
A
rticle

SweeD: Likelihood-Based Detection of Selective Sweeps in
Thousands of Genomes
Pavlos Pavlidis,*,1 Daniel Živković,2 Alexandros Stamatakis,1 and Nikolaos Alachiotis1

1The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies (HITS gGmbH),
Schloss-Wolfsbrunnenweg, Heidelberg, Germany
2Section of Evolutionary Biology, Biocenter, University of Munich, Planegg-Martinsried, Germany

*Corresponding author: E-mail: pavlidisp@gmail.com.

Associate editor: Koichiro Tamura

Abstract

The advent of modern DNA sequencing technology is the driving force in obtaining complete intra-specific genomes that
can be used to detect loci that have been subject to positive selection in the recent past. Based on selective sweep theory,
beneficial loci can be detected by examining the single nucleotide polymorphism patterns in intraspecific genome
alignments. In the last decade, a plethora of algorithms for identifying selective sweeps have been developed.
However, the majority of these algorithms have not been designed for analyzing whole-genome data. We present
SweeD (Sweep Detector), an open-source tool for the rapid detection of selective sweeps in whole genomes. It analyzes
site frequency spectra and represents a substantial extension of the widely used SweepFinder program. The sequential
version of SweeD is up to 22 times faster than SweepFinder and, more importantly, is able to analyze thousands of
sequences. We also provide a parallel implementation of SweeD for multi-core processors. Furthermore, we implemented
a checkpointing mechanism that allows to deploy SweeD on cluster systems with queue execution time restrictions, as
well as to resume long-running analyses after processor failures. In addition, the user can specify various demographic
models via the command-line to calculate their theoretically expected site frequency spectra. Therefore, (in contrast to
SweepFinder) the neutral site frequencies can optionally be directly calculated from a given demographic model. We
show that an increase of sample size results in more precise detection of positive selection. Thus, the ability to analyze
substantially larger sample sizes by using SweeD leads to more accurate sweep detection. We validate SweeD via
simulations and by scanning the first chromosome from the 1000 human Genomes project for selective sweeps. We
compare SweeD results with results from a linkage-disequilibrium-based approach and identify common outliers.

Key words: selective sweep, positive selection, high-performance computing, site frequency spectrum.

Introduction
The seminal paper by Maynard Smith and Haigh (1974)
coined the term “selective sweep,” that is, the evolutionary
process where a strongly beneficial mutation emerges and
spreads in a population. As a consequence, the frequency
of linked neutral or weakly selected variants will increase.
The authors showed that, in sufficiently large populations,
the hitchhiking effect drastically reduces genetic variation
near the positively selected site, thereby inducing a so-called
selective sweep. According to their deterministic model,
diversity vanishes at the selected site immediately after the
fixation of the beneficial allele. Additionally, the model makes
the following predictions as the distance from the site of the
beneficial allele increases: First, diversity accumulates, second,
the distribution of the frequencies of segregating sites
changes, and third, linkage disequilibrium (LD) patterns
emerge around the target site of the beneficial mutation.

Neutral mutations are assumed to arise in a sufficiently
large population at a rate of �=2, (� ¼ 4N�, � being the
mutation probability per site and per generation).
According to the infinitely many sites model (Kimura
1969), they occur at previously monomorphic sites. Initially,

they are present at each mutated site as single copy. The site
frequency spectrum (SFS) of a population denotes the distri-
bution of the expected number of polymorphic sites, � xð Þdx,
at which the derived allele has a frequency in x,x + dxð Þ,
0 < x < 1. Kimura (1971) demonstrated that the SFS for
the standard neutral model is given by � xð Þdx ¼ �=xdx.
For the selective sweep model, Fay and Wu (2000) have
shown that the frequency spectrum of neutral sites which
are sufficiently close to the beneficial mutation shifts toward
an excess of high- and low-frequency derived alleles in pro-
portions x� xð Þdx ¼ �dx and �=x� �ð Þdx, respectively.
Although the aforementioned neutral and selective models
assume a constant population size, analytical results for the
SFS have also been obtained for scenarios in which the pop-
ulation is subject to deterministic size changes (e.g., Griffiths
2003). However, deriving an analytical approximation of the
SFS when sites are subject to genetic hitchhiking (in popula-
tions with varying size over time) still remains a challenge.

Regarding analyses of DNA sequence data, the sample SFS
(instead of the population SFS) is of interest. The sample SFS,
fn,i, is the distribution of the expected number of sites at
which there are i derived alleles, 1 � i � n� 1, in a sample

� The Author 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
2224 Mol. Biol. Evol. 30(9):2224–2234 doi:10.1093/molbev/mst112 Advance Access publication June 18, 2013

,
-
-
While

of n sequences. The relative frequencies are obtained from
these absolute frequencies via division by the total number of
segregating sites. If the derived allele can not be distinguished
from the ancestral allele, the folded version of the SFS is used.
The folded SFS, f�n,i, is given by f�n,i ¼ fn,i + fn,n�i for
1 � i < n=2 and f�n,i ¼ fn,n=2 for even n and i ¼ n=2. Kim
and Stephan (2002) interpreted fn,i as the probability of
observing a single site where i derived alleles are found in a
sample of size n. The authors used the derivation of the SFS by
Fay and Wu (2000) to develop the first composite likelihood
ratio (CLR) test for detecting selective sweeps in typically
small (up to a few hundred kilobases) genomic regions
(henceforth called subgenomic regions). Nielsen et al.
(2005) introduced two major modifications to the CLR
method by Kim and Stephan (2002) for detecting selective
sweeps in whole-genome data.

First, instead of using the model by Fay and Wu (2000) that
relies on the population mutation parameter �, Nielsen et al.
(2005) proposed a model that quantifies the frequency of an
allele at a distance d from the beneficial mutation indepen-
dently of � by conditioning on the observation of a single
nucleotide polymorphism (SNP). Second, instead of employ-
ing the theoretical result for the SFS (Kimura 1971) that
assumes standard neutrality as also assumed by Kim and
Stephan (2002), Nielsen et al. (2005) use the empirical SFS
of the entire data set to obtain the neutral background. The
first modification allows for applying the test to large-scale
genome data, where � can vary among regions. The second
modification increases the robustness of the algorithm under
demographic models (e.g., mild bottlenecks). It implicitly ac-
counts for this by using the empirical SFS that is obtained
from the entire genome. Nielsen et al. (2005) implemented
their method in SweepFinder (http://people.binf.ku.dk/
rasmus/webpage/sf.html, last accessed June 29, 2013). In the
numerator of the CLR test, SweepFinder calculates the likeli-
hood of a sweep at a certain position in the genome by op-
timizing �. The denominator (the neutral model) is given by
the product of the empirical SFS over all SNPs. As SNPs are
assumed to be independent, the overall likelihood for the
genetic hitchhiking model is calculated as the product over
the per-SNP likelihood scores.

