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Multi-omic profiling reveals widespread
dysregulation of innate immunity and hematopoiesis
in COVID-19
Aaron J. Wilk1,2,3*, Madeline J. Lee2,3*, Bei Wei4*, Benjamin Parks4,5*, Ruoxi Pi3, Giovanny J. Mart́ınez-Colón3, Thanmayi Ranganath3,
Nancy Q. Zhao3, Shalina Taylor6,7,8, Winston Becker4, Stanford COVID-19 Biobank, David Jimenez-Morales3, Andra L. Blomkalns9,
Ruth O’Hara10, Euan A. Ashley3, Kari C. Nadeau3,11, Samuel Yang9, Susan Holmes12, Marlene Rabinovitch6,7,8, Angela J. Rogers3,
William J. Greenleaf4,13, and Catherine A. Blish1,3,14

Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus
disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here,
we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from
outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread
dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in
neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci
as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and
fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively,
our results reveal disease severity–associated immune phenotypes in COVID-19 and identify pathogenesis-associated
pathways that are potential targets for therapeutic intervention.

Introduction
The COVID-19 pandemic, caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), is an urgent public
health crisis. COVID-19 has a highly variable disease course:
∼20% of infected individuals require hospitalization, ∼5% re-
quire critical care, and up to 40% of cases are asymptomatic
(Huang et al., 2020; Lavezzo et al., 2020). Because the immune
response to SARS-CoV-2 is a key determinant of COVID-19 se-
verity and outcome, understanding the immunological under-
pinnings of COVID-19 pathogenesis is critical to predict, prevent,

and treat SARS-CoV-2 infection and to prepare for the possi-
bility of future infections caused by emerging betacoronaviruses
that may be introduced from existing reservoirs (Tang et al.,
2006; Cui et al., 2019; Lin et al., 2017; Banerjee et al., 2019).

Severe COVID-19 is associated with a number of distinct
immunological signatures. For example, increased serum levels
of pro-inflammatory cytokines such as IL-1β, IL-6, IP-10, and
TNFα and the alarmins S100A8 and S100A9 are associated with
worse outcomes (Silvin et al., 2020; Wilson et al., 2020; Lucas
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et al., 2020; Mehta et al., 2020; Arunachalam et al., 2020; Laing
et al., 2020). COVID-19 also reconfigures leukocyte phenotype
in a severity-specific fashion, with severe COVID-19 associated
with lymphocyte exhaustion (Diao et al., 2020; Zheng et al., 2020;
Wilk et al., 2020), neutrophil activation signatures (Veras et al.,
2020;Wang et al., 2020; Middleton et al., 2020; Aschenbrenner
et al., 2021; Meizlish et al., 2021), and hematopoietic alter-
ations (Wilk et al., 2020; Schulte-Schrepping et al., 2020).
While many of these findings have been established through
transcriptomic and proteomic profiling, the gene regulatory
changes underlying severe disease manifestations have not
been determined.

Comparatively less is known about the features of immune
responses to SARS-CoV-2 that protect against severe disease,
because most cohorts profiled to date have included only hos-
pitalized patients. Neutralizing antibodies and virus-specific
T cell responses have been detected in mildly symptomatic
patients, providing evidence of a successful adaptive immune
response across the disease spectrum (Pepper et al., 2020
Preprint; Röltgen et al., 2020; Nielsen et al., 2020; Rydyznski
Moderbacher et al., 2020; Lipsitch et al., 2020; Rodda et al.,
2021). Notably, patients with mild COVID-19 have much lower
levels of pro-inflammatory plasma cytokines and higher levels
of tissue repair factors, suggesting that the immune response in
mild disease can eradicate the virus without triggering the hy-
perinflammatory state observed in severe cases (Arunachalam
et al., 2020; Lucas et al., 2020). Therefore, to define protective
versus pathological features of the immune response, we aimed
to profile bothmild (World Health Organization [WHO] score 1–3,
no oxygen requirement), moderate (WHO score 4–5, noninvasive
oxygen requirement), and severe (WHO score 6–8, intubated)
cases of COVID-19.

To map the immune response at the epigenetic, transcrip-
tional, and proteomic levels, we performed single-cell assay
for transposase-accessible chromatin sequencing (scATAC-seq),
single-cell RNA sequencing (scRNA-seq), and cytometry by time
of flight (CyTOF) on the peripheral immune cells of a cohort of
COVID-19 patients across the entire spectrum of disease sever-
ity. We discovered many immunological perturbations associ-
ated with disease severity, including robust signatures related
to neutrophil activation along with dysfunction of monocytes,
type 2 conventional dendritic cells (cDC2), and natural killer
(NK) cells. In addition, we found strong evidence for emergency
myelopoiesis in fatal disease. We also identified epigenetic changes
correlated to these transcriptional and proteomic changes, demon-
strating coordinated changes in regulatory element accessibility and
transcription at key pro-inflammatory cytokine–encoding genes in
monocytes. Together, this dataset reveals novelmechanistic insights
into the pathological and protective mechanisms of the immune
response to SARS-CoV-2.

Results
A trimodal single-cell atlas of the peripheral immune response
to SARS-CoV-2
To investigate how immune responses vary between different
severities of COVID-19, we profiled peripheral blood immune

cells from 64 patients with COVID-19 and 12 healthy controls
with three high-dimensional single-cell modalities: Seq-Well
(Gierahn et al., 2017; Hughes et al., 2020)-based scRNA-seq (33
patients and 8 controls, including 7 patients previously profiled
by our group; Wilk et al., 2020), scATAC-seq (18 patients, 7
controls), and CyTOF (64 patients, 12 controls; Fig. 1 A and Fig.
S1). Importantly, we profiled COVID-19 patients across the full
range of the disease severity spectrum, including patients with
mild disease (WHO score 1–3; see Materials and methods) and
hospitalized inpatients with moderate disease (WHO score 4–5),
as well as critically ill patients with severe disease (WHO ordinal
score 6–8). We scored patients by both peak severity (denoted
by the colors representing cells/patients) and severity at the
time of sample collection (separated as groups for box plots). The
median age of profiled participants was 43.5 yr, and 51% were
female (Fig. 1 B and Table S1). Before sampling, 14 patients re-
ceived azithromycin, which has potential immunomodulatory
effects (Zimmermann et al., 2018); 13 received remdesivir; and
1 received dexamethasone. No patients received tocilizumab or
baricitinib before sampling (Table S1). The majority of patients
were sampled during the acute phase of infection; 13 mildly and
moderately ill patients were sampled in the convalescent phase
(>21 d after first positive nasopharyngeal swab). Demographic
information, additional clinical metadata, and the modalities
applied to each sample are available in Table S1.

Peripheral blood mononuclear cells (PBMCs) were sampled
by all modalities; additionally, we processed red blood cell–lysed
whole blood by scRNA-seq to profile granulocytes like neu-
trophils (see Fig. 8 and Fig. S4), and we processed isolated NK
cells by CyTOF with a panel enabling deep interrogation of NK
cell receptor expression (see Fig. 6, Fig. 7, and Fig. 1 A). In total,
we analyzed ∼175,000 single transcriptomes, ∼50,000 single
chromatin accessibility profiles, and >3.2 million single pro-
teomic profiles (Fig. 1 A, Table S2, Table S3, Table S4, and
Table S5). After performing modality-specific quality control
procedures (see Materials and methods), we created a merged
feature matrix of all profiled samples, which we subjected to
dimensionality reduction, graph-based clustering, and cell
type annotation (Fig. 1, C–I; Fig. S1 C; and Table S6; see Ma-
terials and methods).

We first examined how COVID-19 impacted the composition
of peripheral immune cells. We saw similar trends in immune
cell composition between the three modalities, including de-
pletion of CD16 monocytes, dendritic cells (DCs), and NK cells, as
well as increases in plasmablasts (PBs) in patients with severe
and fatal COVID-19 (Fig. 1 E, Table S7, Table S8, and Table S9).
Notably, cell subset proportions that were altered in moderate
and severe disease were generally unchanged inmild cases, with
the exception of plasmacytoid DCs (pDCs), which were depleted
in all severity groups (Fig. 1 E, Table S7, Table S8, and Table S9).
Cell type proportions where patient age was regressed as a co-
variate also showed similar disease severity–driven trends (Fig.
S2). Further, a population of developing (or immature) neu-
trophils first identified in our prior study of 7 patients (Wilk
et al., 2020) was confirmed in 17 additional patients (Fig. 1, C
and E; and Table S7) and is similar to that observed by other
groups (Schulte-Schrepping et al., 2020).
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Figure 1. A trimodal single-cell atlas of the peripheral immune response to COVID-19 across a range of disease severities. (A) Pipeline for sample
processing and number of patients analyzed, summarized by modality and peak disease severity score. For all display figures, scRNA-seq–derived data are
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Multimodal reference mapping enables accurate annotation
and analysis of cellular subtypes
Accurate identification of fine-grained immune cell subtypes is
crucial to understanding how COVID-19 reconfigures the im-
mune system; however, these cell types can be difficult to
identify de novo in scRNA-seq data due to data sparsity and lack
of information on canonical surface marker expression in each
cell. To address this, we mapped our transcriptomic dataset to a
large multimodal reference dataset introduced by Seurat v4,
which incorporated extensive surface marker information to
improve cell type calls (Fig. 2 A; Hao et al., 2021).

Alignment to the Seurat v4 reference dataset revealed gene
expression profiles of cell subtypes matching their expected
biological signatures (Fig. S1 D, Table S10, Table S11, and Table
S12). For example, multiple T cell subsets, including γδ T cells,
mucosal-associated invariant T (MAIT) cells, and T regulatory
cells were revealed with Seurat v4 at the expected proportions
(Table S10) and with the expected transcriptomic phenotype
(e.g., highly specific expression of TRDC and TRGC1 by γδ T cells,
and FOXP3 by T regulatory cells; Table S11 and Table S12). These
annotations closely matched the manually generated labels;
importantly, cell types present in our dataset but absent from
the reference (i.e., neutrophils) were not successfully mapped
(Fig. S1 D). To orthogonally confirm the accuracy of these an-
notations, we compared the abundances of two cell types that we
could also identify in our CyTOF dataset that are typically dif-
ficult to distinguish in RNA space by graph-based clustering
alone: NK cells and MAIT cells. This analysis revealed high
concordance between modalities, supporting the accuracy of
these annotations (Fig. S1, E and F).

To prioritize downstream analysis of cell subsets most af-
fected by COVID-19, we calculated a perturbation score (Hao
et al., 2021; Papalexi et al., 2021) for each cell type from each
COVID-19 sample relative to healthy control subject samples (see
Materials and methods). The perturbation score for each cell
type is calculated by first identifying genes that display evi-
dence of differential expression between COVID-19 samples and
healthy control samples, calculating the difference of pseudo-
bulk expression vectors of these genes between COVID-19
samples and healthy control samples, and finally projecting the
whole transcriptome of each donor onto this vector. This score
therefore represents the magnitude of whole-transcriptome
shifts in gene expression and reveals disease severity–associated
patterns in cell subtype perturbation (Fig. 2 B). This pertur-
bation score captured phenotypic changes in major cell types
such as monocytes (explored further in Figs. 3, 4, and 5) and
more granular subtypes such as CD8 effector memory T (TEM)
cells. We focused our downstream analysis on cell subtypes

with COVID-19 severity–associated perturbation with a high
number of differentially expressed genes (DEGs) relative to
other cell subtypes.

This multimodal reference mapping approach enabled us to
perform previously unfeasible transcriptomic analyses of fine-
grained immune cell subsets. For example, we identified cDC2
cells as the principal remodeled DC subset in COVID-19; these
cells are depleted in severe disease and have the greatest disease
severity–associated perturbation (Fig. 2, B–E). In cDC2 cells,
FCER1A, known to be involved in inflammatory DC signaling
(Shin and Greer, 2015), CD83, an activation marker of mature
DCs (Li et al., 2019), and CTSS, which is involved in antigen
presentation (Fig. 2 F; Kim et al., 2017), were down-regulated
with increased disease severity, while genes associated with
tolerogenic or anti-inflammatory responses, like PKM and CD163,
were up-regulated (Palsson-McDermott et al., 2017; Comi et al.,
2020). Collectively, these results indicate that dysfunctional and
anti-inflammatory cDC2 cells may be a feature of severe COVID-
19, with important potential implications for T follicular helper
cell development and mucosal immunity.

CD8 TEM cells also displayed severity-associated trans-
criptional perturbations (Fig. 2, B, G, and H). Notably, several
markers of CD8 effector capacity, like PRF1, GZMB, and CX3CR1
(Yan et al., 2018; Gerlach et al., 2016), were down-regulated
primarily in patients with mild COVID-19 (Fig. 2 I). Addition-
ally, in severe and fatal COVID-19 patients, CD8 TEM cells re-
tained expression of markers of effector capacity without
showing features of exhaustion (Fig. 2 J). Together, these anal-
yses provide transcriptional evidence that over-exuberant pe-
ripheral cytotoxic T cell responses may be associated with severe
disease, similar to previous protein-level reports (Mathew et al.,
2020).

