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ABSTRACT: The method for protein-structure prediction, which
combines the physics-based coarse-grained UNRES force field with
knowledge-based modeling, has been developed further and tested
in the 13th Community Wide Experiment on the Critical
Assessment of Techniques for Protein Structure Prediction
(CASP13). The method implements restraints from the consensus
fragments common to server models. In this work, the server
models to derive fragments have been chosen on the basis of
quality assessment; a fully automatic fragment-selection procedure
has been introduced, and Dynamic Fragment Assembly pseudo-
potentials have been fully implemented. The Global Distance Test
Score (GDT_TS), averaged over our “Model 1” predictions,
increased by over 10 units with respect to CASP12 for the free-
modeling category to reach 40.82. Our “Model 1” predictions ranked 20 and 14 for all and free-modeling targets, respectively (upper
20.2% and 14.3% of all models submitted to CASP13 in these categories, respectively), compared to 27 (upper 21.1%) and 24
(upper 18.9%) in CASP12, respectively. For oligomeric targets, the Interface Patch Similarity (IPS) and Interface Contact Similarity
(ICS) averaged over our best oligomer models increased from 0.28 to 0.36 and from 12.4 to 17.8, respectively, from CASP12 to
CASP13, and top-ranking models of 2 targets (H0968 and T0997o) were obtained (none in CASP12). The improvement of our
method in CASP13 over CASP12 was ascribed to the combined effect of the overall enhancement of server-model quality, our
success in selecting server models and fragments to derive restraints, and improvements of the restraint and potential-energy
functions.

■ INTRODUCTION

Modeling protein structures becomes increasingly important
with the progress of biological and medical sciences, the main
reason for this importance being an insufficient supply of
experimental structures. The accuracy of theoretical models
has greatly improved over the years.1 Moreover, relatively
inexpensive experiments such as small-angle X-ray/neutron
scattering (SAXS/SANS)2−4 and chemical cross-link/mass
spectrometry (XLMS)5,6 enable us to guide modeling for
difficult targets.
Protein-structure modeling used to be divided into knowl-

edge-based and physics-based categories,7 which were thought
to be clearly separated from each other. Physics-based
modeling is guided by the energy function of choice,8−10 the
engine being the selected method of conformational-space
search (usually molecular dynamics and its extensions), while
sequence-structure similarity, which is justified by evolutionary

relationship, is the basis of knowledge-based modeling.1 The
knowledge-based methods underwent significant progress in
recent years, owing to improved contact prediction11−15 and
the introduction of deep-learning algorithms.16,17 However,
because there are at least 10% of targets for which no reliable
template can be found,18 the knowledge-based methods
routinely use energy functions in such important tasks as
model selection and refinement as well as in a limited search of
the conformational space in the famous fragment method
developed by the Baker group.19,20 On the other hand, the
physics-based methods also use knowledge-based information,
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e.g., restraints from secondary-structure and contact prediction.
Thus, the distinction between the two categories becomes
gradually blurred.
Recently,21,22 we developed a hybrid approach to protein-

structure modeling, in which a restrained conformational
search is carried out with the coarse-grained physics-based
UNRES force field developed in our laboratory,23 the
geometry restraints being taken from the fragments extracted
from the knowledge-based models produced by servers. The
fragments are selected on the basis of their similarity. This
fragment-based approach differs from those applied in, e.g.,
MODELLER24 or MULTICOM,25 in which restraints derived
from whole models are imposed. If the fragments are shared by
many server models, they are likely to be good predictions of
the corresponding section(s) of a protein. This approach
achieved considerable success in the 12th Community Wide
Experiment on the Critical Assessment of Techniques for
Protein Structure Prediction (CASP12),26 especially in the
data-assisted category.27 In this work, we automated the
process of fragment selection and also fully applied the
Dynamic Fragment Assembly (DFA) pseudopotentials.28,29

Moreover, we used the OPT-WTFS-2 version of UNRES
optimized with 7 training proteins.30 In this paper, we report
the results of testing of the improved approach in the 13th
Community Wide Experiment on the Critical Assessment of
Techniques for Protein Structure Prediction (CASP13)
exercise with the regular and oligomeric targets. The results
of data-assisted predictions by the KIAS-Gdansk group have
been published recently as a part of a joint paper.31 The results
of our predictions of oligomeric-protein structures in the 46th
Community Wide Experiment on the Comparative Evaluation
of Protein−Protein Docking for Structure Prediction
(CAPRI46) have also been published recently as a part of a
joint paper.32

■ METHODS
Measures of Structure Similarity. In this work, we use

the Global Distance Test Score (GDT_TS)7,33 as a primary
measure to compare our models of single protein chains/
domains with the respective experimental structures. The
GDT_TS is the average of the percentage of residues in the
computed structure that are within 1, 2, 4, and 8 Å distances,
respectively, from their counterparts in the experimental
structure (eq 1).