With next generation sequencing technologies, it has now
become feasible to sequence whole genomes of thousands of
individuals from a single species and to reliably detect the
genomic locations of selective sweeps. Selective sweep pre-
diction accuracy increases with the number of sequence sam-
ples. For instance, Jensen et al. (2007) showed that
distinguishing selective sweeps from demographic events in
samples of moderate size (50 samples) is easier than in smaller
samples (12 samples). Nowadays, samples that comprise hun-
dreds or even thousands (e.g., The 1000 Genomes Project
Consortium 2012; http://www.1000genomes.org, last
accessed June 29, 2013) of sequences are becoming available.
Hence, selective sweep detection is expected to become more
accurate. However, the increasing sample sizes and sequence
lengths pose novel algorithmic, numerical, and computa-
tional challenges for selective sweep detection. Numerically
stable implementations that can handle arithmetic over- and/

or underflow are required. An efficient use of scarce comput-
ing and memory resources is also required. Furthermore, ef-
ficient parallel implementations are needed to analyze large
data sets within reasonable times on state-of-the-art multi-
and many-core processors.

At present, only a handful of tools that scale to thousands
of whole-genome sequences is available. The implementation
of the CLR test by Kim and Stephan (2002) can only be used
for analyzing small subgenomic regions. Jensen et al. (2007)
and Pavlidis et al. (2010) used the!-statistic (Kim and Nielsen
2004), which relies on the LD signature of a selective sweep to
detect positively selected sites. The respective implementa-
tions are also only able to handle subgenomic regions.
SweepFinder (Nielsen et al. 2005) can analyze whole genomes
efficiently, but only for up to a few hundred sequences. For
larger sample sizes, execution times increase substantially.
Moreover, SweepFinder can not analyze samples with more
than 1,027 sequences because numerical problems associated
to floating point underflow are not handled. Finally,
SweepFinder only runs on a single core. To the best of our
knowledge, the !-statistic based OmegaPlus tool (Alachiotis
et al. 2012) represents the sole publicly available high-perfor-
mance implementation for detecting selective sweeps at this
scale. OmegaPlus can efficiently analyze whole genomes from
thousands of individuals by exploiting all available cores on a
modern desktop or server. Even though both SweeD and
OmegaPlus were designed to detect targets of recent positive
selection, they are not equivalent, and OmegaPlus cannot
substitute SweeD. First, in contrast to SweeD, OmegaPlus
detects the LD signature of a selective sweep. Thus,
OmegaPlus can be used only when haplotypes are known.
In contrast, SweeD can analyze samples for which the allelic
frequencies have been assessed. Thus, it can process unphased
data sets or even pooled samples. Furthermore, Pavlidis et al.
(2010) have shown that combining OmegaPlus with SweeD
increases the power of selective sweep detection. Therefore,
SweeD is expected to facilitate fast and accurate detection of
recent positive selection.

New Approaches
In the following, we describe SweeD (Sweep Detector), our
open-source tool for the SFS-based rapid detection of selec-
tive sweeps at the whole-genome scale. The SweeD code is
based on SweepFinder (Nielsen et al. 2005) and incorporates
the following new features and algorithmic techniques: Via
respective program parameters the SFS can be calculated
analytically for demographic models that comprise an arbi-
trary number of instantaneous population size changes and,
optionally, also an exponential growth as the most recent
event. Thereby, a neutral SFS can be obtained without the
need to compute the empirical average SFS for the genome.

Moreover, SweeD can analyze thousands of genomes be-
cause we appropriately modified the numerical implementa-
tion. For a large number of genomes, the double precision
floating-point range is frequently insufficient. This may lead
to numerical over- or underflow. SweeD is able to analyze
such large samples because it performs several calculations at
the logarithmic scale.

2225

SweeD: Sweep Detector . doi:10.1093/molbev/mst112 MBE

 (CLR)
http://people.binf.ku.dk/rasmus/webpage/sf.html
http://people.binf.ku.dk/rasmus/webpage/sf.html
Since
http://www.1000genomes.org

The code can also parse several additional input file for-
mats to read in simulated and real data sets. Regarding real
data sets, it supports the FASTA and VCF formats. The VCF
format is widely used in next generation sequencing projects,
such as, for instance, the 1000 Genomes project (http://www.
1000genomes.org). With respect to simulated data sets,
SweeD supports ms (Hudson 2002) and MaCS (Chen et al.
2009) formats.

Furthermore, SweeD can exploit all available cores on a
shared-memory multi-core processor to substantially expe-
dite the analysis of huge data sets that comprise millions of
SNPs and thousands of sequences.

Finally, SweeD offers a checkpointing capability that allows
to resume an analysis from the point where it failed.
Therefore, SweeD does not need to be re-run from scratch
in such situations. This mechanism allows for saving CPU
time and energy in the case of hardware failures or cluster
queues with time limits.

Results and Discussion
In the following, we present a performance comparison be-
tween SweeD and SweepFinder, assess the efficiency of the
parallel implementation, and provide a usage example.

Sequential Performance

For comparing the performance of SweeD versus
SweepFinder, we generated simulated data sets with up to
1,000 sequences and 1,000,000 sites using msms (Ewing and
Hermisson 2010). We slightly modified the source code of
msms to obtain output files that can be parsed by
SweepFinder (the modified version of msms is available at:
http:/exelixis-lab.org/software.html, last accessed June 29,
2013). We generated data sets with and without selection.
For neutral data sets, we used msms to perform simulations
with a fixed number of SNPs (option -s). The recombination
rate for the entire locus was set to a value of 5,000 and we

assumed that there can be up to 5,000 recombination break-
points (�r 5,000, 5,000). The number of recombination
events is not critical for our study, because performance
solely depends on the number of sequences and the
number of SNPs. Therefore, we used small values for the re-
combination rate and the number of breakpoints to acceler-
ate the simulations. Regarding simulations with selection, we
used the same recombination rate as above and simulated a
fixed number of SNPs (similar to the neutral simulations to
obtain comparable results). The effective population size was
set to N := 1,000,000. The location of the selected allele was
placed into the middle of the simulated region (�Sp 0.5). The
beneficial allele became fixed in the population at time 0.001
(in units of 4N generations) in the past. Selection intensity for
homozygotes of type AA was 10,000, for heterozygotes (Aa)
5,000, and for the homozygotes of type aa 0. The command
line parameters we used are provided in the supplementary
material (supplementary section S1, Supplementary Material
online). The programs were executed on an unloaded AMD
Opteron 6174 processor with 12 cores running at 2.2 GHz
under Ubuntu Linux.

