplementary Figure S2),

thus the true evidence is likely to be more significant than the resultant linear-

interpolated P-value.

A region-based meta-analysis across K independent populations can be

performed by calculating the corresponding Nhit
(k) and Ntotal

(k) from each

population k in the same genomic window. The cumulative evidence across the

K populations will then be quantified by the upper tailed P-value of the exact

Binomial test for observing
P

k Nhit
(k)out of

P
k Ntotal

(k) SNPs when the success

probability is given as Pcrit.

Type 2 diabetes (T2D) data sets
We applied our region-based meta-analysis approach to combine the evidence

from three separate genome-wide surveys of type 2 diabetes in the Chinese,

South-East Asian Malays and Asian Indians from Singapore. Results from each

individual survey and the SNP-based meta-analysis have been reported else-

where.20 Briefly, the Chinese GWAS examined 2010 cases and 1945 controls

(post-QC) that were typed on a mixture of Illumina (San Diego, CA, USA) 610

(1082 cases/1006 controls) and Illumina1M arrays (928 cases/939 controls).

The corresponding numbers for the Malay and Indian GWAS were 794 cases/

1240 controls and 977 cases/1169 controls, and these were all genotyped on the

Illumina 610 arrays. A genome-wide region-based meta-analysis was first

performed between the Chinese data that were genotyped on the two arrays

to yield a single set of findings for the Chinese experiment. The three

experiments for the different population groups were used as discovery cohorts

for a region-based meta-analysis with a window size of 250 kb and a sliding gap

of 50 kb such that two consecutive windows have a 200-kb overlap. We also

performed a gene-based meta-analysis across 30 037 genes identified from the

hg18 version of the TransMap UCSC gene mapping, with each window

spanning a 100-kb flanking buffer from the start and end coordinates of

each gene. A pathway analysis was also performed for 212 pathways in the

KEGG database21–23 (http://www.genome.jp/kegg/pathway.html). Each gene

(inclusive of a 25-kb flanking buffer) in a particular pathway was considered

as a distinct window, except for genes within 50 kb of each other, which we

merged as one discrete window. The intra-population evidence for a pathway

was calculated from the summation of the effective number of independent

significant and total SNPs across the windows. The P-value threshold (Pcrit) was

set at 0.01. We identified any genomic region that exhibited P-value o0.001 in

at least two populations from the region-based and gene-based analyses. This is

an additional criteria to ensure that at least two populations are contributing

to the observed signals, given the fundamental strategy of our approach is to

identify genomic regions that are associated with the outcome in multiple

populations. We excluded any regions that are known to carry copy number

changes as estimation of LD is likely to be inaccurate in these regions. For the

pathway analysis, we identified a pathway that exhibited P-value o0.05 in at

least two populations. To avoid artificial signals of disease association that were

the results of erroneous genotype calling, genotyping quality was visually

ascertained in each cohort for every SNP located in the discovered regions

from the region-based analysis. To validate the findings, similar analyses

were performed on the type 2 diabetes data from Phase 1 of the Wellcome

Trust Case Control Consortium (WTCC).19 Calculation of LD in each of

the discovery and validation cohorts was performed with 500 control samples

from the respective study.

Software implementation
The method described in this paper is implemented in three separate C++

programs: (i) regionalP for performing genome-wide region-based analysis; (ii)

regionalP-gene for performing gene-based analysis; and (iii) regionalP-pathway

for performing pathway-based analysis. The programs are available from

http://www.statgen.nus.edu.sg/~software/regionalP.html.

Descriptions of the set up for the simulations, along with

additional methods and analyses are available in the Supplementary Material

online.