COVID-19 acuity remodels peripheral immune phenotype in a
severity-specific fashion
In light of the heterogeneity of sampling times between patients
(Fig. 1 B), we examined the impact of disease time point on
immune phenotype. These analyses are limited by our small
sample size of acutely infected patients with mild disease in our
transcriptional dataset. Nonetheless, these analyses indicate that
convalescence has considerably less impact on transcriptional
phenotype in patients withmild illness at peak severity (Fig. S3).
These results imply that mild COVID-19 may be marked by
minimal, or rapidly resolved, systemic immune responses, a
finding that is orthogonally supported by our CyTOF analyses
that include a greater number of subjects. Cell types most per-
turbed in convalescence included CD8 TEM and CD14 monocytes;
in patients with moderate disease, B cells were also perturbed in

boxed in blue, scATAC-seq–derived data are boxed in green, and CyTOF-derived data are boxed in orange. (B) Summary of key patient metadata, including age,
peak disease severity score, and days after first positive nasopharyngeal PCR test. The vertical dotted line placed at 21 d after positive test indicates the
threshold after which patient samples are considered convalescent. (C, D, and F–I) UMAP projections of complete scRNA-seq (C and D), scATAC-seq (F and G),
and CyTOF (H and I) datasets colored by peak disease severity score of sample (C, F, and H) or cell type (D, G, and I). Eos, eosinophils; Prog, progenitor; Prolif
Lymph, proliferating lymphocytes. (E) Cell type proportions from scRNA-seq data of PBMCs in each sample are colored by peak disease severity score. Platelets
and neutrophils are excluded from the proportion calculations because their presence is related to sample processing. The x axes correspond to the disease
severity score for each sample at the time of collection. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, P = 0.05 by two-sided Wilcoxon rank-sum test with
Bonferroni’s correction for multiple hypothesis testing.
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Figure 2. Reference-based cell subtype annotations reveal disease severity–associated perturbations in immune cell subtypes. (A)WNN projection of
scRNA-seq dataset colored by cell type labels transferred from Seurat v4 (left) or by peak disease severity score (right). Eryth, erythrocyte. (B) Heatmap of
cellular perturbation scores, as described by Papalexi et al. (2021), per COVID-19 sample in each Seurat v4–labeled cell type. The number of DEGs between all
COVID-19 cells and healthy cells for each cell type is plotted at the left. (C) UMAP projection of all DC subsets colored by peak disease severity score (left) and
Seurat v4–annotated cell type (right). (D) Dot plot depicting percentage and average expression of canonical DC genes defining the four annotated DC subsets
(see Materials and methods and Table S11). (E) Box plots depicting proportions of DC subsets. (F) Box plots depicting average expression of selected DEGs
(see Table S13 for complete list) by cDC2s for each sample. (G) UMAP projection of all CD8 T cells colored by peak disease severity score (left) and Seurat
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convalescence, displaying down-regulation of Ig genes (Fig. S3
I). Additional longitudinal sampling across all severity groups is
necessary to clarify these signatures.

Emergence of monocytes with dysfunctional features in
severe COVID-19
We next analyzed the phenotypes of peripheral monocytes
in COVID-19, because these cells appeared to be strongly re-
configured in nonlinear dimensionality reduction projections
for all three modalities (Fig. 1, C, D, and F–I). Embedding of
monocytes alone from the transcriptomic dataset recapitulated
this phenotypic shift (Fig. 3 A). Similar to previous reports
(Schulte-Schrepping et al., 2020; Wilk et al., 2020; Ong et al.,
2020; Giamarellos-Bourboulis et al., 2020; Arunachalam et al.,
2020), multiple IFN-stimulated genes (ISGs) and markers of
immature and tolerogenic monocytes, such as CD163, PLAC8,
and MPO (Fig. 3, B and C), were up-regulated with increasing
disease severity. Notably, ARG1, encoding the myeloid-derived
suppressor cell (MDSC) marker and T cell inhibitor arginase,
was also up-regulated most prominently in the monocytes of
fatal COVID-19 patients (Fig. 3 C). Monocytes from severe and
fatal COVID-19 patients possessed additional features of an
MDSC-like phenotype (Schulte-Schrepping et al., 2020), in-
cluding loss of HLA class II–encoding genes (Fig. 3, C and D)
and enrichment of published gene signatures from MDSCs
(Alshetaiwi et al., 2020) and monocytes in the setting of bac-
terial sepsis (Reyes et al., 2020; Fig. 3 D). Additionally, we noted
a severity-associated loss of CD4 expression (Fig. 3, B and C),
which is involved in monocyte-to-macrophage differentiation
and pro-inflammatory cytokine induction in CD14 monocytes
(Mathy et al., 2000; Zhen et al., 2014). These results collectively
suggest that suppressive and dysfunctional monocytes are a
feature of severe and fatal COVID-19, in agreement with pre-
vious reports (Schulte-Schrepping et al., 2020; Arunachalam
et al., 2020; Wilk et al., 2020). Importantly, mild COVID-19
generally did not lead to this shift toward suppressive and
dysfunctional monocytes.

The appearance of this expanded population of monocytes
with suppressor-like features led us to examine whether these
cells are the result of mature circulating monocytes being ex-
posed to the peripheral inflammatory milieu of severe COVID-19
or of immature cells that are the product of emergency mye-
lopoiesis. To address this question, we scored monocytes
in our transcriptomic dataset for gene signatures of various
monocyte progenitors: common myeloid progenitor, granulocyte-
monocyte progenitor, common monocyte progenitor (cMoP),
premonocytes, and mature CD14 monocytes or CD14 mono-
cytes derived from the cMoP (Fig. 3 E; Kawamura et al., 2017).
This analysis reveals that the vast majority of monocytes in

our dataset correspond to mature monocytes and that there
is no coexpression of monocyte progenitor and MDSC gene
sets (Fig. 3, E and F). This suggests that the dysfunctional
and tolerogenic transcriptional signatures of monocytes
in severe and fatal COVID-19 likely reflect not the imma-
turity of these cells but rather a phenotype acquired by
mature monocytes exposed to the inflammatory milieu of
COVID-19.

Proteomic profiling of COVID-19 monocytes recapitulated
many of our transcriptional findings (Fig. 3, G–I). This included a
loss of CD16+ monocytes as well as a distinct shift in the phe-
notype of CD14+ monocytes (Fig. 3, G–I; and Table S8). As ob-
served in our transcriptional data, expression of HLA-DR and
CD4 was lost in monocytes of severe COVID-19 samples. Im-
portantly, this proteomic reconfiguration was not observed in
patients with mild COVID-19, evident in nonlinear dimension-
ality reduction (Fig. 3 G). Patients with mild disease experienced
no significant increase in expression of the stress marker CD112,
nor did they up-regulate CCR2, which is involved in monocyte
recruitment to the airways in the setting of severe COVID-19,
although both of these markers were up-regulated in patients
with severe disease (Fig. 3, G–I; Merad and Martin, 2020; Pairo-
Castineira et al., 2020). Patients with mild disease also displayed
a less dramatic loss of HLA-DR and CD4 expression compared
with monocytes in severe cases (Fig. 3, G–I). Panel-wide analysis
of COVID-19 disease severity–associated changes in monocyte
phenotype between scRNA-seq and CyTOF datasets also re-
vealed high concordance in the perturbations detected between
the two modalities (Fig. S1 J). These results indicate that while
monocytes are dramatically remodeled in severe COVID-19,
mild COVID-19 has minimal, or rapidly resolved, impact on the
monocyte proteome.

Peripheral myeloid cells up-regulate stroke risk biomarkers in
severe COVID-19
We also noted that C19orf59, which encodes MCEMP1, a key
biomarker for stroke risk and outcome (Wood, 2016; Raman
et al., 2016), was up-regulated in the monocytes of severe and
fatal COVID-19 patients (Fig. 3, J and K). Given the accumulating
data that COVID-19 can drive thrombotic complications in-
cluding ischemic stroke, we examined expression of other
transcripts reported to predict stroke risk in the study by
Raman et al. (2016). We found that each of the five most
predictive transcripts for stroke risk and prognosis reported
by Raman et al. (C19orf59, IRAK3, ANXA3, RBM47, and TLR5)
were abundantly expressed in monocytes and neutrophils and
that each of these transcripts was significantly up-regulated
in severe COVID-19 in either monocytes or neutrophils (Fig. 3,
J and K).

v4–annotated cell type (right). (H) Dot plot depicting percentage and average expression of canonical CD8 subset–defining genes (see Materials and methods).
(I) Box plots depicting average expression of selected DEGs (see Table S14 for complete list) by CD8 TEM cells in each sample. (J) Box plots showing average
module scores for T cell exhaustion (as reported in Miller et al., 2019) in each annotated CD8 T cell subset. For all box plots, points are colored by the peak
disease severity score, shaped according to disease acuity, and grouped by the disease severity score at the time of sample collection. *, P < 0.05; **, P < 0.01;
***, P < 0.001; ****, P < 0.0001; ns, not significant at P = 0.05 by two-sided Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis
testing. TCM, T central memory; gdT, γδ T; dnT, double negative T cell; TEM, T effector memory cell; TCM, T central memory cell.
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Figure 3. Monocytes with dysfunctional and suppressive features emerge in severe and fatal COVID-19. (A) UMAP projections of monocytes from
scRNA-seq dataset, colored by CD14 and FCGR3A (encoding CD16) expression (left) and colored by peak disease severity score (right). (B) Volcano plot depicting
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NF-κB inactivity may underlie poor pro-inflammatory cytokine
production in peripheral monocytes of severe COVID-19
patients
Because cytokine production is a key antiviral function of
peripheral monocytes, we next examined the expression of pro-
inflammatory cytokine–encoding genes by peripheral mono-
cytes stratified by disease severity. Interestingly, we found
minimal expression of key monocyte-derived pro-inflammatory
cytokine–encoding genes, particularly in severe and fatal
COVID-19 patients (Fig. 4 A); in fact, IL1B and TNF were among
the most significantly down-regulated genes in the monocytes
of severe and fatal COVID-19 patients (Fig. 3 B and Fig. 4 A).
The failure of even mild cases to significantly up-regulate many
pro-inflammatory cytokine–encoding genes (Fig. 4 A) is in con-
trast to mild cases of similar viral infections such as influenza
(Lamichhane and Samarasinghe, 2019; Vangeti et al., 2018;
Hoeve et al., 2012). To explore potential regulatory mechanisms
underlying this dysfunction, we performed a transcription factor

(TF) activity analysis of our RNA dataset, which revealed de-
creased activity of NF-κB in monocytes from severe COVID-19
patients (Fig. 4 B). The NF-κB pathway is crucial for the in-
flammatory responses to viral infections in innate immune
cells (Hetru and Hoffmann, 2009; Medzhitov and Horng, 2009;
Liu et al., 2017), and its activation relies on various pro-
inflammatory cytokines, including IL-1β and TNFα (Lawrence,
2009). Activated NF-κB can further induce TNF and IL1B ex-
pression (Liu et al., 2017; Hiscott et al., 1993), leading to a positive
feedback loop. Our scRNA-seq data did not show significant
transcriptional changes for most NF-κB family TFs, although REL
and RELB are down-regulated in severe COVID-19 (Fig. 4 C). This
could either reflect technical limitations of measuring lowly
expressed TF transcripts, or it could indicate that our observed
NF-κB activity changes are caused by post-translational mod-
ifications (Liu et al., 2017).

We next leveraged our chromatin accessibility dataset to
investigate the regulatory mechanisms by which NF-κB could

DEGs in monocytes of patients with severe and fatal COVID-19 versus healthy control subjects. (C) Box plots depicting average expression of selected DEGs by
monocytes (see Table S15 for complete DEG list). (D) Box plots showing average module scores for ISG, HLA class II, bacterial sepsis (Reyes et al., 2020), and
MDSC (Alshetaiwi et al., 2020) gene signatures in monocytes (see Materials and methods). (E) Box plots depicting monocyte precursor subset gene module
score (see Materials and methods and Table S16; Kawamura et al., 2017), colored by peak COVID-19 severity. (F) Heatmap showing per-cell correlations
between module scores plotted in E. cMoP_Mo, CD14 monocytes derived from the cMoP. (G) UMAP projection of all monocytes from CyTOF dataset, colored
by peak disease severity score. (H and I) Feature plots (H) and box plots (I) depicting arcsinh-transformed expression of selected protein markers bymonocytes
in CyTOF dataset. (J) UMAP projections of complete scRNA-seq dataset colored by expression of stroke-predictive genes (Raman et al., 2016). (K) Box plots
depicting average expression of the five stroke-predictive genes in monocytes (top) or canonical neutrophils (bottom). For all box plots, points are colored by
the peak disease severity score, shaped according to disease acuity, and grouped by the disease severity score at the time of sample collection. *, P < 0.05; **,
P < 0.01; ***, P < 0.001; ****, P < 0.0001; ns, not significant at P = 0.05 by two-sided Wilcoxon rank-sum test with Bonferroni’s correction for multiple
hypothesis testing. CMP, common myeloid progenitor.