As shown in table 1, SweeD outperforms SweepFinder on
all data sets. The total execution times for both programs
increase with the number of sequences and the number of
SNPs. Run-times are dominated by two computationally ex-
pensive parts in both programs: 1) the pre-computation of a
fixed number of likelihood values at given distances (in scaled
units) around the position of the selective sweep, and 2) the
computation of the CLR test at those positions as specified by
the user via the -grid option. To precompute the likelihood
values at certain distances around the position of the selective
sweep, SweeD executes the arithmetic operations in a differ-
ent order than SweepFinder. SweeD employs a lookup table
to store these intermediate results such that they can be
subsequently reused for the precomputation of the constant,
fixed likelihood values. In contrast, SweepFinder recalculates

Table 1. Total Execution Times and Speedups for Simulated Data Sets with and without Selection.

Sequences SNPs SweepFinder SweeD Speedup

Neutral Selection Neutral Selection Neutral Selection

50 10,000 199.908 434.744 142.200 399.440 1.406 1.088

50 100,000 2,005.075 4,380.188 1,085.240 3,563.890 1.848 1.229

50 1,000,000 34,563.920 52,560.680 8,881.410 32,466.250 3.892 1.619

100 10,000 207.123 427.885 142.650 400.050 1.452 1.070

100 100,000 1,924.353 3,695.948 1,082.370 2,890.020 1.778 1.279

100 1,000,000 32,140.840 45,531.370 9,013.630 23,762.100 3.566 1.916

500 10,000 984.357 869.217 158.730 181.100 6.201 4.800

500 100,000 2,548.083 2,991.866 1,121.820 1,841.540 2.271 1.625

500 1,000,000 23,431.980 45,118.190 9,091.370 16,684.070 2.577 2.704

750 10,000 2,382.910 2,418.270 186.660 231.510 12.766 10.446

750 100,000 4,172.555 4,657.067 1,120.780 1,810.410 3.723 2.572

750 1,000,000 29,006.060 —* 9,181.570 20,601.350 3.159 —*

1,000 10,000 5,375.578 5,385.314 244.460 270.410 21.990 19.915

1,000 100,000 7,031.194 7,435.575 1,173.320 1,751.660 5.993 4.245

1,000 1,000,000 27,360.160 29,893.300 9,214.810 13,036.350 2.969 2.293

*SweepFinder terminated abruptly due to a failed assertion: “SweepFinder: SweepFinder.c:595: ln_likelihood: assertion P� 0.0, P< 1.00000001 failed.”

2226

Pavlidis et al. . doi:10.1093/molbev/mst112 MBE

http://www.1000genomes.org
http://www.1000genomes.org
http:/exelixis-lab.org/software.html
-
 in order
 in order
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
i
ii

these intermediate constant values on-the-fly. The perfor-
mance benefit of using a lookup table can be observed
when the number of sequences is increased, because the
number of lookups (redundant recalculations in
SweepFinder) is proportional to the number of sequences.
For a small number of sequences, lookups, and recalculations
need approximately the same time. As the number of se-
quences increases, the lookup-based approach outperforms
the recalculation approach. SweeD and SweepFinder employ
the same method to compute the CLR test at a specific
position. However, we optimized the CLR computation in
SweeD via low-level technical optimizations. Nonetheless,
the computation of the CLR test as such is only marginally
faster in SweeD.

Table 1 also shows that, for a small number of sequences,
SweeD becomes faster than SweepFinder as the number of
SNPs increases. This is because the order and the number of
operations at each position, where the CLR is calculated, is
different in SweeD (see section Arithmetic deviations from
SweepFinder for more details). We obtained speedups be-
tween 1.07� and 3.90�. For larger numbers of sequences
(1,000), the speedup of SweeD over SweepFinder drops
from 22� (10,000 SNPs) to 2.9� (1,000,000 SNPs) with an
increasing number of SNPs because a larger fraction of overall
execution time is spent in CLR computations.

Due to the aforementioned lookup table, SweeD requires
more memory than SweepFinder. Figure 1 shows the peak
memory consumption for SweeD and SweepFinder as a func-
tion of the number of sequences for a data set of 100 SNPs
(fig. 1A) and for a data set of 1,000,000 SNPs (fig. 1B). For these
specific data sets and large sample sizes (400 sequences),
SweeD consumes more memory (4.6 and 1.2 times, respec-
tively) than SweepFinder. Nonetheless, the memory require-
ments only increase linearly with the number of sequences for
both programs. Despite the larger memory footprint of
SweeD, the additional memory for storing the lookup table
is negligible with respect to the memory capacity of modern
computers. For instance, the peak memory consumption for
the data set of 1,000,000 SNPs and 400 sequences is less than 4
MB. Even for very large data sets, with 10,000 sequences,

SweeD only requires approximately 24 MB. Thus, the analysis
of very large population genetics data sets is feasible. SweeD
uses the same suite of parsers as OmegaPlus for ms, MaCS,
VCF, and FASTA files. As the parser suite is not yet fully
optimized for memory efficiency, SweeD may exhibit tempo-
rary (during parsing and conversion into the internal SF data
format) memory consumption peaks (depending on the
input format), which exceed the amount of memory required
for the actual computations. These temporary memory con-
sumption peaks are not observed when data is in SF format.

Parallel Performance

To assess the parallel efficiency of SweeD, we generated data
sets with up to 10,000 sequences and 1,000,000 sites. Figure 2
shows the respective speedups for up to 48 cores/threads
(4 AMD Opteron 6174 processors) on simulated data sets
with 100 and 10,000 sequences, and 10,000, 100,000, and
1,000,000 SNPs, respectively. The execution times for the se-
quential analysis of the data set with 100 sequences are shown
in table 1. The data sets with 10,000 sequences as well as
10,000, 100,000, and 1,000,000 SNPs required 8.5, 9, and
10.3 h, respectively.

As can be observed in figure 2A, the parallel implementa-
tion scales well with the number of cores, achieving speedups
between 41� and 45� on 48 cores for the small sample of
100 sequences. In contrast, figure 2B shows speedups that
only range between 7� and 32� for the large sample of
10,000 sequences on 48 cores. This is due to the small pro-
portion of SNPs in the comparatively large number of se-
quences, which in turn leads to a significantly larger
amount of time spent in the BFGS (Broyden–Fletcher–
Goldfarb–Shanno; Fletcher 1987) algorithm that optimizes
the neutral SFS. More specifically, the BFGS algorithm esti-
mates the neutral SFS that maximizes the probability of the
data set (i.e., the overall likelihood) given the input SFS and
the data. This step is needed because the input data set may
contain missing data, and thus the input SFS does not corre-
spond exactly to the sample SFS. These likelihood computa-
tions have been parallelized. However, when the number of

100 200 300 400

0.
0

0.
5

1.
0

1.
5

Sequences

P
ea

k
m

em
or

y
co

ns
um

pt
io

n
(M

B
)

SweeD
SweepFinder

A 100 SNPs

100 200 300 400

0
1

2
3

4

Sequences

P
ea

k
m

em
or

y
co

ns
um

pt
io

n
(M

B
)

SweeD
SweepFinder

B 100,000 SNPs

FIG. 1. Comparison of peak memory consumption between SweeD and SweepFinder. Simulated data sets of 100 SNPs (A) and 100,000 SNPs (B) and 25,
50, 100, 200, and 400 respective sequences were used for the measurements. Memory consumption was quantified with the massif tool of the valgrind
software (Seward and Nethercote 2005). In most cases, SweeD consumes more memory than SweepFinder due to the lookup table implementation.
However, memory consumption is in the order of MBs even for very large data sets.