RESULTS

Power and false-positive rates
We compared our method for regional analysis against standard SNP-
based analyses with (i) only the genotyped SNPs or with (ii) the full
set of SNPs after imputing against reference panels from phase 2 of the
HapMap (HapMap2). In the meta-analysis combining the results
from all three populations, the power of the region-based strategy
was similar to that from a meta-analysis of the imputed SNPs
(Figure 2). This was significantly higher than the power from the
meta-analysis of only the genotyped SNPs. The false-positive rates of
all three meta-analytic approaches were o5%, although the region-
based approach had a near-zero false-positive rate when we imposed
an additional restriction requiring at least two populations to exhibit
P-values of o0.001 in the same region (Supplementary Table S1
online). At a genome-wide significance of 10�8, this additional
restriction resulted in only a marginal decrease in statistical power,
although this decrease was more substantial at less stringent signifi-
cance thresholds. Investigating the sensitivity of our method by the
allelic spectrum of the simulated causal variants in CEU, we observed
the region-based approach was less powerful in identifying low-
frequency causal variants (MAF of causal variant r5%) but was
marginally more powerful for common causal variants (MAF of causal
variant 45%, see Figure 2).

We also explored the performance of the three approaches in the
presence of allelic heterogeneity, defined as having different causal
variants in the same gene or genomic location across different
populations. Specifically, we performed another series of simulations
assuming two different causal variants in CEU and JPT+CHB,
while allowing YRI to carry either of the two possible causal
variants. Our simulation explicitly selected causal variants that are
at least 20 kb away but within 50 kb of each other. The region-based
approach significantly outperformed both SNP-based approaches
in the meta-analyses across CEU and JPT+CHB, particularly at
lower Type I errors and when LD between the two causal variants
is low (Figure 3). When the LD between the two causal variants is
high (r240.8), there is almost no difference in the results of the
SNP-based meta-analyses of all three populations at higher Type I
errors as compared with the power observed in our earlier simula-
tions with only one causal variant. This is reassuring since we
expect the two causal variants to behave as effectively a single
variant when the LD is high. However, the low power experienced
by the SNP-based methods in the presence of two separate causal
variants reflects the inadequacy of SNP-based approaches for integrat-
ing data across diverse populations, and the greatest merit of the
region-based approach is in the presence of allelic heterogeneity
between populations where the different causal variants are in weak
and non-existent LD.
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Application to T2D data
We applied our method to perform region-based, gene-based and
pathway-based meta-analyses in three independent genome-wide

studies of type 2 diabetes (T2D) involving the Chinese, Malays and
Asian Indians in Singapore. This was performed across all the
autosomal chromosomes within each of the three GWAS in a

Figure 2 Power comparisons of the different methods for the meta-analysis across all three Hapmap populations. Simulations were performed with HAPGEN

(Wellcome Trust Centre for Human Genetics, Oxford, UK) assuming a causal variant that was present in all HapMap phase 2 panels with a multiplicative allelic

relative risk of 1.5. The case–control genotype data were subsequently thinned to the SNP content of Affymetrix 500K (CEU simulations), Illumina 1M (JPT+CHB

simulations) and Affymetrix 6.0 (Santa Clara, CA, USA) (YRI simulations). We calculate the power when only the genotyped SNPs were considered (green triangles),

and when we performed region-based analyses of 100kb regions in each of the three populations (red circles). Imputation was performed with population-specific

haplotypes to recover the SNPs removed from the thinning (except for the causal SNP), and a SNP-based analysis was performed on this denser set of imputed and

genotyped SNPs (blue diamonds). The SNP-based meta-analyses considered either the genotyped SNPs present across all three platforms only (green triangles) or
across the denser set of imputed and genotyped SNPs common to all three populations (blue diamonds). The region-based meta-analysis was performed without

restriction (red circles), and with the restriction that at least two populations display region-based P-value o0.001 (red open circles).

Figure 3 Power comparisons of the different methods for meta-analysis in the presence of allelic heterogeneity. A different causal variant was selected in CEU

and JPT+CHB, respectively, while either of the two causal variants was equally likely to be present in the YRI simulations. The two causal variants are located

at least 20 kb away but are not 450kb apart, and have minor allele frequencies of at least 10% in all three HapMap populations. The case–control genotype

data simulated from HAPGEN were subsequently thinned to the SNP content of Affymetrix 500K (CEU), Illumina 1M (JPT+CHB) and Affymetrix 6.0 (YRI).