Figure 4. Absent pro-inflammatory cytokine–encoding gene induction bymonocytes in severe COVID-19. (A) Box plots depicting average expression of
pro-inflammatory cytokine–encoding genes by monocytes. (B) Dot plot depicting results of iRegulon TF activity prediction analysis. Positive normalized
enrichment scores (NES) indicate that the TF activity is higher in patients with severe COVID-19 relative to that in healthy control subjects. (C) Dot plot
depicting average and percentage expression of NF-κB subunits. For all box plots, points are colored by the peak disease severity score, shaped according to
disease acuity, and grouped by the disease severity score at the time of sample collection. **, P < 0.01; ns, not significant at P = 0.05 by two-sided Wilcoxon
rank-sum test with Bonferroni’s correction for multiple hypothesis testing.
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Figure 5. Identification of putative enhancers regulating pro-inflammatory cytokine expression by monocytes in COVID-19. (A) Genome-wide
footprinting of the NF-κB2 binding motif in CD14 monocytes from different severity groups shown in different colors. (B) Box plot depicting quantification
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control expression of pro-inflammatory cytokines by monocytes
in COVID-19. First, a genome-wide footprinting analysis of NF-
κB motifs revealed severity-associated decreases in NF-κB
binding activity (Fig. 5, A and B), consistent with our RNA-based
TF activity analysis. Consistent with this hypothesis, we further
observed COVID-19–associated changes in genome-wide NF-κB
family TF activity. Using chromVAR analysis to quantify TF
activity from the chromatin accessibility of each cell, we found
increased NF-κB activity in mild cases and significantly de-
creased activity in severe cases (P = 0.0047, Wilcoxon test; Fig. 5
C; Schep et al., 2017).

To investigate potential gene regulatory mechanisms that
could explain the down-regulation of pro-inflammatory cyto-
kines in monocytes of severe and fatal COVID-19 patients, we
examined changes in chromatin accessibility around the loci
encoding IL1B and CCL2. We identified a putative enhancer
downstream of IL1B, which shows linkage to the IL1B promoter
via single-cell coaccessibility analysis and chromosome confor-
mation capture Hi-C data from the THP-1 monocytic cell line
(Fig. 5 D; see Materials and methods; Phanstiel et al., 2017). This
putative enhancer showed significantly decreased accessibility
in severe COVID-19 patients (P = 0.0081, Wilcoxon test; Fig. 5 E).
Furthermore, this element contains an NF-κB binding motif,
suggesting it may be regulated by NF-κB family TFs (Fig. 5 D).
We also identified changes in accessibility within peaks con-
taining NF-κB motifs at the locus for the inflammatory cytokine
CCL2 (Fig. 5 F). Here, we observed an increase in the accessi-
bilities of motifs near these loci in patients with mild disease
exclusively (Fig. 5 E), similar to the pattern of NF-κB activity
observed in our chromVAR analysis (Fig. 5 C); this suggests the
possibility that greater accessibility of these motifs may be re-
lated to a lower burden of disease. Our results suggest that ab-
errant decreases in NF-κB activity in severe COVID-19 may
result in loss of accessibility at putative enhancers of key
cytokine genes.

We also examined the epigenetic regulation at the CD4 locus,
because this gene was significantly down-regulated with in-
creasing disease severity. Although there was no change in
chromatin accessibility of the CD4 gene promoter between se-
verity groups, we found that the accessibility of monocyte-

specific CD4 gene putative regulatory regions was signifi-
cantly reduced in severe samples (Fig. 5, G–I). This monocyte-
specific loss of CD4 expression may provide an additional
mechanism explaining the previously reported impairment of
cytokine production by monocytes in COVID-19 (Arunachalam
et al., 2020; Schulte-Schrepping et al., 2020), because the
interaction between IL-16 and monocytic CD4 induces the
expression of pro-inflammatory cytokines, including IL-1β
(Mathy et al., 2000).

Peripheral NK cells are depleted in severe COVID-19 and have a
highly activated phenotype
We next interrogated changes in the NK cells of COVID-19
samples. As demonstrated previously (Wilk et al., 2020;
Maucourant et al., 2020), peripheral NK cells were substantially
depleted across all three modalities, although the frequencies of
CD56bright, CD56dim, and CD56− NK cells as a percentage of all NK
cells did not change (Fig. 6, A and B). The depletion of peripheral
NK cells in severe COVID-19 may reflect their trafficking to the
site of infection (Liao et al., 2020). We also noted significant
transcriptional reconfiguration driven by up-regulation of sev-
eral canonical NK cell activation genes, including higher ex-
pression of cytotoxic effector molecule–encoding genes GZMB
and PRF1, as well as proliferation marker MKI67 and ISGs like
XAF1 (Fig. 6, C and D). NK cells frommoderate and severe, but not
mild, COVID-19 cases also displayed transcriptional evidence of
exhaustion (Fig. 6 D).

We next examined this NK cell activation signature at the
protein level. We corroborate previously known changes in NK
cell biology, including increased expression of the activation
markers CD38 and CD69 (Maucourant et al., 2020), and we also
demonstrate that surface expression of the death receptor ligand
FasL is increased in moderate and severe COVID-19 patients
(Fig. 6, E and F). While perforin was also up-regulated in mod-
erately and severely ill patients, surprisingly, NK cells from fatal
COVID-19 patients failed to up-regulate both this cytotoxic ef-
fector and the proliferation marker Ki-67 (Fig. 6, E and F). These
data, coupled with transcriptomic evidence of NK cell exhaus-
tion in severe and fatal COVID-19 (Fig. 6 D), suggest that defects
in NK cell cytotoxicitymay be associated with adverse outcomes.

of the “flanking accessibility” (Baek et al., 2017; Corces et al., 2018) for NF-κB2 motif footprints in CD14 monocytes from different samples. Each dot indicates
the average “flanking accessibility” value for each sample. (C) Box plot depicting the average chromVAR z-scores of NF-κB2 binding motifs in CD14 monocytes
from different samples. (D and F) The genome tracks show genomic regions near IL1B (D) and CCL2 (F) genes. The top panel indicates coverage at different
peak regions for CD14 monocytes in different severity groups; the box below shows peaks called from all CD14 monocytes (dark blue) in the 100-kb region and
peaks containing putative strong NF-κB2 binding sites (red); the CoAccessibility box in D shows the accessibility correlated peak pairs across all CD14
monocytes near the IL1B locus; the Genes box shows the location of IL1B (D) or CCL2 (F) together with other adjacent genes; the bottom Virtual 4C track in D
shows Knight-Ruiz–normalized contact frequencies to the IL1B promoter in THP-1 monocytic cells; blue color means the gene is located on the minus strand,
and red color means the gene is located on the plus strand. The arrows indicate peaks of interest whose accessibility is quantified in the corresponding box
plots (E). (G and I) The genome tracks show genomic regions near the CD4 gene. The top panel indicates coverage at different peak regions for different cell
subsets (G) and for CD14 monocytes in different severity groups (I); the box below shows peaks called from all PBMCs (G) or from the CD14 monocytes (I) in
that region (dark blue); the bottom Genes box shows the location of CD4 and other adjacent genes; blue color means the gene is located on the minus strand,
and red color means the gene is located on the plus strand. The arrows indicate monocyte-specific peaks with higher accessibility in monocytes and DCs than in
CD4 T cells. (E and H) Box plots depicting the Tn5 insertions per million at the peaks markedwith the corresponding arrows in CD14monocytes. Exact P values
for E: top, P = 0.0081 healthy versus severe; middle, P = 0.014 healthy versus mild; bottom, P = 0.0037. Exact P values for H: top, P = 0.0047 healthy versus
severe; middle, P = 0.0047 healthy versus severe; bottom, P = 0.022 healthy versus mild. Points are colored by the peak disease severity score, shaped
according to disease acuity, and grouped by the disease severity score at the time of sample collection. *, P < 0.05; **, P < 0.01; ns, not significant at P = 0.05 by
two-sided Wilcoxon rank-sum test with Bonferroni correction for multiple hypothesis testing.
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Figure 6. NK cells of severe COVID-19 patients exhibit a unique proteomic and transcriptional profile. (A) Box plots of manually annotated NK cell
proportions from CyTOF dataset (left), Seurat v4–annotated NK cell proportions from scRNA-seq dataset (center), and Seurat v4–annotated NK cell pro-
portions from scATAC-seq dataset (right; see Materials and methods). (B) Box plots showing the frequency of CD56bright, CD56dim, and CD56− NK cells as a
proportion of NK cells in the CyTOF dataset. (C) UMAP projections of NK cells from scRNA-seq dataset colored by peak disease severity score (left) and
selected DEGs (right; see Table S17 for complete list). (D) Box plots of average ISG signature and NK cell exhaustion (defined as expression of LAG3, PDCD1, and
HAVCR2; see Materials and methods) module scores in Seurat v4–annotated NK cells. (E) Heatmap depicting Z-score normalized protein-level expression of
canonical NK cell activation and cytotoxicity markers (perforin, Ki-67, CD38, CD69, and FasL) in each sample. (F) Box plots quantifying arcsinh-transformed
average expression of markers depicted in E by NK cells, grouped by peak disease severity score. For all box plots except F, points are colored by the peak
disease severity score, shaped according to disease acuity, and grouped by the disease severity score at the time of sample collection. *, P < 0.05; **, P < 0.01;
***, P < 0.001; ****, P < 0.0001; ns, not significant at P = 0.05 by two-sided Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis
testing.
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Dynamic changes in NK cell receptors and ligandsmay underlie
COVID-19 severity–associated NK activation
To assess mechanisms of NK cell activation, we interrogated
changes in the NK cell repertoire of surface-expressed activating
and inhibitory receptors on CD38+CD69+ activated NK cells. As
expected, the proportion of activated NK cells was significantly
increased in moderate and severe COVID-19 (Fig. 7, A and B).
Notably, surface expression of the activating receptors DNAM-
1 (CD226) and NKG2D was significantly down-regulated in ac-
tivated NK cells of severe COVID-19 samples compared with
healthy controls (Fig. 7 C), despite no change in the expression of
the genes encoding these proteins in the total NK cells within
our scRNA-seq data (Fig. 7 D). Because expression of both
DNAM-1 and NKG2D can be down-modulated following ligation
(Carlsten et al., 2009; Molfetta et al., 2017), we investigated the
abundance of a DNAM-1 ligand, Nectin-2 (CD112), and of the
ULBP proteins, which are recognized by NKG2D. Both Nectin-
2 and the ULBPs were significantly up-regulated on the pe-
ripheral monocytes of hospitalized COVID-19 patients compared
with healthy controls (Fig. 7 E), which supports the hypothesis
that SARS-CoV-2 may decrease surface expression of DNAM-
1 and NKG2D through internalization following ligation of
overexpressed Nectin-2 and ULBP proteins due to stress. Al-
ternatively, activated NK cells expressing DNAM-1 or NKG2D
may migrate to the tissue in the setting of severe disease, de-
pleting these markers from the circulating population.We found
no changes in the expression of either TIGIT, an inhibitory re-
ceptor that competes with DNAM-1 for binding of Nectin-2, or
TACTILE (CD96), which recognizes another ligand of DNAM-1,
CD155 (Fig. 7 F).

We also observed a loss of LLT-1 expression on CD14+ mon-
ocytes that appears to correlate with disease severity, with a
near-total loss in fatal samples (Fig. 7 G); however, we found no
change in the expression of the inhibitory receptor that recog-
nizes LLT-1, CD161, on NK cells (Fig. 7 H). The overall profile of
activating and inhibitory receptors and ligands expressed in
severe COVID-19 is summarized in Fig. 7 I and suggests that the
activated phenotype observed in these samplesmay be driven by
activating signals received through DNAM-1 and NKG2D as well
as a lack of inhibitory signaling through CD161.

A hyperactivated neutrophil signature marks severe and
fatal COVID-19
Despite evidence that neutrophils are major players in the dys-
regulated immune response that defines severe and fatal COVID-
19 (Aschenbrenner et al., 2021; Bost et al., 2021; Meizlish et al.,
2021; Barnes et al., 2020; Zuo et al., 2020; Radermecker et al.,
2020; Veras et al., 2020;Middleton et al., 2020), there has been a
relative dearth of deep profiling of neutrophils from COVID-19
patients, given their sensitivity to both cryopreservation and
mechanical stimulation (Ekpenyong et al., 2015; Yap and Kamm,
2005). To address this, we first demonstrated that Seq-Well
generated high-quality scRNA-seq data of primary human
neutrophils from a healthy blood donor (Fig. S4). Although
fewer genes were detected in sequenced neutrophils, the num-
ber of unique molecular identifiers (UMIs) sequenced in neu-
trophils was comparable to the expected recovery based on

known RNA content (Xie et al., 2020; Monaco et al., 2019). We
also found that neutrophils from ammonium chloride potassium
(ACK)–lysed whole blood were phenotypically similar to neu-
trophils isolated by magnetic-activated cell sorting (Fig. S4, D
and E); the former strategy was also able to uncover other
granulocytic cell types, such as eosinophils (Fig. S4 C).

Seq-Well processing of red blood cell–lysed whole blood
yielded 33,276 high-quality single transcriptomes of primary
neutrophils (Fig. 8 A). These cells uniformly and specifically
expressed neutrophil lineage marker–encoding genes, including
CSF3R and CXCR2, indicating their identity as canonical neu-
trophils (Fig. 8 A and Table S6). Nonlinear dimensionality re-
duction revealed that neutrophil transcriptional phenotype was
strongly remodeled in COVID-19 (Fig. 8 A), driven in part by up-
regulation of PADI4, which is required for neutrophil extracel-
lular trap activation and release (NETosis), the IL-8 receptor
CXCR1, and multiple alarmins, including S100A8 and S100A9
(Fig. 8, B and C), which together induce neutrophil chemotaxis
and adhesion (Ryckman et al., 2003). We also noted disease
severity–specific induction of ISGs in moderate and severe, but
not in mild, COVID-19 patients (Fig. 8 D). Although this ISG
signature was detected across most cell types in moderately
and severely ill patients, neutrophils up-regulated the broadest
number of ISGs (Fig. S2). Importantly, the differential expres-
sion of ISGs by neutrophils between COVID-19 severity groups
was not due to a difference in infection time points between
patients: neutrophils from patients with mild COVID-19 did not
up-regulate ISGs at any point during infection (Fig. 8 D). To
examine potential sources of type I IFN, we analyzed expression
of the upstream regulator of IFN in pDCs, IRF7, because type I
IFN–encoding genes themselves are often undetectable at the
RNA level (Kazer et al., 2020). pDCs did not display strong or
consistent severity-associated up-regulation of IRF7 (Fig. S2),
suggesting that the neutrophil ISG signature in moderate and
severe COVID-19 is likely due to sensing of type I IFN produced at
the site of infection. Additionally, gene set enrichment analysis
demonstrated up-regulation of genes associated with neutrophil
phagocytosis and degranulation in a disease severity–associated
fashion (Fig. 8 E and Table S16).