2227

SweeD: Sweep Detector . doi:10.1093/molbev/mst112 MBE

X
X
X
X
Since
ours
X
X
X
X
-
-
-
,

SNPs is small with respect to the number of sequences, sub-
stantially more iterations (and hence thread synchronization
events) are required for the BFGS algorithm to converge. This
step cannot be further parallelized because the iterative op-
timization procedure uses the likelihood values sequentially,
that is, there exists a hard-to-resolve sequential dependency
between iterations i and i + 1.

For example, when we analyze the data set with 10,000
sequences and 10,000 SNPs, the BFGS algorithm computes
the likelihood of the input data set conditional on the SFS
4,477,114 times, whereas only 396 such likelihood calculations
are required for the data set with 100 sequences and 10,000
SNPs.

The parallel efficiency of each iteration improves with an
increasing number of SNPs because more computations are
carried out per iteration/synchronization event. Therefore, for
10,000 SNPs and 10,000 sequences we observe the worst-case
speedup of 7 due to an unfavorable combination of relatively
few SNPs (low workload per iteration) and a large number of
such parallel iterations (4,477,114). For the same sample size,
but with 1,000,000 instead of 10,000 SNPs, the parallel effi-
ciency improves and we obtain near-linear speedups (32�).

As a parallel implementation of SweepFinder is not avail-
able as a reference, we report on OmegaPlus performance as a
rough reference. Compared with OmegaPlus, SweeD exhibits
better parallel efficiency, as it scales well up to 48 cores in
most cases. Parallel OmegaPlus only scales up to 12 cores
(Alachiotis et al. 2012). Note however that, for a single core
or a small number of cores (up to 12 in our tests), OmegaPlus
outperforms SweeD due to algorithmic innovations and be-
cause it mostly relies on integer rather than on floating-point
arithmetics.

Larger Samples Improve the Accuracy of Selective
Sweep Detection

We examined the effect of sample size on the accuracy
of sweep detection. For this purpose, we performed simula-
tions for constant populations and populations with bottle-
necks. We used msms (Ewing and Hermisson 2010) to
simulate a single selective sweep in the middle of a 400-kb
long genomic fragment. Selective sweep simulations were

performed by conditioning on the trajectory of the beneficial
mutation (option -pTrace). We did not use msms to generate
the trajectory of the beneficial mutation because msms
cannot guarantee the fixation of the beneficial allele when
past population size changes have taken place. Furthermore,
the most recent version of msms (v.3.2rc-b80) reported
memory errors when reading in the trajectory of the beneficial
mutation. Thus, we modified the source code of msms to use
external trajectories of the beneficial allele, which were simu-
lated with a modified version of the program mssel that was
kindly provided by R. R. Hudson. The modified versions of
both, mssel and msms are available at http://exelixis-lab.org/
software.html (last accessed June 29, 2013).

To simulate the trajectory of the beneficial mutation we
used uniformly distributed selection coefficients between the
boundaries 0.001 and 0.005. The present-day population size
is 1,000,000. Thus, � := 4Ns, where s is the selection coefficient
and N the effective population size, ranges between 4,000 and
20,000, that is, strong selection. The beneficial mutation
appears in the population at a uniformly distributed point
in time between the present (time 0) and 150,000 generations
in the past. The final frequency of a beneficial mutation
exceeded 0.999. If the beneficial allele did not reach fixation,
the simulation was rejected and a different uniformly distrib-
uted time point was chosen. Thus, the starting time points of
the alleles that were not rejected may not be uniformly
distributed.

For simulating selective sweeps in constant populations,
we used the following parameter values: � := 4M�= 4,000
(N is the effective population size, and� the mutation rate for
the whole fragment per individual and per generation) and
� := 10,000. The beneficial allele is located at the middle of the
simulated 400-kb fragment (i.e., at position 200,000). The
command lines generating these data sets using msms are
provided in the supplementary material (supplementary sec-
tion S2, Supplementary Material online). Scripts that used to
generate and analyze simulated data can be downloaded at
http://exelixis-lab.org/software.html. Samples from popula-
tions with bottlenecks were also generated with msms. In
the first scenario, the population size was decreased by a
factor of 100 at time 0.0375 to attain its present-day level
at time 0.03875 (time is measured in units of 4N generations

2 6 12 18 24 30 36 42 48

2
12

24
3

8

linear
10,000
100,000
1,000,000

Threads

S
pe

ed
up

A 100 sequences

2 6 12 18 24 30 36 42 48

2
12

24
36

4

6
48

linear
10,000
100,000
1,000,000

Threads

S
pe

ed
up

B 10,000 sequences

FIG. 2. Speedup measurements using up to 48 cores for the analysis of simulated data sets consisting of 100 (A) and 10,000 (B) sequences with 10,000,
100,000, and 1,000,000 SNPs, respectively.

2228

Pavlidis et al. . doi:10.1093/molbev/mst112 MBE

X
Since
to
since
a
400
http://exelixis-lab.org/software.html
http://exelixis-lab.org/software.html
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://exelixis-lab.org/software.html

and proceeds backwards; 0.0375 corresponds to 150,000 gen-
erations). We have simulated three additional bottlenecks to
further generalize the results. The parameters of these bottle-
neck models (supplementary section S3 and fig. S1,
Supplementary Material online) have been chosen to gener-
ate site frequency spectra that are characterized by 1) excess
of low-frequency derived alleles, 2) excess of low- and high-
frequency derived alleles, and 3) excess of intermediate- and
high-frequency derived alleles.

To estimate the accuracy of sweep detection as a function
of increasing sample size n, we simulated 1,000 data sets for
five sample sizes, n := 12, 50, 100, 500, and 1,000. For each
simulated instance we used SweeD to infer the position where
the likelihood ratio value is maximized. We then calculated
the distance between the inferred and the true position
(in the middle of the 400-kb fragment) of the selective
sweep. Finally, we binned distances into bins with a size of
10 kb. Figure 3 shows the percentage of inferred selective
sweeps at different distances from the true position for the
first simulated bottleneck. Results for the three additional
bottleneck models are shown in the supplementary material
(supplementary fig. S2 in supplementary section S3,
Supplementary Material online). As the simulated fragment
length is 400 kb and the selective sweep position is located in
the middle of the fragment, the maximum distance between
the inferred and true position is 200 kb. As figure 3 and sup-
plementary figure S3 (Supplementary Material online) show,
greater sample size results in more accurate inferences of
selective sweep positions, both, for constant populations
and populations with bottlenecks.