We calculated the power when only the CEU and JPT+CHB populations were combined (top row), and when all three HapMap panels were combined (bottom

row), investigating the performance of the meta-analysis across the SNPs on all three arrays (green triangles), and for the region-based meta-analysis considering

250 kb regions (red circles). Imputation was performed with population-specific haplotypes to recover the SNPs removed from the thinning, and a SNP-based

meta-analysis was performed on this denser set of imputed and genotyped SNPs common to all three populations (blue diamonds). We binned the 3000 pairs

of causal variants according to the LD between the two SNPs into four groups: (i) 0rr2r0.1; (ii) 0.1 or2r0.3; (iii) 0.3 or2r0.8; (iv) 0.8 or2r1.
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hypothesis-generating fashion, where for the region-based analyses we
considered sliding windows of 250 kb each with a sliding distance of
50 kb such that every pair of consecutive windows overlapped by
200 kb. About half of the Chinese samples were genotyped on the
Illumina 1M array, while the remaining half of the Chinese, Malay and
Indian samples were genotyped on the Illumina 610 array. Results of
the SNP-based meta-analyses using both the genotyped SNPs and the
imputed SNPs have been reported elsewhere.20 Briefly, none of the
SNPs achieved genome-wide significance in the meta-analyses,
although variants in CDKAL1 and HHEX/IDE/KIF11 displayed mod-
erate evidence of T2D association in at least two of the three
populations. In particular, variants in CDKAL1 were found against a
genomic background exhibiting substantial LD variations between the
populations.24

The genome-wide meta-analysis with our region-based method
identified five regions exhibiting Po0.001 in at least two of the
three populations (Table 1). Other than the region on chromosome
6 that encompassed CDKAL1, the other four regions did not emerge
in the SNP-based meta-analyses20 (Supplementary Table S2 online). In
the replication experiment with the WTCCC data, two of these five
regions displayed strong evidence of regional association (Po10�4) in
the case–control T2D GWAS, which included the stretch on chromo-
some 6 encompassing CDKAL1 and the region on chromosome 3
between 21.73 and 22.13 Mb that encompassed ZNF659. Suggestive
corroborative evidences (Po0.05) from WTCCC were also seen in the
region on chromosome 2 that spanned the STK39 gene and the region
on chromosome 14 containing the genes GNG2 and NID2. There was
no evidence of regional association in the WTCCC for the remaining
region on chromosome 20 spanning STX16 and NPEPL1.

Remarkably, all five regions have been previously implicated in
diabetes, obesity or other cardiovascular biomarkers. The convincing
signal for the region encompassing CDKAL1 is consistent with
established findings for T2D,25–30 while ZNF659 has been associated
with young-onset type 2 diabetes in the American Indians.31 The
STK39 gene has been consistently reported to harbor variants impli-
cated in hypertension and in obesity and diabetes-related rodent
quantitative trait loci.32 Previous pathway analysis has identified the
G-protein GNG2 to be associated with type 1 diabetes,33 suggesting a
serotonin modulating mechanism that is similarly relevant in the
etiology of type 2 diabetes. Variants in STX16 have also been reported
to significantly slow the reversal of insulin-stimulated glucose trans-
port,34,35 a biological mechanism that is highly relevant to T2D.