We also identified two distinct neutrophil immunophenotypes
of fatal COVID-19. Neutrophils from four of six fatal COVID-19
cases had robust ISG induction and expressed CD274 (encoding
PD-L1; Fig. 8, B and C), in line with previous work (Schulte-
Schrepping et al., 2020). However, we also identified two fatal
COVID-19 cases with less pronounced ISG induction but with up-
regulation of additional neutrophil activation markers not ob-
served in other samples, including CXCR4, CLEC12A, EGR1, and the
decoy IL1β receptor IL1R2 (Fig. 8, B and C). Additional severity-
associated changes in neutrophil phenotype included the
up-regulation of pro-inflammatory cytokine-encoding genes, in-
cluding CXCL16 and TNFSF10 (encoding TRAIL), as well as up-
regulation of several epigenetic regulators involved in neutrophil
activation, like PADI4, which is required for formation of neutrophil
extracellular traps (Fig. 8 F; Aschenbrenner et al., 2021; Li et al.,
2010; Hemmers et al., 2011).

TF activity analysis implicated STAT1, STAT2, STAT3, and
IRF1 as key upstream regulators of the observed transcriptional
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Figure 7. Ligation of DNAM-1 and NKG2D may drive activation of NK cells in severe COVID-19. (A) Representative flow plots showing the gating scheme
used to identify activated (CD38+CD69+) NK cells in patients from each severity bin. (B) Box plot showing the proportion of CD38+CD69+ NK cells in each
severity bin. (C) Box plots showing arcsinh-transformed protein-level expression of the activating receptors DNAM-1 (left) and NKG2D (right) in CD38+CD69+

NK cells. (D) Box plots showing the average expression of CD226 (which encodes DNAM-1; left) and KLRK1 (which encodes NKG2D; right) from the scRNA-seq
dataset (E) Box plots depicting arcsinh-transformed protein-level expression of NK cell ligands CD112 and ULBP-1,2,5,6 in monocytes. (F) Box plots showing
arcsinh-transformed expression of the inhibitory receptors TIGIT and CD96/TACTILE in CD38+CD69+ NK cells in our CyTOF dataset. (G) Box plot depicting
arcsinh-transformed average protein-level expression of NK cell ligands LLT-1 in monocytes. (H) Box plots showing arcsinh-transformed protein-level
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reconfiguration, further suggesting that COVID-19 neutrophils
are strongly activated by type I IFN in a disease severity–specific
fashion (Fig. 8 G). To better contextualize these findings, we
scored the neutrophils in our dataset against gene modules up-
regulated in a model of endotoxemia (de Kleijn et al., 2013) and
in acute respiratory distress syndrome (ARDS)–complicated
sepsis (Juss et al., 2016). This analysis revealed that both of these
signatures are up-regulated with increasing COVID-19 severity
(Fig. 8 H), implying similarities in neutrophil phenotype be-
tween these clinical conditions. Collectively, profiling fresh whole
blood rather than isolated PBMCs reveals a prominent neutrophil
hyperactivation signature in severe and fatal COVID-19.

Developing neutrophils are a feature of fatal COVID-19
We next analyzed a population of developing neutrophils from
the transcriptomic dataset that was enriched in patients with
severe and fatal COVID-19 (Fig. 1 E and Fig. 9 A). This population
has been identified in other COVID-19 datasets but is not yet well
characterized (Schulte-Schrepping et al., 2020; Bost et al., 2021).
These cells specifically and highly expressed genes encoding
markers expressed at distinct stages in neutrophil development,
including DEFA1B, LCN2, and MMP8 (Table S20), indicating
that they likely represent immature neutrophils derived from
emergency granulopoiesis. Because we hypothesized that these
cells were not a static population but rather were dynamically
differentiating, we embedded them in two and three dimensions
using potential of heat diffusion for affinity-based trajectory
embedding (PHATE), a dimensionality reduction method de-
veloped to visualize phenotypic continua, branches, and con-
tinual progressions (Fig. 9, B and C; and Fig. S5; Moon et al.,
2019). Clustering of these cells revealed five clusters that cor-
responded to sequential stages in neutrophil development, be-
ginning with cluster 0 (pro-neutrophils) expressing primary
neutrophil granule protein–encoding genes, followed by clusters
1–3 (pre-neutrophils) consecutively expressing secondary and
tertiary neutrophil granule protein–encoding genes, and finally
cluster 4 (mature neutrophils), which expresses markers of ca-
nonical neutrophils (Fig. 9, C and D; Evrard et al., 2018). Im-
portantly, ELANE (which encodes neutrophil elastase), was
specifically expressed by pro-neutrophils, implying that these
cells may be capable of NETosis (Perdomo et al., 2019; Martinod
et al., 2016). An orthogonal approach ordering each cell in latent
time modeled by splicing kinetics of RNA velocity (La Manno
et al., 2018; Bergen et al., 2020; Fig. 9 E) also revealed a similar
developmental trajectory with respect to both granule protein–
encoding genes (Fig. 9 F) and TFs known to be involved in
neutrophil development, such as the CCAAT-enhancer-binding
protein family (CEBP; Fig. 9 G and Fig. S5). In our earlier work,
we hypothesized that developing neutrophils may arise via

transdifferentiation from PBs based on their phenotypic simi-
larity in nonlinear dimensionality reduction manifold space and
subsequent analysis of cellular trajectory by RNA velocity (Wilk
et al., 2020). In this larger dataset, a phenotypic relationship
between developing neutrophils and PBs was still evident (Fig. 1,
C and D), but RNA velocity analysis of PBs, developing neu-
trophils, and mature neutrophils did not reveal a clear trans-
differentiation bridge (Fig. S5). Orthogonal experiments are
necessary to conclusively determine the developmental origins
of these cells.

Because developing neutrophils were present uniformly, of-
ten at high frequencies, in patients with fatal COVID-19, and
because these cells specifically expressed many genes not found
in other peripheral blood cell types, we hypothesized that the
developing neutrophil gene signature might be an accurate
predictor of mortality in COVID-19. We therefore identified the
five most positive DEGs between developing neutrophils (6,569
cells across 21 patients) and all other cells in our dataset: DEFA1B,
DEFA3, LTF, DEFA1, and S100A8. We next obtained a publicly
available whole blood bulk transcriptomic dataset of 103 COVID-
19 patients as a validation cohort and scored each sample in this
dataset by the aggregated expression of these five genes (see
Materials and methods). After scoring each sample, we used the
associated patient metadata to determine the 28-d mortality of
each scored sample. We then constructed a receiver operating
characteristic (ROC) plot using the gene score as predictor and
the 28-d mortality as the response variable. We found that the
developing neutrophil gene score accurately predicted 28-d
mortality of the 17 patients who succumbed to infection (area
under the curve, 0.81; Fig. 9, H and I). Importantly, the Se-
quential Organ Failure Assessment score at the time of sample
collection did not strongly predict 28-dmortality (area under the
curve, 0.67), indicating that the presence of developing neu-
trophils is a better prognostic indicator than current clinical
status measured by clinically used severity scales (Fig. 9, H and
I). Thus, developing neutrophils are likely enriched in the blood
of fatal COVID-19 cases in other cohorts, and gene signatures
from these cells have promise as a prognostic indicator.

Myeloid skewing of hematopoietic progenitors in severe and
fatal COVID-19
Considering that severe and fatal COVID-19 patients displayed
evidence of emergency myelopoiesis in the periphery, we hy-
pothesized that there also may be severity-associated aberra-
tions in a small population of hematopoietic stem and progenitor
cells (HSPCs) that we identified in our transcriptomic dataset
(Fig. 1, C and D; and Fig. 2, A and B). Although the frequency
of these cells did not change in COVID-19 (Table S10), we
found that several genes involved in HSPC maintenance and

expression of the inhibitory receptor CD161 on all NK cells. (I) Schematic illustrating the changes in protein-level expression of NK cell activating and inhibitory
receptors as well as their ligands. Text color indicates whether a receptor/ligand is activating (green), inhibitory (red), or either, depending on the context
(yellow). Arrows and dashes indicate whether abundance of a protein is increased, decreased, or unchanged in severe COVID-19 compared with healthy
controls. Dashed lines indicate interactions between receptors and ligands. For all box plots, points are colored by the peak disease severity score, shaped
according to disease acuity, and grouped by the disease severity score at the time of sample collection. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001;
ns, not significant at P = 0.05 by two-sided Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis testing.
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Figure 8. Neutrophil activation is a hallmark of severe and fatal COVID-19. (A) UMAP projections of complete scRNA-seq dataset colored by expression of
canonical neutrophil markers (top) and of canonical neutrophils alone colored by peak disease severity score (bottom). (B) Heatmap of DEGs between
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self-renewal, including CDK6, SOX4, and CHD4 (Laurenti et al.,
2015; Bhullar and Sollars, 2011; Wang et al., 2019; Salvagiotto
et al., 2008; Yoshida et al., 2008; Dege and Hagman, 2014;
Vervoort et al., 2013), were generally up-regulated in COVID-19
patients relative to healthy controls (Fig. 10 A). These DEGs
suggest that the hematopoietic progenitor compartment in
COVID-19 patients has been transcriptionally reshaped to ac-
commodate the stress of emergency hematopoiesis. To better
understand the identities of these cells, we leveraged a publicly
available single-cell transcriptomic dataset of hematopoiesis in
healthy human blood and bone marrow (Fig. 10 B; Granja et al.,
2019), into which we projected HSPCs from our COVID-19 da-
taset (Fig. 10 C). We found a trend toward myeloid skewing in
COVID-19 circulating HSPCs with increasing disease severity,
with lower frequencies of common lymphoid progenitors in
severe and fatal patients, as well as granulocyte/macrophage
progenitor/neutrophil-like cells appearing in severe and fatal
cases (Fig. 10 D). Together, these results indicate severity-
associated changes in hematopoiesis in COVID-19 with greater
myeloid skewing evident in circulating HSPCs.

Discussion
In this work, we have compiled a trimodal single-cell atlas of
immune cells from COVID-19 patients with a wide range of
disease severities through scRNA-seq, scATAC-seq, and CyTOF.
By virtue of our whole blood analyses and multimodal approach,
our analysis reveals novel mechanisms of immune activation
and dysregulation in the setting of severe COVID-19, in addition
to providing critical validation of results from other studies.
We found that neutrophils and NK cells appeared strongly
activated with increasing disease severity, with heightened
ISG induction and increased expression of cytotoxic machin-
ery. Conversely, monocytes and DCs displayed dysregulated
and tolerogenic features in severe and fatal COVID-19. Finally,
we found dramatic changes in hematopoietic development in
severe COVID-19, with the appearance of a population of de-
veloping neutrophils in the periphery and skewing of circu-
lating hematopoietic precursors toward the myeloid lineage.

Importantly, our profiling of patients with mild COVID-19
allows us to demonstrate that many of these changes occur
largely in severe and fatal COVID-19 and not in milder forms of
the disease. For example, the kinetics and role of local and

systemic IFN signaling in ameliorating or exacerbating SAR-
S-CoV-2 remain controversial (Blanco-Melo et al., 2020;
Giamarellos-Bourboulis et al., 2020; Broggi et al., 2020; Hadjadj
et al., 2020; Lee and Shin, 2020). Here, we noted minimal in-
duction of ISGs in mild COVID-19 cases, regardless of the time
point of infection. This suggests that robust IFN responses
detectable in the periphery may not be required for disease
resolution. Additionally, we observed surprisingly little per-
turbation of monocytes and NK cells from mild COVID-19 pa-
tients, whereas mild cases of influenza are known to induce
systemic activation of these cells (Andres-Terre et al., 2015;
Nikitina et al., 2018). Direct comparative analyses and larger
sample sizes will be necessary to identify conserved or differ-
ential features between mild COVID-19 and other mild respi-
ratory virus infections.