Usage Example

To demonstrate the capability of SweeD to handle real-world
genomic data, we downloaded and analyzed the
chromosome 1 data set from the 1000 Genome Project
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_

results/integrated_call_sets/, last accessed June 29, 2013). This
data set contains the genetic variation from 1,092 humans,
that is, the sample size is 2,184. The size of the input file is
87 GB, and it comprises 2,896,960 SNPs. We carried out the
analysis on an Intel Core i7-2600 processor with 4 cores (8
threads with hyperthreading) running at 3.4 GHz. We calcu-
lated the CLR test at 100,000 points (gridsize), and the SFS was
obtained from the entire data set. The total execution time
was 8 h and 15 min. In contrast to SweeD, SweepFinder fails to
analyze this data set because of the large sample size (dis-
cussed in the section “Arithmetic deviations from
SweepFinder”). We also analyzed this data set with
OmegaPlus (command line flags: maxwin = 280,000, min-
win = 1,000; see manual for further details on the
OmegaPlus command line). OmegaPlus was faster than
SweeD (total execution time: 2 h and 37 min). The
OmegaPlus and SweeD results are illustrated in figure 4A.
Figure 4B shows that for the entire human chromosome 1,
the results of SweeD and OmegaPlus are only weakly corre-
lated (Pearson correlation coefficient 0.0107, P value: 0.0007).
Note that, this correlation is not visible in figure 4B because
data points are too dense. Thus, there is no correlation be-
tween SweeD and OmegaPlus scores for the vast majority of
positions on chromosome 1. Therefore, signals detected by
SweeD substantially differ from those detected by OmegaPlus.
Combining SFS-based (SweeD) with LD-based (OmegaPlus)
tests increases the power of selective sweep detection
(Pavlidis et al. 2010). This is because OmegaPlus and SweeD
are complementary (despite the fact that they can be weakly
correlated; see also Kim and Nielsen 2004, Pavlidis et. al. 2010),
because they strive to detect different selective sweep signa-
tures. We found outlier genomic regions at a significance
threshold of 0.01 for both SweeD and OmegaPlus (shown
in red in fig. 4). The genes in those genomic outlier regions
are presented in supplementary table S1, Supplementary
Material online (supplementary section S4, Supplementary

50,000 100,000 200,000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance from Sweep

P
(d

is
ta

nc
e

≤
x)

A

1,000 sequences
500 sequences
100 sequences
50 sequences
12 sequences

50,000 100,000 200,000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance from Sweep

P
(d

is
ta

nc
e

≤
x)

B

1,000 sequences
500 sequences
100 sequences
50 sequences
12 sequences

FIG. 3. Assessment of the accuracy of predicting the selective sweep position for various sample sizes. The x axis in both plots shows the distance d of
the reported selective sweep position from the true selective sweep position. Distance is grouped in bins of size 10,000, i.e., d1 = 10,000, d2 = 20,000, . . . ,
d20 = 200,000. For each bin i, the y axis shows the frequency of simulated data sets with a reported selective sweep position at a distance less than di. (A)
Plot refers to a constant population model and (B) refers to a bottlenecked population model. Details regarding the simulation parameters are described
in the main text. The straight line depicts the expected percentage of simulations at each bin, if the position of a reported selective sweep would be
distributed uniformly along the simulated fragment of 400 kb. The figure shows that the accuracy of detecting selective sweeps increases with the
sample size in both constant-size and bottlenecked populations. By comparing A with B, we see that the detection of a selective sweep is more accurate
in constant-size than in bottlenecked populations.

2229

SweeD: Sweep Detector . doi:10.1093/molbev/mst112 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
i
ii
iii
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
Since
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/
hours
utes
see
ours
,
utes
-
since
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1

Material online). Although combining SweeD with
OmegaPlus is generally advantageous, there are cases where
they should not be combined. For example, when samples are
pooled, the usage of OmegaPlus is meaningless because the
LD cannot be accurately computed. Also, when the sample
size is small (e.g., less than 10 sequences), LD calculations may
be noisy because the LD between several SNPs can be
high by chance alone. In such cases, it is recommended to
exclusively use a SFS-based program such as SweeD or
SweepFinder.

Usage of the Analytically Calculated SFS

SweeD can calculate the expected neutral SFS for the sample
analytically, provided that we are confident about the demo-
graphic model of the population. This procedure can be com-
putationally expensive on large sample sizes with respect to
memory consumption and run times. However, it can be
advantageous to use the analytically derived SFS instead of
the average genome-wide SFS not only for small sample sizes.
First, the empirical SFS might not represent the neutral
demographic model accurately. This can happen when the
length of the analyzed region (scaled in recombination units)
is small. Second, using the empirical SFS may be problematic
when multiple selective events have occurred in a genomic
region. In this case, the empirical SFS is affected by both,
demography and selection, whereas the null hypothesis inter-
prets selection as neutrality and therefore becomes too
conservative. In this case, it may be advantageous to initially

infer the demographic scenario using another (predominantly
neutral) part of the genome and based on this, estimate the
neutral SFS for detecting selective sweeps. Third, there may be
cases where selective sweep scans need to be repeated for
individual genomic regions (e.g., autosomes) under the same
demographic model. In such cases, the demographic model
can be inferred from the whole set of autosomes. Thereafter,
the neutral SFS can be estimated, and, finally, the regions
can be scanned for selective sweeps using the same neutral
SFS.

Alternatively, provided that we are confident about the
demographic model, the neutral SFS can be calculated via
simulations, for example, by using Hudson’s ms software.
This approach has been used in Svetec et al. (2009) and
Saminadin-Peter et al. (2012), where subgenomic regions
where scanned for selective sweeps. Estimating the neutral
SFS via simulations increases the workload and the time
needed for the analysis. Initially, one needs to simulate neutral
data with ms or msms to then calculate the average SFS from
the simulated data. Moreover, the accuracy of the average SFS
is low when a small number of simulated data sets is used.
Thus, extensive simulations may be required to obtain an
accurate estimate of the average SFS using this approach
(fig. 5; supplementary fig. S3 in supplementary section S5,
Supplementary Material online). Note that, figure 5 only
shows the time needed for the simulations and not for the
calculation of the average SFS from the simulated data. Thus,
it represents a lower bound for the time required to obtain

0.0e+00 1.0e+08 2.0e+08

0
20

40
60

80

Position

S
w

ee
D

A

0.0e+00 1.0e+08 2.0e+08

0
10

,0
00

30
,0

00

Position

O
m

eg
aP

lu
s

SweeD
O

m
eg

aP
lu

s
0 20 40 60 80 100

0
10

,0
00

20
,0

00
30

,0
00

40
,0

00B

FIG. 4. Scan of the human chromosome 1 for selective sweeps. (A) The x axis denotes the position on chromosome 1, and the y axis shows the CLR
evaluated by SweeD (upper panel) and the!-statistic (bottom panel) evaluated by OmegaPlus. (B) The joint plot for SweeD and OmegaPlus. Red points
denote outliers at a significance level of 1%. The genes located in the outlier regions are described in the supplementary material (supplementary
table S1 in supplementary section S4, Supplementary Material online).