DISCUSSION

The scale of GWMA with diverse European and non-European
populations is expected to increase markedly given the popularity of
genome-wide designs in studying the genetic etiology of common
diseases and complex traits. This, however, increases the challenge of
accommodating varying patterns of LD that may exist between
genetically diverse populations, which can compromise the ability to
reproduce the association signals from surrogate markers that are
correlated to the unobserved functional polymorphisms. We have
introduced an alternative strategy for combining the evidence across
different populations that is robust to dissimilar patterns of LD
surrounding a bona fide association signal. The approach is applicable
to both case–control studies or in association studies of quantitative
traits. Our method has also been shown to perform comparably to
imputation-based meta-analysis, except it relies on available genotype

Table 1 Results of the region-based meta-analysis for type 2 diabetes

Discovery – Single population Discovery – Combined Validation from WTCCC1

Chromosome

Starta

(top window)

Enda

(top window) Popb

#

Hitsc

#

SNPd P

#

Hitsc

#

SNPd P Starte Ende

#

Hitsc

#

SNPd P Gene

2 168 408 674 168 858 674 C 4.9 43 1.49�10�4 11.2 90 1.60�10�9 168 758 674 169 208 674 2.2 21 1.47�10�2 STK39

(168 458 674) (168708 674) M 6.3 23 6.03�10�8 (168808 674) (169058 674)

I 0 24 1

3 21736 044 22136 044 C 6.2 103 4.91�10�4 13.6 221 2.55�10�7 21186 044 21636 044 4.5 25 6.06�10�5 ZNF659

(21 786 044) (22036 044) M 7.3 58 1.36�10�6 (21 286 044) (21 536 044)

I 0 60 1

6 20594 609 20894 609 C 4.1 41 6.56�10�4 10.1 107 9.68�10�7 20494 609 21044 609 7.3 20 5.03�10�10 CDKAL1

(20 594 609) (20844 609) M 0 28 1 (20 594 609) (20 844 609)

I 6 39 2.42�10�6

14 51355 752 51755 572 C 3 67 2.91�10�2 19.7 146 2.92�10�16 50955 752 51405 752 2.5 30 1.99�10�2 GNG2,

NID2(51 455 752) (51705 752) M 7.5 34 2.24�10�8 (51 105 752) (51 355 752)

I 9.2 45 5.03�10�10

20 56559 795 56859 795 C 5 75 9.22�10�4 11.1 173 1.56�10�6 56609 795 56859 795 0.9 25 0.294 STX16,

NPEPL1(56609 795) (56859 795) M 0 46 1

I 6.1 52 1.20�10�5

Genomic regions identified by the region-based analysis, with the discovery mechanism based on three genome-wide association studies conducted in Chinese, Malays and Asian Indians in
Singapore. Validation of the regions that emerged was performed on the type 2 diabetes case–control study from Phase 1 of the Wellcome Trust Case–Control Consortium (WTCCC).
aThe start and end positions of the genomic region containing consecutive windows with Po0.001 in at least two of the populations (in bold). The start and end positions of the top 250 kb window
are shown in brackets. Subsequent columns show the evidence for the discovery populations in the top window.
bThe three discovery populations abbreviated: C, SP2 Chinese; M, SiMES Malays; I, SINDI Indians.
cEffective number of independent SNPs with Po0.01 after accounting for LD.
dEffective number of independent SNPs across the region after accounting for LD.
eThe start and end positions of the genomic region containing consecutive windows with evidence of validation (defined as Po0.05), with the start and end positions of the top 250 kb being shown
in brackets. Subsequent columns show the evidence for WTCCC1 in the top window. For regions without any 250kb windows displaying Po0.05, the best window in that region is shown instead.

Region-based meta-analysis
X Wang et al

473

European Journal of Human Genetics



information from the experiment without requiring additional refer-
ence data from appropriately matched populations. In the presence of
allelic heterogeneity, our approach outperforms both SNP-based
approaches using either genotyped or imputed SNPs. The application
of the region-based method to three genome-wide surveys in T2D
resulted in the discovery of novel and established regions that are
subsequently validated with data from the WTCCC.