Our analysis demonstrated a strong severity-associated hy-
peractivation phenotype in peripheral neutrophils marked by
broad ISG induction, pro-inflammatory cytokine–encoding gene
production, enrichment of phagocytosis and degranulation gene
sets, and up-regulation of epigenetic regulators associated with
inflammatory neutrophils, such as PADI4, which is required
for NETosis. Neutrophils in severe COVID-19 also strongly up-
regulated S100A8 and S100A9, which dimerize to form the
inflammatory molecule calprotectin, which is involved in neu-
trophil activation and chemotaxis (Ryckman et al., 2003).
Additionally, we found features associated with neutrophil ex-
haustion, like up-regulation of CD274, similar to other studies
(Schulte-Schrepping et al., 2020). While this finding has led
some groups to conclude that neutrophils become “suppressive”
in severe COVID-19 (Schulte-Schrepping et al., 2020), we be-
lieve our findings, combined with accumulating evidence that
NETosis contributes to tissue injury and thrombotic complica-
tions in severe COVID-19 (Barnes et al., 2020; Radermecker
et al., 2020; Zuo et al., 2020; Veras et al., 2020; Middleton
et al., 2020), suggest a predominantly pathogenic role for cir-
culating neutrophils in severe COVID-19. Importantly, these
data provide insight into the mechanistic pathways that drive
neutrophil activation. Targeting such pathways may provide
new therapeutic opportunities. For example, an agonist of a
neutrophil-expressed inhibitory receptor Siglec-10 (SACCOVID)
has shown promising results in suppressing hyperinflamma-
tion in severe COVID-19 and is in a phase III clinical trial (Tian
et al., 2018, 2020; Chen et al., 2009). Agonists against other

neutrophils of each COVID-19 sample compared with neutrophils of all healthy controls, colored by average log(fold-change). All displayed DEGs are sta-
tistically significant at the P < 0.05 confidence level by Seurat’s implementation of the Wilcoxon rank-sum test (two-sided, adjusted for multiple comparisons
using Bonferroni correction). DPT, days post first positive COVID-19 test. (C) Box plots depicting average expression of selected neutrophil DEGs by severity
group (see Table S18 for complete DEG list). (D) Plots depicting median ISG signature score of neutrophils in each sample grouped by disease severity score at
the time of sample collection (left) and by days after first positive NP swab (right). All points are colored by peak disease severity score. For scatter plot at right,
Pearson’s r, exact two-sided P values, and the 95% confidence interval are shown for each peak disease severity score grouping. (E) Box plots depicting average
module scores for genes sets of neutrophil phagocytosis and neutrophil degranulation (see Materials and methods and Table S16). (F) Dot plots depicting
average and percentage expression of pro-inflammatory cytokine encoding genes (left) and epigenetic regulators (right) by canonical neutrophils. The y axis
corresponds to the peak disease severity score. (G) Results of TF activity prediction analysis performed by iRegulon (Janky et al., 2014). DEGs between
neutrophils from severely ill patients (peak severity 6–8) and neutrophils from healthy controls were used as input (see Materials and methods and Table S19).
(H) Box plots of average module scores for PD-L1+ neutrophils in an in vitro model of endotoxemia (de Kleijn et al., 2013) and granulocytes in the setting of
sepsis and ARDS (Juss et al., 2016; see Materials and methods and Table S16). For all box plots, points are colored by the peak disease severity score, shaped
according to disease acuity, and grouped by the disease severity score at the time of sample collection. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001;
ns, not significant at P = 0.05 by two-sided Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis testing.
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Figure 9. Emergency granulopoiesis is a feature of fatal COVID-19. (A) Box plot depicting proportions of developing neutrophils in each sample from the
scRNA-seq dataset. (B and C) Two-dimensional PHATE projection of developing neutrophils colored by peak disease severity score (left) and cluster number
(right). (D)Dot plot depicting percentage and average expression of DEGs between developing neutrophil clusters (see Table S20). (E) Two-dimensional PHATE
projection of developing neutrophils colored by latent time calculated by scVelo (Bergen et al., 2020). (F and G) Scaled expression of selected neutrophil
granule-encoding genes (F) and CCAAT-enhancer-binding protein (CEBP) TF family–encoding genes (G) by developing neutrophils across inferred latent time.
(H) Bar plot representing the ranked developing neutrophil signature score (aggregated expression of DEFA1B, DEFA3, LTF, DEFA1, and S100A8; see Materials
and methods) for each COVID-19 sample in a validation cohort from a publicly available bulk transcriptomic dataset (Overmyer et al., 2021), colored by the 28-d
mortality. (I) ROC curve depicting sensitivity and specificity of 28-dmortality prediction of a five-gene signature of developing neutrophils (DEFA1B, DEFA3, LTF,
DEFA1, and S100A8) or of Sequential Organ Failure Assessment (SOFA) score at the time of sample collection in an independent validation cohort of 103

Wilk et al. Journal of Experimental Medicine 17 of 29

Multi-omic profiling across COVID-19 severity https://doi.org/10.1084/jem.20210582

https://doi.org/10.1084/jem.20210582


neutrophil-expressed inhibitory receptors, like Siglec-9, may also
represent novel therapeutic candidates (Delaveris et al., 2021).

In addition to identifying features of severe COVID-19, we
were also able to identify key differences between the immune
responses of patients with severe COVID-19 who went on to
survive the disease versus those who did not. A striking dif-
ference between fatal and nonfatal cases was the emergence of a
population of developing neutrophils that was first described by
our group (Wilk et al., 2020). In this earlier work, we identified
these cells in 4 of 4 patients with ARDS requiring mechanical
ventilation, including in one patient who died of infection. We
now show the presence of these cells in 17 additional patients,
including 5 of 7 patients with severe COVID-19 and 6 of 6 pa-
tients with fatal COVID-19. Our trajectory analyses demonstrate
that these cells follow the stages of canonical neutrophil devel-
opment, beginning with defensin-rich promyelocytes and dif-
ferentiating through metamyelocytes and bands to form mature

neutrophils. This process may be driven by elevated levels of
circulating pro-inflammatory cytokines, such as IL-17, that may
induce the formation of neutrophils (Megna et al., 2020). Al-
though any functional or pathological role for these cells in
COVID-19 pathogenesis remains unclear, their abundance in the
periphery of patients with fatal COVID-19 enabled us to dem-
onstrate that their most defining transcripts could be used to
predict 28-d mortality in an independent bulk transcriptomic
dataset. Although emergency myelopoiesis is known to be a
feature of bacterial sepsis (Loftus et al., 2018; Scumpia et al.,
2010), it is likely that emergency myelopoiesis is also an un-
derappreciated feature of severe viral infection. For example, in
an integrated multicohort analysis of viral disease severity,
Zheng et al. (2021) reported a gene module that includes several
markers of immature neutrophils (e.g., CEACAM8, DEFA4, LCN2)
that is enriched in other viral infections, including influenza and
respiratory syncytial virus. In addition, a six-mRNA classifier of

samples where 17 cases are fatal (Overmyer et al., 2021). For all box plots, points are colored by the peak disease severity score, shaped according to disease
acuity, and grouped by the disease severity score at the time of sample collection. AUC, area under the curve. **, P < 0.01; ns, not significant at P = 0.05 by two-
sided Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis testing.

Figure 10. Myeloid skewing of circulating HSPCs and other hematopoietic abnormalities in COVID-19. (A) Box plots of average expression of selected
HSPC DEGs (see Table S21). (B and C) UMAP projection of Seurat v4–annotated HSPCs from scRNA-seq dataset into a publicly available blood and bone
marrow hematopoiesis dataset (Granja et al., 2019) colored by published cell type annotations (B) and with projected HSPCs colored in red (C). (D) Bar plot
depicting proportions of cell type identities transferred after projection into the publicly available hematopoiesis dataset for each peak disease severity score
bin. For all box plots, points are colored by the peak disease severity score, shaped according to disease acuity, and grouped by the disease severity score at the
time of sample collection. *, P < 0.05; **, P < 0.01; ns, not significant at P = 0.05 by two-sidedWilcoxon rank-sum test with Bonferroni’s correction for multiple
hypothesis testing. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; BMMC, bone marrow mononuclear cells; LMPP, lymphomyeloid-
primed multipotent progenitor; GMP, granulocyte-monocyte progenitor; HSC, hematopoietic stem cell.
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viral disease severity, which includes DEFA4, trained on
non–COVID-19 viral infections was found to also predict COVID-
19 severity (Buturovic et al., 2021 Preprint). These results suggest
that emergency myelopoiesis is a common feature of multiple
severe viral infections and may be used to predict adverse
outcomes.

In addition to canonical and immature neutrophils, the
phenotype of NK cells in fatal COVID-19 cases was also distinct
from that of severe nonfatal cases. Although circulating NK cells
are known to become activated in severe COVID-19 (Maucourant
et al., 2020), our work is the first to show that patients with fatal
COVID-19 may fail to up-regulate the proliferation marker Ki-67
or the cytotoxic effector perforin to the same extent as patients
with severe but nonfatal COVID-19. The absence of this activa-
tion could indicate a defect in the functional responses of NK
cells in fatal COVID-19. This finding requires direct validation,
although it has been reported that NK cells from severe and fatal
COVID-19 patients appear to exhibit poor IFNγ production in
response to K562 target cells (Varchetta et al., 2021). Unfortu-
nately, we were unable to investigate potential epigenetic
mechanisms behind this finding, because only one fatal case was
analyzed by scATAC-seq. We did not detect significantly in-
creased accessibility of the genes encoding perforin and Ki-67 in
the NK cells of any COVID samples, possibly because factors
other than promoter/enhancer accessibility may play more im-
portant roles under such pathological conditions. For example, it
has been shown that IL-2 could increase not only the tran-
scription rate of PRF1 but also the stability of the mRNAs in NK
cells (Salcedo et al., 1993). We also identify NK cell receptor–
ligand axes that may contribute to their activation in severe
COVID-19. Our data suggest that DNAM-1–mediated recognition
of Nectin-2 and NKG2D-mediated recognition of ULBP ligands
could drive NK cell activation in COVID-19. These data are
consistent with other viral infections in which activation of NK
cells through DNAM-1 or NKG2D is important (Cifaldi et al.,
2019; Kurioka et al., 2018), and they highlight pathways that
should be investigated through in vivo model systems for their
role in disease outcome.

Although neutrophils and NK cells are activated in COVID-19,
monocytes and DCs appear to take on a tolerogenic phenotype.
Perturbations in the cDC2s of patients with severe COVID-19
could inhibit the priming of T follicular helper cells and the
development of mucosal immunity (Soto et al., 2020). Both
cDC2s andmonocytes of critically ill COVID-19 patients appeared
to down-regulate or failed to up-regulate genes involved in ac-
tivation and inflammation; for example, cDC2s lost expression
of FCER1A and CD83, whereas CD14+ monocytes notably did not
up-regulate any genes encoding pro-inflammatory cytokines
such as IL-6 and CCL3, and genes encoding IL-1β and TNF were
significantly down-regulated in these cells compared with those
of healthy controls. This lack of pro-inflammatory cytokine
expression is of note, as other viral infections such as influenza
drive an increase in the production of these molecules by
peripheral monocytes (Nikitina et al., 2018). We identified
the inactivation of NF-κB family TFs as a possible epigenetic
mechanism for this silencing of pro-inflammatory cytokine
production in monocytes, because we observed a striking loss of

accessibility at an NF-κB binding site within the IL1B locus. This
observed inactivation is unusual, given that these TFs typically
play an important role in antiviral immune responses, including
through regulating the production of cytokines (Schmitz et al.,
2014). Indeed, NF-κB family TFs have been implicated in driving
the pro-inflammatory cytokine production in other cell types
during SARS-CoV-2 infection (Hirano and Murakami, 2020).
Our hypothesized linkage between IL-1B and NF-κB activity
provides an avenue for future experiments.

There are several limitations to this work that should be
noted. Though large for a multimodal dataset, our sample size is
still limited.Moreover, wewere unable to profile each patient by
all three single-cell modalities, preventing us from performing
cross-modality validation on a per-patient basis. Additionally,
our CyTOF panels only allowed us to examine a limited number
of cell types, preventing us from performing orthogonal vali-
dation of some transcriptional or epigenetic findings in pro-
teomic space. It is also difficult to fully control for the impact of
treatment on the immune profile because the standard of care
varies with clinical severity, though we often collected blood
before treatments were administered. This work profiled ex-
clusively circulating immune cells; although understanding the
peripheral immune system is critical to understanding aberrant
and protective immune responses to SARS-CoV-2 infection, it
does not capture the immune response at the site of infection.
Finally, further functional experimentation is necessary to val-
idate or refute many of the hypotheses presented here.

Collectively, our work represents the first trimodal epi-
genomic, proteomic, and transcriptomic cell atlas of peripheral
immune responses to COVID-19 across a broad spectrum of dis-
ease severity. By identifying novel immune features associated
with COVID-19 mortality, as well as the immune status of patients
with mild disease, our work enhances our understanding of
pathological versus protective immune responses and highlights
several opportunities for therapeutic development.