2230

Pavlidis et al. . doi:10.1093/molbev/mst112 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
While
while
Hudson's
-
 and
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1

the average SFS via simulations. The demographic model rep-
resents a population bottleneck as described in the section
“Larger samples improve the accuracy of selective sweep de-
tection.” The population size was decreased by a factor of 100
at time 0.0375 to attain its present-day level at time 0.03875
(time is measured in units of 4N generations and proceeds
backwards; 0.0375 corresponds to 150,000 generations).
Command-lines that were used to calculate the SFS either
by SweeD or by simulations are provided in supplementary
section S6, Supplementary Material online.

Detecting Selective Sweeps with Low-Coverage
Sequencing Data

Modern, high-throughput sequencing technologies have rev-
olutionized the field of population genomics. However, in
many cases, the available sequence data from a single indi-
vidual has low coverage. Thus, accurate genotyping and SNP
calling becomes a challenging task. For example, the proba-
bility that only one of the two chromosomes of a diploid
individual has been sampled is relatively high. The probability
of wrong base-calls also increases. Downstream population
genetics analyses are greatly affected by the quality of SNP
data because summary statistics, such as the SFS, are affected
by SNP- and genotype-calling. Therefore, we expect that se-
lective sweep detection with SweeD will also be affected, and
that the false positive as well as false negative rates will also

increase. Several algorithms have been developed to improve
the accuracy of genotype-calling for next generation sequenc-
ing data. The most sophisticated algorithms for reducing and
quantifying the uncertainty associated with genotype-calling
deploy probabilistic frameworks, which incorporate errors
that may have been introduced in base calling, alignment,
or assembly (Keightley and Halligan 2011; see Nielsen et al.
2011 for a recent review). SweeD does not use a probabilistic
framework for calculating the SFS that takes into account
uncertainty associated with low-coverage. A probabilistic
framework might increase the accuracy of sweep detection
at the cost of substantially higher execution times. We plan to
assess the integration of a probabilistic framework similar to
the one proposed by Keightley and Halligan (2011) in future
releases of SweeD.

An alternative approach is to incorporate the effects of
low-coverage sequencing into the calculation of the critical
value of SweeD that corresponds to the 5% false positive rate.
Typically, extensive simulations of neutral data follow a
genome scan for selective sweeps to obtain the null distribu-
tion of SweeD scores. Simulations are usually performed using
coalescent-based software such as Hudson’s ms (Hudson
2002) or msms (Ewing and Hermisson 2010). Modifying ms
or msms to simulate low-coverage sequencing data could
alleviate the effect of low-coverage on false positive and
false negative rates. However, to the best of our knowledge,
an implementation of a coalescent model that simulates low-
coverage data is not available yet.

Conclusions and Future Work

SweeD is an improved, more stable, and scalable implemen-
tation of SweepFinder that allows for analyzing thousands of
genomes. In contrast to SweepFinder, SweeD can also analyt-
ically calculate the SFS based on a user-specified demographic
model. Furthermore, it can parse several common input file
formats such as, ms, MaCS, FASTA, and VCF. In addition,
SweeD leverages the computational power of multicore sys-
tems, shows good speedups, and thereby substantially
decreases the time-to-solution. Finally, a checkpointing mech-
anism allows to resume analyses from where they were inter-
rupted in the case of hardware failures or cluster queue time
limitations, leading to time and energy savings.

Regarding future work, we plan to parallelize the
calculations of the theoretical SFS and employ an out-of-
core (external memory algorithm) approach to make these
calculations feasible on off-the-shelf computers. Finally, we
intend to evaluate the accuracy of scalable sweep-detection
tools such as SweeD and OmegaPlus as a function of increas-
ing sample size.

Materials and Methods

The SFS of Samples for Deterministically Varying
Population Size

Analytical results for sample frequency spectra can either be
directly derived via the coalescent or be obtained via binomial
sampling from the population as derived within the diffusion
framework. This is also the case for a neutral model of a

0 200 400 600 800 1,000

1e
−

02
1e

+
00

1e
+

02
1e

+
04

Sequences

T
im

e
(s

)

10 replications
100 replications
1,000 replications
SweeD

FIG. 5. Comparison of the time (in seconds) required to estimate the
average SFS by using either simulations or SweeD. The four thin black
lines represent time needed by simulating a sample from a bottlenecked
population 10 times (solid line), 100 times (dashed line), or 1,000 times
(dotted line). Number of simulated replications affects the accuracy of
estimation; more replications result in more accurate estimation (sup-
plementary fig. S3 in supplementary section S5, Supplementary Material
online). The thick gray line shows the time needed for SweeD (with the
MPFR library) to estimate the average SFS of the same demographic
scenario. The command line used for generating the simulated data sets
is provided in the supplementary section S6, Supplementary Material
online.

2231

SweeD: Sweep Detector . doi:10.1093/molbev/mst112 MBE

",0,0,2
",0,0,2
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
Hudson's
-
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1

population whose size varies over time. Here, � tð Þ ¼ N tð Þ=N
denotes the ratio between the ancestral and the current
population size at time t. Changes in population size can be
included into the standard neutral model as the harmonic
mean of the relative population sizes via time-rescaling
t!

R
1=� sð Þds in the respective coalescence probabilities

or transition densities. Griffiths and Tavaré (1998) established
the SFS within the coalescent framework, and Živković and
Stephan (2011) found an equivalent solution based on diffu-
sion theory (Evans et al. 2007) as

fn,i ¼
�

i

X
�1ð Þk ð2k� 1Þ

k

2

� �

3F2 n� i + 1, k, 1� k; n + 1, 2; 1ð ÞZ
exp �

k

2

� �Z
1=� sð Þds

� �
dt,

where 3F2 a,b,c; d,e; zð Þ ¼
P

a lð Þb lð Þc lð Þ

� �
= d lð Þe lð Þ

� �
zl=l! is a

generalized hypergeometric function, in which p 0ð Þ ¼ 1 and
p lð Þ ¼ p p + 1ð Þ::: p + l� 1ð Þ, l � 1. For the standard neutral
model, this equation reduces to fn,i ¼

�
i . The relative site

frequencies are obtained via division by the total number of
segregating sites as rn,i ¼ fn,i=

P
fn,j. SweeD and SweepFinder

use the relative site frequencies. The equations for the SFS can
be applied to demographic models including various instan-
taneous size changes and multiple phases of exponential
growth. They can also be used to calculate the composite
likelihood of all considered sites of a data set based on a given
demographic model in analogy to Kim and Stephan (2002).