The region-based approach relies on the elegant application of the
concept of statistical significance in evaluating a genomic region for
evidence of trait association. For example, under the null hypothesis
that the region is independent of the phenotype, we expect 5% of the
SNPs to be statistically significant by chance when adopting a P-value
threshold of 5%, if indeed all the SNPs in this region are mutually
independent. If this assumption of mutual independence is true, an
over-representation of statistically significant SNPs in this region
constitutes evidence that this region is associated with the phenotype,
with the extent of over-representation indicating the strength of the
evidence. This is analogous to the use of 5�10�8 as the definition of
genome-wide significance for assessing the likely authenticity of single
markers. LD between the SNPs can confound the measurement of
over-representation, as this can either inflate the number of significant
signals, which increases false positives, or produce an inflated estimate
of the total number of SNPs, which decreases statistical power. The
eigen-decomposition of the LD matrix allows the effective number of
independent SNPs to be estimated and consequently, also the effective
number of independent association signals that are statistically sig-
nificant. By surveying the same genomic region across different
independent populations, the same statistical framework can be
extended to consolidate the evidence from multiple populations,
simply by summing the effective number of independent SNPs and
signals across these populations and assessing the evidence for an over-
representation of significant signals. This provides a simple but, yet,
effective solution to combining the results from experiments that use
different genotyping platforms. By searching for the same regions
rather than the same SNPs to emerge in the different GWAS, inter-
population variation in LD patterns between the assayed SNPs and the
causal variant is expected to have lesser impact on the sensitivity of
our approach.

One feature of our method is the ability to sharpen the association
evidence in regions containing multiple weak signals across different
ethnic groups. These signals may be weaker as a result of SNP
ascertainment biases in the design of genotyping arrays, resulting in
weaker LD between the assayed SNPs and the causal variants. The
current definition of genome-wide significance excludes many poten-
tial signals to be considered in a bid to protect against the abundance
of false discoveries that is associated with testing in excess of a million
hypotheses. This poses a significant challenge to genome-wide studies
and GWMA in populations with short LD, such as African popula-
tions,15,36 as it is less likely for variants to be in sufficient LD to exhibit
statistical evidence stronger than the stringent threshold. Furthermore,
the greater genetic diversity that is common of such populations means
it is not immediately straightforward to compensate for the lower
LD by increasing the effective sample size through a meta-analysis
of several populations. Our method thus provides a viable solution
within a sound statistical framework to exploit and combine the
evidence from SNPs that are weakly associated with the phenotype.

The application of analytical methods that investigate regions in the
genome rather than relying on individual SNPs is not a new concept.
Neither is implementing a statistical strategy to estimate the effective
number of independent association tests in the presence of LD.
Numerous approaches have in fact been introduced to address the

issue of multiple testing in the presence of correlated SNPs.37–43

However, these methods either assign the most significant SNP-
based evidence as the statistical evidence for the set of loci,39 or do
not explicitly incorporate the association evidence in adjusting for the
effective number of tests.38,40–43 A recent region-based approach
adopted a more sophisticated approach that borrows information
from surrounding SNPs, although it tends to rely on heuristic
measures such as the proximity to specific genomic features (eg,
known genes, evolutionarily conserved regions and haplotype blocks)
for defining SNP clusters.44 In our opinion, the imputation frame-
works that MACH12 and IMPUTE13 are built on provide a more
natural way to incorporate information from surrounding SNPs
without relying on pre-defined features that may not adequately
account for the correlation between SNPs. We thus benchmarked
our method against the performance of the imputation-based
approach, which has become the strategy of choice in recent gen-
ome-wide studies. More importantly, neither of the previous region-
based approaches provide a natural solution to integrate the evidence
across multiple genome-wide studies in a meta-analysis, nor ade-
quately manage the complexity due to allelic heterogeneity.

We have proposed a novel and powerful strategy for querying the
genome for genotype–phenotype associations that realistically man-
ages the challenges imposed by the fundamental design of genome-
wide studies and in combining several such studies from diverse
populations. We envisage this approach has the potential to be further
developed for burden-related tests of rare or low-frequency variants
across multiple heterogeneous populations, which is an emerging issue
given the increasing popularity of exome-sequencing experiments
across numerous traits.
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