Materials and methods
Subjects and specimen collection
We collected blood from 64 patients enrolled in the Stanford
University COVID-19 Biobanking studies from March to June
2020 after receiving written informed consent from patients or
their surrogates (Stanford Institutional Review Board approvals
28205, 55650, and 55689). Eligibility criteria included age ≥18 yr
and a positive SARS-CoV-2 nasopharyngeal swab by RT-PCR. All
patients who presented to the Stanford University Emergency
Department were offered enrollment, regardless of admission,
and patients already admitted to the wards or intensive care unit
were also eligible for enrollment. Outpatients with mild COVID-
19 under the care of Stanford Health Care through the care and
respiratory observation of patients with novel coronavirus clinic
were also eligible for enrollment. The majority of admitted pa-
tients were coenrolled in ongoing COVID-19 treatment trials at
Stanford. Screening of new admissions via an electronic medical
record review of all subjects was performed by the study coor-
dinators (J. Roque, R. Mann, and H. Din) and the study principal
investigators (A.J. Rogers, S. Yang, and K.C. Nadeau).
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Patients were phenotyped for both peak disease severity and
severity at the time of sample collection according to the WHO
severity score via an electronic medical record review per-
formed by A.J. Wilk and D. Jimenez-Morales (https://www.who.
int/blueprint/priority-diseases/key-action/COVID-19_Treatment_
Trial_Design_Master_Protocol_synopsis_Final_18022020.
pdf). Briefly, theWHO severity score is an ordinal ranking score
(0–8), where 0 indicates no evidence of infection. In this study,
we classify patients with scores 1–3 as having “mild” disease,
corresponding to no requirement for supplemental oxygen.
Scores of 4–5 describe patients with “moderate” disease who are
hospitalized and require noninvasive supplemental oxygen.
Scores of 6–8 indicate “severe” infection requiring mechanical
ventilation. Clinical data were obtained through the Stanford
Research Repository, StanfordMedicine’s approved resource for
working with clinical data for research purposes extracted from
the Epic database management system used by the Stanford
hospitals. All fatal COVID-19 cases were confirmed by the
principal investigator A.J. Rogers to have been primarily the
result of COVID-19 and not of any comorbidities.

To protect the identity of the COVID-19 subjects, ages are
reported as ranges. For controls, blood was collected from eight
asymptomatic adult donors as part of the Profiling Healthy
Immunity study after written informed consent was obtained
(Stanford Institutional Review Board approval 26571). All donors
were asked for consent for genetic research. Blood draws from
patients occurred in concert with usual care to avoid unneces-
sary personal protective equipment use. For both patients
with COVID-19 and healthy controls, blood was collected into
cell preparation tubes (CPTs) or heparin vacutainers (Becton,
Dickinson and Co.; see Table S1). For samples collected in CPT
tubes, PBMCs were isolated by centrifugation and washed with
Ca/Mg-free PBS. For samples collected in heparin tubes, PBMCs
were isolated by density gradient centrifugation using Ficoll-
Paque Plus medium (GE Healthcare) and washed with Ca/Mg-
free PBS. For a subset of patients, whole blood was removed
from CPT vacutainers before centrifugation and treated with
ACK red blood cell lysis buffer until the cell pellet appeared
visually clear, and these cells were processed for single-cell
transcriptomics. Blood was processed within 6 h of collection
for all samples. Samples from patients with COVID-19 and from
healthy controls were processed side by side to avoid variation
from processing. All scRNA-seq processing was performed on
samples before cryopreservation. All CyTOF and scATAC-seq
processing was performed on samples cryopreserved under the
vapor phase of liquid nitrogen.

scRNA-seq by Seq-Well
The Seq-Well platform for scRNA-seq was used as described
previously (Gierahn et al., 2017; Hughes et al., 2019 Preprint;
Wilk et al., 2020; Kazer et al., 2020). Immediately after Ficoll
separation, 50,000 PBMCs were resuspended in RPMI + 10%
FBS at a concentration of 75,000 cells/ml. 200 µl of this cell
suspension (15,000 cells) was then loaded onto Seq-Well arrays
preloaded with mRNA capture beads (ChemGenes). Following
four washes with Dulbecco’s PBS to remove serum, the arrays
were sealed with a polycarbonate membrane (pore size of 0.01

µm) for 30 min at 37°C and then frozen at −80°C for no less than
24 h and no more than 14 d to allow batching of samples pro-
cessed at irregular hours. Next, arrays were thawed, cells lysed,
transcripts hybridized to the mRNA capture beads, and beads
recovered from the arrays and pooled for downstream pro-
cessing. Immediately after bead recovery, mRNA transcripts
were reverse transcribed using Maxima H-RT (Thermo Fisher
Scientific; EPO0753) in a template-switching–based rapid am-
plification of cDNA ends reaction, excess unhybridized bead-
conjugated oligonucleotides removed with Exonuclease I (New
England Biolabs; M0293L), and second-strand synthesis per-
formed with Klenow fragment (New England Biolabs; M0212L)
to enhance transcript recovery in the event of failed template
switching (Hughes et al., 2019 Preprint). Whole-transcriptome
amplification was performed with KAPA HiFi PCR Master Mix
(Kapa Biosystems; KK2602) using ∼6,000 beads per 50-µl re-
action volume. Resulting libraries were then pooled in sets of
6 (∼36,000 beads per pool), and products were purified by
Agencourt AMPure XP beads (Beckman Coulter; A63881) with a
0.6× volume wash followed by a 0.8× volume wash. Quality
and concentration of whole-transcriptome amplification prod-
ucts was determined using an Agilent Fragment Analyzer
(Stanford Functional Genomics Facility), with a mean product
size >800 bp and a nonexistent primer peak indicating suc-
cessful preparation. Library preparation was performed with a
Nextera XT DNA library preparation kit (Illumina; FC-131-1096)
with 1 ng of pooled library using dual-index primers. Tagmented
and amplified libraries were again purified by Agencourt
AMPure XP beads with a 0.6× volume wash followed by a 1.0×
volume wash, and quality and concentration were determined
by fragment analysis. Libraries between 400 and 1,000 bp with
no primer peaks were considered successful and pooled for
sequencing. Sequencing was performed on a NovaSeq 6000
instrument (Illumina; Chan Zuckerberg Biohub). The read
structure was paired end with read 1 beginning from a custom
read 1 primer (Gierahn et al., 2017) containing a 12-bp cell bar-
code and an 8-bp UMI, and with read 2 containing 50 bp of
mRNA sequence.

Alignment and quality control of scRNA-seq data
Sequencing reads were aligned and count matrices assembled
using Spliced Transcripts Alignment to a Reference (STAR;
Dobin et al., 2013) and dropEst (Petukhov et al., 2018), respec-
tively. Briefly, the mRNA reads in read 2 demultiplexed FASTQ
files were tagged with the cell barcode and UMI for the cor-
responding read in the read 1 FASTQ file using the dropTag
function of dropEst. Next, reads were aligned with STAR using
the GRCh37.p13 (hg19) human reference genome from Ensembl
that included the complete genome sequences for all SARS-CoV-
2 strains sequenced from California before March 24, 2020
(10 SARS-CoV-2 sequences). No SARS-CoV-2 reads were aligned
from these samples using this strategy, even when the out-
FilterMultimapNmax behavioral option of STAR was increased
from 10 (default) to 20 to accommodate potential multiple-
mapping SARS-CoV-2 reads. Count matrices were built from
resulting BAM files using dropEst (Petukhov et al., 2018). Count
matrices for intron-aligned reads were also generated in order to
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computationally analyze cellular trajectory. Cells that had <750
UMIs or >15,000 UMIs, as well as cells that contained >20% of
reads from mitochondrial genes or rRNA genes (RNA18S5 or
RNA28S5) were considered to be of low quality and removed
from further analysis. To remove putative multiplets (where
more than one cell may have loaded into a given well on an
array), cells that expressed >75 genes per 100 UMIs were also
filtered out. Genes that were expressed in <10 cells were re-
moved from the final count matrix.

Preprocessing of scRNA-seq data
The R package Seurat (Stuart et al., 2019; Butler et al., 2018) was
used for data scaling, transformation, clustering, dimensionality
reduction, differential expression analysis, and most visual-
izations. Data were scaled and transformed and variable genes
identified using the SCTransform() function, and linear re-
gression was performed to remove unwanted variation due to
cell quality (e.g., percentage mitochondrial reads, percentage
rRNA reads). Principal component (PC) analysis (PCA) was
performed using the 3,000 most highly variable genes, and the
first 50 PCs were used to perform Uniform Manifold Approxi-
mation and Projection for Dimension Reduction (UMAP) to
embed the dataset into 2 dimensions. Next, the first 50 PCs were
used to construct a shared nearest neighbor graph (SNN; Find-
Neighbors()), and this SNN was used to cluster the dataset
(FindClusters()). Although upstream quality control removed
many dead or low-quality cells, some clusters in the full dataset,
or in cell type subsets, were identified that were defined by few
canonical cell lineage markers and enriched for genes of mito-
chondrial or ribosomal origin, and these clusters were removed
from further analysis (Carter et al., 2018; Freytag et al., 2018).
Manual annotation of cellular identity was performed by finding
DEGs for each cluster using Seurat’s implementation of the
Wilcoxon rank-sum test (FindMarkers()) and comparing those
markers with known cell type–specific genes from previous
datasets (Gutierrez-Arcelus et al., 2019; Villani et al., 2017; Kang
et al., 2018; Nimmerjahn and Ravetch, 2008, 2006; Palmer et al.,
2006). For per-donor DEG tests presented in Fig. 8 B, donors
with <50 cells were excluded from analysis.

Automated annotation of granular cell types by Seurat v4
Seurat v4 introduced weighted nearest neighbors (WNNs)
analysis as a strategy to integrate multimodal single-cell se-
quencing data and released a large multimodal dataset of 228
cell surface markers with simultaneous whole-transcriptome
measurements (Hao et al., 2021). By using WNN to learn the
relative utility of each data modality in each cell, this reference
dataset contains highly robust and granular cell type annota-
tions. The web application provided with the release of Seurat
v4 (http://azimuth.satijalab.org/) was used to map our tran-
scriptomic dataset to the annotated multimodal reference (Hao
et al., 2021). Briefly, anchors between the query and reference
dataset were identified using a precomputed supervised PCA on
the reference dataset that maximally captures the structure of
the WNN graph. Next, cell type labels from the reference data-
set, as well as imputations of all measured protein markers, are
transferred to each cell of the query through the previously

identified anchors. Finally, the query dataset is projected onto
the UMAP structure of the reference.

Calculation of transcriptomic perturbation score
To prioritize analysis of cell types of interest, we calculated a
perturbation score for each cell type of each sample as previ-
ously described (Hao et al., 2021; Papalexi et al., 2021). This
perturbation score is motivated by the observation that the
statistical significance of per-gene differential expression tests is
strongly influenced by the number of cells in each cluster or cell
type. To overcome this, we first identified a set of genes for each
cell type that showed evidence of differential expression (P <
0.1) between healthy controls and all COVID-19 patients. From
this set of genes, we removed ISGs and Ig genes because the
former are broadly up-regulated across cell types (Fig. S2) and
the latter are cell type specific, not perturbation specific. Next,
we defined the global perturbation vector as the average log fold
change of each DEG relative to healthy control subjects nor-
malized to length 1. Finally, we projected the transcriptome of
each sample onto this vector and defined the perturbation score
as the absolute value of the magnitude of this projection. This
approach enables prioritization of cell type perturbations when
comparing cell types of different abundances.

Gene module scoring analysis
The Seurat function AddModuleScore() was used to score single
cells by expression of a list of genes of interest. This function
calculates a module score by comparing the expression level of
an individual query gene to other randomly selected control
genes expressed at similar levels to the query genes and is
therefore robust to scoring modules containing both lowly and
highly expressed genes, as well as to scoring cells with different
sequencing depths. Gene lists used to define each module are
listed in Table S16. Methods used to select genes from published
datasets varied based on the availability, format, andmodality of
data. For the MDSC gene set described by Alshetaiwi et al.
(2020), MDSC DEGs with a log fold change >0.25 relative to
monocytes were used. To estimate the expression of sepsis-related
genes, all positively enriched genes in theMS1module versusMS2
module were used (Reyes et al., 2020). For bulk transcriptomic or
microarray datasets, including human monocyte precursor sub-
sets (Kawamura et al., 2017), LPS-stimulated PD-L1+ neutrophils
(de Kleijn et al., 2013) and neutrophils from ARDS-complicated
sepsis (Juss et al., 2016), the top 97th percentile of DEGs relative
to control samples/patients were used for scoring.

TF activity prediction analysis
The iRegulon plugin available through Cytoscape was used to
predict TFs that may contribute to the observed transcriptomic
changes. Gene lists supplied to iRegulon are available in Table
S19. In brief, iRegulon calculates the likelihood of TF activity
first by compiling for each TF motif a ranked list of genes con-
taining that motif near the transcription start site (TSS) and
then by determining the ability of each TF motif to recover the
genes supplied as input. TFs with a normalized enrichment score
>4 and >20 predicted targets, along with their corresponding
predicted regulomes, are plotted for visualization.
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Analysis of developing neutrophil trajectories
RNA velocity analysis was performed on the full dataset with the
package scVelo to visualize RNA velocity field vectors and streams
as well as to calculate the latent time of each developing neutrophil.
Developing neutrophils were subsetted from the main object using
manual cell type annotations. Upon subclustering, clusters in the
subsetted object that appeared to be PBs were removed from fur-
ther trajectory and DEG analysis. PHATE (Moon et al., 2019) was
performed on scaled and transformed expression values for the
3,000 most highly variable genes to embed the subsetted dataset
into 2 or 3 dimensions. Plots of expression of individual genes along
inferred latent time are scaled at the 5th and 95th percentiles.

Projection of transcriptomic dataset onto published blood and
bone marrow hematopoiesis dataset
Cells annotated as HSPCs by Seurat v4 were projected into a
publicly available hematopoiesis dataset of CD34+-enriched bone
marrow mononuclear cells (Granja et al., 2019) using an anchor-
based integration strategy. Briefly, expression values from each
dataset were normalized and variable features identified using
SCTransform without covariate regression. Next, anchors were
identified between the two datasets, the datasets were integrated
using these anchors, and PCA and UMAP were performed as de-
scribed above on the integrated gene expression matrix. To deter-
mine the identities of the projected cells, TransferData() was used to
transfer cell type labels from the cells from the published dataset in
the integrated object to the HSPCs from the COVID-19 dataset.