Implementation

SweeD is implemented in C and has been developed and
tested on Linux platforms. The parallel SweeD version uses
Posix threads (PThreads). The checkpointing procedure relies
on the DMTCP (distributed multithreaded checkpointing,
Ansel et al. 2009) library.

Optional Computation of the SFS for a Given
Demographic Model

A new feature of SweeD that is not available in SweepFinder is
the calculation of the theoretical sample SFS for a user-spe-
cified demographic model. The model can comprise an arbi-
trary number of instantaneous population size changes and,
optionally, an exponential growth as the most recent event.
For the calculation of the theoretical sample SFS, numerical
issues can arise for samples exceeding 60 sequences. To solve
recurrent issues with numerical precision that are related to
the harmonic sum representation of the SFS, we used the
MPFR (multiple-precision floating-point library with correct
Rounding, Fousse et al. 2007) library. The MPFR library can be
used to conduct arbitrary precision floating-point operations
where required. Using arbitrary precision arithmetics, how-
ever, leads to increased run times and memory requirements
for the analytical computation of the SFS compared with
double precision floating point arithmetics. Although the
run time differences are negligible for small sample sizes
(up to approximately 50 sequences), computing times can

increase substantially (up to 5 times in fig. 6B) with the
number of sequences. We employed a lookup table to allevi-
ate this performance issue by avoiding frequent recomputa-
tions of these values. This approach reduces run times by a
factor that is approximately proportional to the number of
sequences. However, the size of the lookup table also in-
creases quadratically with the number of sequences and
may induce excessive memory requirements (fig. 6A).

Parallelization

Multi-core systems can run several threads of execution in
parallel which can decrease the run times of an application.
However, substantial changes to the sequential code may be
required to obtain an efficient parallel algorithm. Therefore,
we focused on parallelizing the most compute-intensive parts
of SweeD. As already described, SweeD computes the likeli-
hood and optimizes the� parameter of the CLR test at several
positions of the alignment. As the CLR calculations at differ-
ent positions (CLR positions) are independent, they are
equally distributed among the available cores. However,
there is load imbalance among CLR computations because

100 200 300 400

0
5

10
15

20
25

Sequences

P
ea

k
m

em
or

y
co

ns
um

pt
io

n
(M

B
) SweeD

SweeD+MPFR

A

100 200 300 400

0
5

10
15

20
25

30
Sequences

R
un

 ti
m

e
(s

)

SweeD
SweeD+MPFR

B

FIG. 6. Comparison of memory consumption (A) and run-time (B) of
SweeD (where the SFS is computed by the data itself) and SweeD using
the MPFR library to calculate the analytical SFS. Simulated standard
neutral data sets of 500 SNPs and 25, 50, 100, 200, and 400 sequences
were used for the measurements. Memory consumption was quantified
with the massif tool of the valgrind software (Seward and Nethercote
2005).

2232

Pavlidis et al. . doi:10.1093/molbev/mst112 MBE

to
-
Since

the inference of � parameters at CLR positions that are
located close to a selected site requires a larger amount of
arithmetic operations. When a CLR position is located near a
positively selected site, the � parameter value that maximizes
the likelihood of the sweep model is smaller (� is inversely
proportional to the selection coefficient). However, the size of
a genomic region that a selective sweep may affect is inversely
proportional to �. Thus, more SNPs are required to compute
�, when the � value decreases. Therefore, we distribute CLR
positions in a cyclic way to cores to improve load balance. We
plan to test whether more elaborate load balancing schemes,
such as dynamic scheduling or guided scheduling can further
improve parallel efficiency.

Arithmetic Deviations from SweepFinder

Since SweeD mainly represents a re-engineered version of
SweepFinder, one would expect to obtain exactly the same
output from both programs, when the same input data are
analyzed. However, both SweeD and SweepFinder, heavily rely
on floating-point arithmetics, which are not associative. In
other words the following equality does not hold under
floating-point arithmetics: A + (B + C) = (A + B) + C.
Therefore, the order of floating point operations affects the
final results. For each CLR position, both SweeD and
SweepFinder compute the probability of each SNP (under
the sweep and the neutral model) in a certain region
around the CLR position. To calculate these probabilities,
SweepFinder moves from left to right along the genome,
whereas SweeD moves from the CLR position toward the
boundaries of the region. Consequently, the order of opera-
tions is different. Therefore, slight numerical deviations be-
tween the respective results are to be expected.

There are two additional factors that contribute to the
numeric differences between SweeD and SweepFinder. First,
logarithmic operations are required in SweeD to ensure scal-
ability for a large number (thousands) of sequences. To avoid
arithmetic underflow as frequently observed in SweepFinder,
several multiplications are implemented as sums of loga-
rithms in SweeD. When the number of sequences is large,
the operands in these multiplications approach the lower
limit of the double-precision floating-point range, which
can result in floating-point underflows. This is the main
reason why SweepFinder cannot analyze data sets that
comprise more than 1,027 sequences and exits with a
failing assertion: “SweepFinder: SweepFinder.c:365: get_pstar:
Assertion ‘sum <= 1.0 && sum> 0.0’ failed”.

Second, SweeD implements a linear instead of a cubic
spline interpolation. Both SweepFinder and SweeD calculate
the probability P(b) of observing a SNP with a frequency b at k
fixed distances d (as scaled by �). For all other values of �d,
P(b) is calculated by interpolating the probability values of the
k fixed distances. SweepFinder uses k := 60 in conjunction
with a cubic spline interpolation. We observed that the spline
function calculates erroneous values for k := 60. By increasing
the value of k, we found that, using a linear interpola-
tion between distance points is sufficiently accurate to

calculate P(b). Thus, we use k := 300 and a linear instead of
a cubic spline interpolation in SweeD.

Checkpoint and Restart Capability

Because of the typical time limitations imposed by job sub-
mission queues on cluster systems, a checkpointing and
restart capability represents an important feature of scientific
codes. In typical cluster installations, job queues have 24 or 48
h time limits. A job submitted to a 24-h queue is killed
immediately, if it takes longer, effectively wasting the energy
spent during the past 24 h, since the user will have to resub-
mit the job to a queue with a higher time limit, say 48 h.
However, if the application is checkpointed, the user can
resume the job from the point, where its execution was
interrupted to achieve time and energy savings.

SweeD uses the open-source checkpointing library
DMTCP (Ansel et al. 2009) for this purpose. With the respec-
tive makefiles (with the file extension .CHECKPOINTS), users
can compile the ‘checkpointable’ version of SweeD called
SweeD-C. Note that the non-checkpointable version does
not require the DMTCP library and is hence easier to compile
and install. The checkpointable version takes one additional
input parameter, the checkpointing interval, which defines
how often checkpoints are created and stored during the
execution of SweeD-C. To enable checkpointing, the
dmtcp_coordinator process has to be started before execut-
ing SweeD-C. Subsequently, the program can be invoked as
usual (with the additional parameter for the checkpointing
interval). When an unexpected event such as a queue time-
out or an electricity or processor failure interrupts the execu-
tion of the program, the user will be able to resume the
execution by using the restart script provided with the
DMTCP library.