Mortality prediction using developing neutrophil DEGs
To test whether the gene signature of developing neutrophils
could be used to predict COVID-19 mortality, we first developed a
five-gene signature of developing neutrophils by identifying the
most differentially enriched genes in developing neutrophils in our
transcriptomic dataset relative to all other cells. Next, we down-
loaded normalized transcript counts from a publicly availablewhole
blood bulk transcriptomic dataset published by Overmyer et al.
(2021). We then scored each COVID-19 sample in this dataset by
the expression of the five developing neutrophil-enriched genes
(DEFA1B, DEFA3, LTF, DEFA1, and S100A8) using AddModuleScore().
Finally, we used these gene signature scores as a predictor variable
and 28-dmortality as reported bymetadata fromOvermyer et al. as
the response variable to construct an ROC curve to quantify and
visualize the sensitivity and specificity of the prediction.

NK cell isolation
After thawing of PBMCs, 500,000 live PBMCs were set aside
from each sample for staining with a broad lineage panel that
includes NK cell ligands (ligand panel), and the remaining cells
were used for NK cell isolation. NK cells were isolated fromwhole
PBMCs via Miltenyi Biotec Human NK Cell Isolation Kits, which
use negative selection, per the manufacturer’s instructions.

Mass cytometry
All antibodies not purchased directly from Fluidigm were con-
jugated using MaxPar X8 conjugation kits (Fluidigm). To ensure
staining consistency, all antibodies except those noted were
precombined into staining cocktails and either lyophilized (NK

surface and intracellular cytokine staining panels) or frozen at
−80°C (ligand panel) for long-term storage. Samples were bar-
coded with a four-choose-two scheme, using palladium isotopes
(Pd102, Pd104, Pd106, Pd108) conjugated to anti-CD45 antibodies
as previously described (Vendrame et al., 2020).

After isolation of NK cells, both the whole PBMCs and the
isolated NK cells from each sample were stained with cisplatin
for 1 min in order to allow viability determination and subse-
quently quenched with FBS. Samples were then stained with
palladium-CD45 barcodes as previously described (Vendrame
et al., 2020). After barcode staining at 4°C, samples were
washed thoroughly with CyFACS buffer (PBS, 0.1% BSA, 2 mM
EDTA, 0.05% sodium azide) and combined into sets of barcodes,
hereafter referred to as “barcoded samples.” Barcoded samples
were subsequently washed and stained with relevant surface
panels (Table S22) for 30 min at 4°C. After surface staining, the
barcoded samples were washed with CyFACS buffer and fixed in
2% paraformaldehyde for 20 min at room temperature. Barcoded
samples were subsequently permeabilized with 1× BD Perm II (BD
Biosciences), and NK cell samples were stained with the lyophi-
lized intracellular cytokine staining panel for 45min at 4°C (whole
PBMCs were resuspended in 1× BD Perm II and left at 4°C for the
same duration without any stains). All of the barcoded samples
were then resuspended in iridium interchelator (DVS Sciences) in
2% paraformaldehyde until collection (within 3 d of staining). Data
were collected on a Helios mass cytometer. Before collection,
samples were washed with CyFACS buffer and Milli-Q water be-
fore being resuspended in 1× EQ beads (Fluidigm) for collection.

Preprocessing and data analysis of mass cytometry data
Flow cytometry standard (FCS) files were normalized and de-
barcoded using the Premessa package as previously described
(Zunder et al., 2015; Finck et al., 2013). FlowJo version 10.7.1 was
used to manually gate out EQ beads, dead cells, doublets, and
debris from both whole PBMC and NK cell samples. Additional
lineage markers were used to exclude contaminating non-NK
cells from the samples consisting of bead-purified NK cells.
Live, intact, singlet PBMCs were exported from whole PBMC
samples as FCS files, whereas live, intact, singlet NK cells were
exported from NK cell samples using the gating schemes de-
scribed in Fig. S1, K and L. All subsequent preprocessing and
downstream analysis of data were performed using the open-
source software R. NK cell FCS files were normalized to account
for batch effects using the CytoNorm package (Van Gassen et al.,
2020); this normalization was not performed on the whole
PBMC files, because no such batch effects were observed. Pa-
rameter names were altered in whole PBMC FCS files using the
Premessa panel editor tool to ensure consistency across all
samples. Seurat objects were created from FCS files using the
Seurat and FlowCore packages. Unsupervised clustering was
performed on the whole PBMC Seurat object via the phenotyp-
ing by accelerated refined community-partitioning algorithm
(Stassen et al., 2020), using all proteomic parameters listed in
Table S22 with the exception of HLA-Bw4 and HLA-Bw6. These
parameters were excluded because their expression is mutually
exclusive and can therefore drive over-clustering. Clustering
was performed on whole PBMCs with a resolution of 0.19 and on
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subsetted monocyte clusters with a resolution of 0.21. Clustering
resolutions were determined using cluster tree plots. Clustering
and UMAP embeddings were performed on arcsinh-transformed
data (cofactor = 5). All box plots depicting CyTOF data represent
transformed per-sample mean signal.

scATAC-seq
scATAC-seq was performed by using the Chromium Next GEM
Single Cell ATAC Reagent Kits version 1.1 (10x Genomics;
PN-1000175) and following the demonstrated protocol (nuclei
isolation for scATAC-seq) provided by 10x Genomics. Briefly,
cryopreserved PBMCs were thawed, and 50,000–500,000 cells
were aliquoted, washed with PBS, and then lysed with 100 µl
lysis buffer for 4 min. The lysed nuclei were centrifuged after
washing with 1 ml washing buffer and then resuspended in di-
luted nuclei buffer. The nuclei concentrationwas then determined
with a TC20 Automated Cell Counter (Bio-Rad Laboratories;
1450102), and ∼6,000 nuclei were used for Tn5 transposition,
single nuclei barcoding, and library preparation following the
instructions in the kit. The final DNA libraries were sequenced
with theNovaSeq 6000 system (Illumina; Chan Zuckerberg Biohub),
leading to ∼200 million reads per sample.

scATAC-seq preprocessing and cell quality filtering
Demultiplexed sequencing reads were aligned to the GRCh37
(hg19) human reference genome using cellranger-atac software
(10x Genomics; version 1.2) or cellranger-arc (10x Genomics;
version 1.0) for the multi-omic reference dataset. Resulting
fragment files were processed using ArchR (Granja et al., 2021)
and filtered based on TSS enrichment and the log10 fragments
per cell. Cell quality cutoff values were set on a per-sample basis
to account for variable sequencing depths and sample qualities.
The TSS cutoff ranged from 5 to 10, and the log10 fragment cutoff
ranged from 3.2 to 4.1, such that the large number of non–cell-
containing droplets were excluded from further consideration
(Table S23). Cross–cell type doublets were computationally
identified using ArchR’s addDoubletScores function and filtered
based on a maximum doublet enrichment of 2 (i.e., regions of
the manifold that are twofold enriched for simulated doublets).

scATAC-seq reference-based cell type annotation
A public multi-omic dataset from 10x Genomics on healthy
PBMCs was used as an intermediate for cell type calls (https://
support.10xgenomics.com/single-cell-multiome-atac-gex/datasets/
1.0.0/pbmc_granulocyte_sorted_10k) because it could be readily
integrated with both scRNA-seq and scATAC-seq datasets. The
multi-omic dataset was realigned to hg19 using cellranger-arc
version 1.0 (10x Genomics), and the resulting RNA count matrix
was filtered for cells with between 1,000 and 15,000 reads and
<20% mitochondrial genes. Next, cell types were annotated us-
ing the Azimuth tool from Seurat v4 in the same manner as the
scRNA dataset (Hao et al., 2021). MACS2 was used to call peaks
for each of the Azimuth-annotated cell types via ArchR’s ad-
dReproduciblePeakSet, a peak count matrix was calculated using
addPeakMatrix, and then the peak matrix was dimensionality
reduced using the addIterativeLSI function from ArchR with
iterations = 3, varFeatures = 50,000, and sampleCellsPre =

50,000. This established an ATAC-based dimensionality reduc-
tion coupled to RNA-based automated cell type annotations.

Each scATAC sample from our dataset was then projected
into the linear dimensionality reduction of the multi-omic da-
taset. Then Seurat’s internal FindAnchors function and Trans-
ferData functions (Stuart et al., 2019) were used to transfer cell type
annotations from the multi-omic dataset to each scATAC dataset.
Briefly, anchor pairs between the datasets are identified based on
mutual nearest neighbors, then cell type calls are transferred for
each cell using a distance-weighted sum of nearby anchors. The
anchor filtering step was omitted (k.filter = NA) as suggested in the
scATAC-seq data integration vignette from Signac (Stuart et al.,
2020 Preprint). This avoids over-filtering of anchors due to the
extremely sparse nature of the underlying ATAC-seq data.

scATAC batch correction and dimensionality reduction
Cells passing quality and doublet filters from each sample were
combined into a linear dimensionality reduction using ArchR’s
addIterativeLSI function. This dimensionality reduction was then
corrected for batch effect based on processing date using the Har-
mony method (Korsunsky et al., 2019), via ArchR’s addHarmony
function. The cellswere then clustered based on the batch-corrected
dimensions using ArchR’s addClusters function. Briefly, this uses a
modularity-based clustering of the SNN graph as implemented in
Seurat. Three doublet clusters were manually identified from these
clusters, based on containing a mixture of many cell types and el-
evated doublet enrichment scores (although still below the doublet
cutoff threshold of 2). These doublet clusters were removed from
further consideration in all downstream analyses.

scATAC TF activity analysis
For TF activity analysis in CD14 monocytes, peaks were called on
CD14 monocyte cells using the addReproduciblePeakSet from
ArchR. Then, peaks containing NF-κB2 motifs were identified
using the addPeakAnnotations function, which relies on the
chromVARmotifs package’s human_pwms_v2 motif set curated
from the cisBP database. Motif deviation z-scores for individual
cells were calculated using ArchR’s addDeviationsMatrix func-
tion. Briefly, this method compares accessibility across all peaks
containing a TF motif to accessibility across a background set of
peaks matched for guanine-cytosine content and overall acces-
sibility. This measures global changes in accessibility associated
with TF activity while controlling for technical confounders.

Hi-C data
Hi-C data for monocytes was taken from Phanstiel et al. (2017),
downloaded using Juicer-Tools version 1.22 (Durand et al., 2016).

Data visualization
Wrappers provided by Seurat were used to generate UMAP
projections and dot plots. ComplexHeatmap was used to
generate all heatmaps, and plotly was used to visualize three-
dimensional PHATE projections. scVelo was used to visualize
RNA velocity streams. Custom ggplot functions (see Data
availability) were used to generate all other plots. For
all box plots, features include minimum whisker, 25th
percentile − 1.5 × interquartile range or the lowest value
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within; minimum box, 25th percentile; center, median; maxi-
mum box, 75th percentile; maximumwhisker, 75th percentile +
1.5 × interquartile range or greatest value within.

Online supplemental material
Fig. S1 shows quality control data for the CyTOF and scRNA-seq
datasets, additional information regarding the set of patient
samples collected through each modality, and CyTOF cell type
annotations. Fig. S2 shows the impact of age on cell type pro-
portions and conserved features of the IFN response between
patients across cell types, both in the scRNA-seq dataset. Fig. S3
shows the effect of disease acuity on the transcriptional phe-
notypes of mild and moderate COVID-19 patients. Fig. S4 shows
quality control data demonstrating the efficacy of Seq-Well at
capturing the transcriptomes of primary human neutrophils.
Fig. S5 shows additional analysis of neutrophil development
in fatal COVID-19. Table S1 presents patient demographics
and other clinical metadata. Table S2 shows the per-donor cell
counts for each manually annotated cell type in the scRNA-seq
dataset. Table S3 shows the per-donor cell counts for each Seurat
v4–annotated cell type in the scRNA-seq dataset. Table S4 shows
the per-donor cell counts for each cell type in the CyTOF dataset.
Table S5 shows the per-donor cell counts for each cell type in the
scATAC-seq dataset. Table S6 shows the results of differential
gene expression testing for each manually annotated cell type
in the scRNA-seq dataset. Table S7 shows per-donor cell type
proportions for each sample input in the scRNA-seq dataset.
Table S8 shows per-donor cell type proportions for each cell type
in the CyTOF dataset. Table S9 shows per-donor cell type pro-
portions for each cell type in the scATAC-seq dataset. Table S10
shows per-donor cell type proportions for Seurat v4–annotated
cell types in the scRNA-seq dataset. Table S11 shows the results
of differential gene expression testing for each Seurat v4–
annotated cell type in the scRNA-seq dataset. Table S12 shows
the results of differential imputed protein expression testing for
each Seurat v4–annotated cell type in the scRNA-seq dataset.
Table S13 shows the results of differential gene expression
testing for cDC2 cells in each COVID-19 severity group in the
scRNA-seq dataset. Table S14 shows the results of differential
gene expression testing for CD8 TEM cells in each COVID-19
severity group in the scRNA-seq dataset. Table S15 shows the
results of differential gene expression testing for monocytes in
each COVID-19 severity group in the scRNA-seq dataset. Table
S16 lists the member genes for each module used for gene
module scoring in the scRNA-seq dataset. Table S17 shows the
results of differential gene expression testing for NK cells in
each COVID-19 severity group in the scRNA-seq dataset. Table
S18 shows the results of differential gene expression testing for
neutrophils in each COVID-19 severity group in the scRNA-seq
dataset. Table S19 lists the genes used as input for iRegulon
analysis. Table S20 shows the results of differential gene ex-
pression testing for each cluster of developing neutrophils in the
scRNA-seq dataset. Table S21 shows the DEGs for HSPCs be-
tween healthy controls and COVID-19 patients in the scRNA-seq
dataset. Table S22 lists the antibodies used for CyTOF proteomic
profiling. Table S23 shows quality control information for pro-
cessing the scATAC-seq dataset. Table S24 shows the results of

differential gene expression testing for each cell type in the
healthy donor neutrophil scRNA-seq dataset presented in Fig. S4.