Command Line Arguments and Output Files

SweeD is a command line tool and requires at least three
parameters for a typical analysis: 1) a name for the run
(-name), 2) the name of the input file (-input), and 3) the
number of CLR positions (-grid).

In the following, we provide a few example command line
invocations:

i) SweeD -name test -input file.sf -grid 10000
ii) SweeD-P -name test -input file.sf -grid 10000 -threads 4
iii) SweeD-C -name test -input file.sf -grid 10000 -check-

point 1200

In the first example, SweeD is called with the minimum
number of parameters to compute the CLR at 10,000 posi-
tions along the data set as provided in file.sf. In the second
example, the parallel version of SweeD is called. Hence, we
need an additional parameter to specify the number of cores/
threads that shall be used. In the last example, we start the
checkpointable version. This requires an additional parameter
that specifies how frequently (in seconds) checkpoints should
be stored. For more examples and a detailed description of all
supported command line parameters please refer to the
manual (http://exelixis-lab.org/software.html).

2233

SweeD: Sweep Detector . doi:10.1093/molbev/mst112 MBE

is
`
0'
Due to
hour
our
ours
ours
'
'
i
ii
iii
http://exelixis-lab.org/software.html

SweeD generates two output files: 1) an information file
describing the data set (number of sequences, sites, etc.) and
the analysis (e.g., execution time), and 2) a report file that
contains the likelihood value and �-parameter for each CLR
position. Finally, a warning file might be written, when ms or
MaCS input file formats are used to report possible conflict-
ing SNP positions, that is, SNPs that refer to the same
alignment site.

Supplementary Material
Supplementary figures S1–S3, sections S1–S6, and table S1 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).

Acknowledgments

The authors are very grateful to three anonymous reviewers
for their valuable comments. This work has been supported
by the Volkswagen Foundation grant I/84232 to D.Z. and by
Deutsche Forschungsgemeinschaft (DFG) grant STA 860/2 to
N.A.

References
1000 Genomes Project Consortium. 2012. An integrated map of genetic

variation from 1,092 human genomes. Nature 491:56–65.
Alachiotis N, Stamatakis A, Pavlidis P. 2012. OmegaPlus: a scalable tool

for rapid detection of selective sweeps in whole-genome datasets.
Bioinformatics 28:2274–2275.

Ansel J, Arya K, Cooperman G. 2009. DMTCP: transparent checkpoint-
ing for cluster computations and the desktop. In: 23rd IEEE
International Parallel and Distributed Processing Symposium
(IPDPS’09). IEEE (Montreal, Canada). p 1–12.

Chen GK, Marjoram P, Wall JD. 2009. Fast and flexible simulation of
DNA sequence data. Genome Res. 19:136–142.

Evans SN, Shvets Y, Slatkin M. 2007. Non-equilibrium theory of the allele
frequency spectrum. Theor Popul Biol. 71:109–119.

Ewing G, Hermisson J. 2010. MSMS: a coalescent simulation program
including recombination, demographic structure and selection at a
single locus. Bioinformatics 26:2064–2065.

Fay JC, Wu CI. 2000. Hitchhiking under positive Darwinian selection.
Genetics 155:1405–1413.

Fletcher R. 1987. Practical methods of optimization. New York: John
Wiley & Sons.

Fousse L, Hanrot G, Lefevre V, Pélissier P, Zimmermann P. 2007. MPFR: a
multiple-precision binary floating-point library with correct round-
ing. ACM Trans Math Software. 33:1–15.

Griffiths RC. 2003. The frequency spectrum of a mutation, and its age, in
a general diffusion model. Theor Popul Biol. 64:241–251.

Griffiths RC, Tavaré S. 1998. The age of a mutation in a general coales-
cent tree. Communications in statistics. Stochastic Models 14:
273–295.

Hudson RR. 2002. Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics 18:337–338.

Jensen JD, Thornton KR, Bustamante CD, Aquadro CF. 2007. On the
utility of linkage disequilibrium as a statistic for identifying targets of
positive selection in nonequilibrium populations. Genetics 176:
2371–2379.

Keightley PD, Halligan DL. 2011. Inference of site frequency spectra from
high-throughput sequence data: quantification of selection on non-
synonymous and synonymous sites in humans. Genetics 188:
931–940.

Kim Y, Nielsen R. 2004. Linkage disequilibrium as a signature of selective
sweeps. Genetics 167:1513–1524.

Kim Y, Stephan W. 2002. Detecting a local signature of genetic
hitchhiking along a recombining chromosome. Genetics 160:
765–777.

Kimura M. 1969. The number of heterozygous nucleotide sites main-
tained in a finite population due to steady flux of mutations.
Genetics 61:893–903.

Kimura M. 1971. Theoretical foundation of population genetics at the
molecular level. Theor Popul Biol. 2:174–208.

Maynard Smith J, Haigh J. 1974. The hitch-hiking effect of a favourable
gene. Genet Res. 23:23–35.

Nielsen R, Paul JS, Albrechtsen A, Song YS. 2011. Genotype and SNP
calling from next-generation sequencing data. Nat Rev Genet. 12:
443–451.

Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C.
2005. Genomic scans for selective sweeps using SNP data. Genome
Res. 15:1566–1575.

Pavlidis P, Jensen JD, Stephan W. 2010. Searching for footprints of pos-
itive selection in whole-genome SNP data from nonequilibrium
populations. Genetics 185:907–922.

Saminadin-Peter SS, Kemkemer C, Pavlidis P, Parsch J. 2012. Selective
sweep of a cis-regulatory sequence in a non-African population of
Drosophila melanogaster. Mol Biol Evol. 29:1167–1174.

Seward J, Nethercote N. 2005. Using Valgrind to detect undefined value
errors with bit-precision. In: Proceedings of the Annual Conference
on USENIX Annual Technical Conference (ATEC ’05). USENIX
Association (Berkeley, CA, USA). p 2.

Svetec N, Pavlidis P, Stephan W. 2009. Recent strong positive selection
on Drosophila melanogaster HDAC6, a gene encoding a stress sur-
veillance factor, as revealed by population genomic analysis. Mol Biol
Evol. 26:1549–1556.

Živković D, Stephan W. 2011. Analytical results on the neutral non-
equilibrium allele frequency spectrum based on diffusion theory.
Theor Popul Biol. 79:184–191.

2234

Pavlidis et al. . doi:10.1093/molbev/mst112 MBE

i
ii
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst112/-/DC1
http://www.mbe.oxfordjournals.org/
http://www.mbe.oxfordjournals.org/