Data availability
FCS files (mass cytometry) with de-identified metadata sup-
porting this publication are available at ImmPort (https://www.
immport.org) under study accession no. SDY1708. Processed
scRNA-seq data are hosted on the COVID-19 Cell Atlas (https://
www.covid19cellatlas.org/). Data from scRNA-seq and scA-
TAC-seq have been deposited with the Gene Expression Omni-
bus under accession no. GSE174072. A Github repository for all
original code used for analysis and visualization is available at
https://github.com/ajwilk/COVID_scMultiome.
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Almire, C. Hénon, O. Kosmider, N. Droin, et al. 2020. Elevated calpro-
tectin and abnormal myeloid cell subsets discriminate severe frommild
COVID-19. Cell. 182:1401–1418.e18. https://doi.org/10.1016/j.cell.2020.08
.002

Soto, J.A., N.M.S. Gálvez, C.A. Andrade, G.A. Pacheco, K. Bohmwald, R.V.
Berrios, S.M. Bueno, and A.M. Kalergis. 2020. The role of dendritic cells
during infections caused by highly prevalent viruses. Front. Immunol. 11:
1513. https://doi.org/10.3389/fimmu.2020.01513

Stassen, S.V., D.M.D. Siu, K.C.M. Lee, J.W.K. Ho, H.K.H. So, and K.K. Tsia.
2020. PARC: ultrafast and accurate clustering of phenotypic data of
millions of single cells. Bioinformatics. 36:2778–2786. https://doi.org/10
.1093/bioinformatics/btaa042

Stuart, T., A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W.M.Mauck III,
Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. 2019. Comprehensive
integration of single-cell data. Cell. 177:1888–1902.e21. https://doi.org/10
.1016/j.cell.2019.05.031

Stuart, T., A. Srivastava, C. Lareau, and R. Satija. 2020.Multimodal single-cell
chromatin analysis with Signac. bioRxiv. doi:https://doi.org/10.1101/
2020.11.09.373613 (Preprint posted November 10, 2020)

Tang, X.C., J.X. Zhang, S.Y. Zhang, P. Wang, X.H. Fan, L.F. Li, G. Li, B.Q. Dong,
W. Liu, C.L. Cheung, et al. 2006. Prevalence and genetic diversity of
coronaviruses in bats from China. J. Virol. 80:7481–7490. https://doi
.org/10.1128/JVI.00697-06

Tian, R.-R., M.-X. Zhang, L.-T. Zhang, P. Zhang, J.-P. Ma, M. Liu, M. De-
venport, P. Zheng, X.-L. Zhang, X.-D. Lian, et al. 2018. CD24 and Fc
fusion protein protects SIVmac239-infected Chinese rhesus macaque
against progression to AIDS. Antiviral Res. 157:9–17. https://doi.org/10
.1016/j.antiviral.2018.07.004

Tian, R.-R., M.-X. Zhang, M. Liu, X. Fang, D. Li, L. Zhang, P. Zheng, Y.-T.
Zheng, and Y. Liu. 2020. CD24Fc protects against viral pneumonia in
simian immunodeficiency virus-infected Chinese rhesus monkeys. Cell.
Mol. Immunol. 17:887–888. https://doi.org/10.1038/s41423-020-0452-5

Van Gassen, S., B. Gaudilliere, M.S. Angst, Y. Saeys, and N. Aghaeepour.
2020. CytoNorm: a normalization algorithm for cytometry data. Cy-
tometry A. 97:268–278. https://doi.org/10.1002/cyto.a.23904
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Figure S1. Quality control of scRNA-seq and CyTOF datasets. (A and B) UMAP embeddings of complete scRNA-seq dataset, colored by cell type input (A;
either PBMCs or ACK-lysed whole blood [WB]) or donor (B). (C) Upset plot depicting overlap of patient samples profiled between the three modalities, colored
by peak disease severity score. (D) Top: Heatmap showing overlap in Seurat v4 annotation calls (x axis) and manual cell type annotations (y axis), colored by
the percentage of a manual cell annotation within a Seurat v4 annotation (i.e., each row sums to 100%). Bottom: Bar plot showing mapping frequency of each
manually assigned cell type annotation by Seurat v4. Neutrophils and developing neutrophils are the least frequently assigned cell types because they are not
present in the reference dataset (Hao et al., 2021). (E)Manual gating scheme for MAIT cells in the CyTOF dataset, beginning with live singlets gated according
to the scheme in L. (F) Scatter plot depicting concordance with proportions of MAITs (top) or NK cells (bottom) predicted by Seurat v4 in the scRNA-seq
dataset (x axis) and proportions manually gated in the CyTOF dataset (y axis). (G) UMAP embedding of the complete PBMC CyTOF dataset, colored by cell
subset. (H) Heatmap showing the z-score normalized average expression of each marker in the PBMC CyTOF panel across all cell subsets detected in that
dataset. (I) UMAP embedding of our whole PBMC CyTOF dataset, colored by donor. (K and L) Gating strategies used to identify live, intact singlets (L) and live,
intact, singlet NK cells (K). (J) For each marker shared between the scRNA-seq and CyTOF datasets, a linear model was used to calculate a β coefficient for the
relationship between severity score at the time of sample collection and marker expression in each dataset. The scatter plots depict the correlation between
these β coefficients for markers measured on monocytes (top) and NK cells (bottom). For all scatter plots, Pearson’s r, exact two-sided P values, and the 95%
confidence interval are shown.
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Figure S2. Impact of age on cell type proportions and conserved IFN signature in COVID-19 patients. (A) Scatter plots depicting correlation between
each manually annotated cell type in scRNA-seq dataset and patient age. All points are colored by peak disease severity score. Pearson’s r, exact two-sided P
values, and the 95% confidence interval are shown for each cell type. (B) Proportions of manually annotated cell types in scRNA-seq dataset after regression for
age. (C) Differential gene expression testing was conducted on eight major cell types from the scRNA-seq dataset, comparing each COVID-19 sample with the
cells of all healthy control subjects (see Materials and methods). The plotted heatmap depicts the percentage of COVID-19 samples in which a given ISG is up-
regulated in a given cell type. (D) Expression of IRF7 by pDCs in scRNA-seq dataset. For all box plots, points are colored by the peak disease severity score,
shaped according to disease acuity, and grouped by the disease severity score at the time of sample collection. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P <
0.0001; ns, not significant at P = 0.05 by two-sided Wilcoxon rank-sum test with Bonferroni’s correction for multiple hypothesis testing.
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Figure S3. Impact of disease acuity on transcriptomic phenotype of mild and moderate COVID-19 patients. (A) Upset plot depicting overlap of DEGs
between acute mild, acute moderate, acute severe, and convalescent samples when each is compared with healthy control samples. DEG testing is performed
on PBMCs and filtered for adjusted P < 1e-4. (B) Box plot depicting cumulative perturbation score of all cell types per patient calculated on a perturbation
vector between acute and convalescent samples. Points are colored and grouped by the peak disease severity score. ***, P < 0.001 by two-sided Wilcoxon
rank-sum test. (C and F) Heatmaps of cellular perturbation score, as described by Papalexi et al. (2021), per mild (C) or moderate (F) COVID-19 sample in each
Seurat v4–labeled cell type. DEGs between acute and convalescent samples in each severity group are used as input for each perturbation score (see Materials
and methods). (D and G) UMAP projections of all cells from mild (D) or moderate (G) COVID-19 patients colored by disease acuity (left) and Seurat v4–
annotated cell type (right). (E and H) Dot plots depicting percentage and unscaled average expression for all DEGs with |log(fold-change)| > 1 in CD8 TEM cells
(left) and CD14monocytes (right) of mild (E) or moderate (H) COVID-19 patients. (I)Dot plot depicting percentage and unscaled average expression for all DEGs
with |log(fold-change| > 1 in B cells of moderate COVID-19 patients.

Wilk et al. Journal of Experimental Medicine S4

Multi-omic profiling across COVID-19 severity https://doi.org/10.1084/jem.20210582

https://doi.org/10.1084/jem.20210582


Figure S4. Seq-Well enables high-quality single-cell transcriptomic analysis of primary human neutrophils. Whole blood (WB) from a healthy donor
was collected into CPT vacutainers, from which PBMCs were isolated and neutrophils were isolated from the PBMC-depleted cell pellet. Additionally, aliquots
of whole blood were subjected to neutrophil isolation or red blood cell lysis with ACK buffer. These cell populations were then analyzed by Seq-Well (see
Materials and methods). (A) UMAP projection colored by cell type preparation method. (B) Box plots showing comparisons of the number of UMIs sequenced
(top) and the number of genes detected (bottom) in cells annotated to be PBMCs or in cells annotated as granulocytes (neutrophils and eosinophils). The
median number of UMIs or genes in each group is plotted above the respective box. The difference in recovered UMIs and gene capture between PBMCs and
granulocytes is comparable to that expected by RNA content (Xie et al., 2020; Monaco et al., 2019). (C) Bar plot depicting the proportions of cells from each cell
sample preparation method for each annotated cell type. (D) Dot plot depicting percentage and unscaled average expression of the 15 top neutrophil-defining
DEGs (see Table S24) between the three cell sample preparation methods that yielded neutrophils. (E) Dot plot depicting average and percentage expression of
the top five DEGs for each cell type (see Table S24), demonstrating comparable expression patterns between PBMCs isolated through centrifugation and PBMC
subsets present in ACK-lysed whole blood.
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Figure S5. Additional analysis of emergency granulopoiesis in severe and fatal COVID-19. (A) Three-dimensional PHATE projection of developing
neutrophils. (B) Scaled abundances of developing neutrophils present in individual COVID-19 patients across latent time. (C) Scaled expression of genes
reported to define different stages of immature neutrophil development in COVID-19 (Schulte-Schrepping et al., 2020). (D) TF activity prediction analysis by
iRegulon (Janky et al., 2014), using positive DEGs for developing neutrophils relative to all other cells as input (Table S19). (E) UMAP projection of developing
neutrophils, canonical neutrophils, B cells, and PBs overlaid with RNA velocity stream (Bergen et al., 2020). (F) Box plot depicting proportion of developing
neutrophils in patients with nonfatal severe versus fatal severe COVID-19. Points are colored and grouped by the peak disease severity score. *, P < 0.05 by
two-sided Wilcoxon rank-sum test.
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Provided online are 24 tables. Table S1 presents patient demographics and other clinical metadata. Table S2 shows the per-donor
cell counts for each manually annotated cell type in the scRNA-seq dataset. Table S3 shows the per-donor cell counts for each
Seurat v4–annotated cell type in the scRNA-seq dataset. Table S4 shows the per-donor cell counts for each cell type in the CyTOF
dataset. Table S5 shows the per-donor cell counts for each cell type in the scATAC-seq dataset. Table S6 shows the results of
differential gene expression testing for each manually annotated cell type in the scRNA-seq dataset. Table S7 shows per-donor cell
type proportions for each sample input in the scRNA-seq dataset. Table S8 shows per-donor cell type proportions for each cell type
in the CyTOF dataset. Table S9 shows per-donor cell type proportions for each cell type in the scATAC-seq dataset. Table S10 shows
per-donor cell type proportions for Seurat v4–annotated cell types in the scRNA-seq dataset. Table S11 shows the results of
differential gene expression testing for each Seurat v4–annotated cell type in the scRNA-seq dataset. Table S12 shows the results of
differential imputed protein expression testing for each Seurat v4–annotated cell type in the scRNA-seq dataset. Table S13 shows
the results of differential gene expression testing for cDC2 cells in each COVID-19 severity group in the scRNA-seq dataset. Table
S14 shows the results of differential gene expression testing for CD8 TEM cells in each COVID-19 severity group in the scRNA-seq
dataset. Table S15 shows the results of differential gene expression testing for monocytes in each COVID-19 severity group in the
scRNA-seq dataset. Table S16 lists the member genes for eachmodule used for genemodule scoring in the scRNA-seq dataset. Table
S17 shows the results of differential gene expression testing for NK cells in each COVID-19 severity group in the scRNA-seq dataset.
Table S18 shows the results of differential gene expression testing for neutrophils in each COVID-19 severity group in the
scRNA-seq dataset. Table S19 lists the genes used as input for iRegulon analysis. Table S20 shows the results of differential gene
expression testing for each cluster of developing neutrophils in the scRNA-seq dataset. Table S21 shows the DEGs for HSPCs
between healthy control subjects and COVID-19 patients in the scRNA-seq dataset. Table S22 lists the antibodies used for CyTOF
proteomic profiling. Table S23 shows quality control information for processing the scATAC-seq dataset. Table S24 shows the
results of differential gene expression testing for each cell type in the healthy donor neutrophil scRNA-seq dataset presented in
Fig. S4.
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