_ =
+ + +

GDT TS
GDT GDT GDT GDT

4
P1 P2 P4 P8

(1)

where GDTPn is the percentage of the Cα atoms whose
distance from the Cα atoms of the experimental structure is
below the n Å cutoff.
In the process of the selection of consensus fragments

(section Restraint Derivation) and also as a measure of
similarity of our models or their sections to the respective
experimental structures, we use the α-carbon Root-Mean-
Square Deviation (Cα-RMSD or RMSD), which is defined by
eq 2.

∑= − +
=n

X RX tRMSD min
1

( )
i

n

i i
t R,

1
T M

2

(2)

where XM and XT are the coordinates of the model (M) and
the target (T) structures, n being the number of the
reciprocating Cα atoms, whereas R and t are the rotation

matrix and the translation vector that minimize the distance
between the two structures when applied sequentially to the
coordinates of the model, XM.
For oligomeric structures, the Interface Patch Similarity

(IPS), quantified as the Jaccard coefficient and Interface
Contact Similarity (ICS),34 quantified as the F1 score,34 are
used as the primary measures of the similarity of monomer
packing in the model and in the experimental structure. These
measures were also used to assess oligomeric-target predictions
in CASP1234 and CASP13.35 The IPS is the ratio of the
number of interface-patch residues common to the model and
to the target and that of the number of all interface residues
that occur in the model and in the target. It is defined by eq 3
(ref 34)
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where IM and IT are the sets of residues in the interface patch
of the model and of the target, respectively, and |...| denotes the
number of elements in a set. The ICS, defined by eq 4, is the
harmonic mean of precision (P; the percentage of the correct
interchain contacts among all interchain contacts in the model,
defined by eq 5) and recall (R; the percentage of correctly
reproduced native interchain contacts, defined by eq 6).

= = × ×
+

×F P R
P R

P R
ICS(M, T) 1( , )

2 (M, T) (M, T)
(M, T) (M, T)

100%

(4)

=
| ∩ |

| |
×P

C C
C

(M, T) 100%M T

M (5)

=
∩

| |
×R

C C
C

(M, T) 100%M T

T (6)

where CM and CT are the sets of interface contacts present in
the model and in the target, respectively.
Apart from IPS and ICS, we also use the global RMSD and

GDT_TS (pertaining to the whole oligomer) and the interface
RMSD (I-RMSD), which is computed from eq 2 with the set
of superposed atoms reduced to those present in the protein−
protein interfaces in the experimental structure.

Prediction Protocol. The general protocol of the
prediction of protein structures consisted of the same stages
as those used in CASP12.26 The procedure consists of the
following five stages. In stage 1, models from selected servers
are processed to extract the consensus (similar in geometry)
fragments and, subsequently, to determine the geometry
restraints from these fragments, as described in Restraint
Derivation. In this preparatory stage, the DFA pseudopoten-
tials28,29 are also determined. In stage 2, multiplexed replica
exchange molecular dynamics (MREMD) simulations,36−38

with the pseudoenergy function consisting of the UNRES force
field,23 DFA pseudopotentials,28,29 and the restraint terms
determined from the selected server models, are carried out to
search the conformational space subject to the restraints from
the server models. In stage 3, the obtained ensemble of
conformations is subsequently processed with the Weighted
Histogram Analysis Method (WHAM)39 and, in stage 4, a
cluster analysis is performed to select the candidate coarse-
grained models (refs 10 and 40 and also Selection of
Candidate Predictions). In stage 5, each of the coarse-grained
models is subsequently converted to the all-atom representa-
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tion by using the PULCHRA41 and SCWRL42 knowledge-
based algorithms for all-atom backbone and side-chain
reconstruction, respectively, and subjected to final refinement
at the all-atom level with the AMBER ff14SB force field,43 as
described in our earlier work.26 This protocol was applied to all
regular targets except for T0997, in which case we carried out
the calculations for the dimer only, the initial structures of
which were generated with the use of the ClusPro server.44,45

The final models are converted into the CASP format and
submitted. For the oligomeric targets, the procedure differs in
that the monomers (which are usually separate targets in the
CASP experiments) are usually treated first and then initial
oligomer structures are constructed.
In the subsequent subsections, we describe briefly the stages

of the procedure summarized above and the pertinent
methodology.
Energy Function. To calculate the energy of the systems

under study, we use the coarse-grained UNRES model of
polypeptide chains and the pertinent force field. UNRES is a
highly reduced model, in which a polypeptide chain is
represented as a sequence of Cα atoms with two kinds of
interaction sites: the united peptide groups (p), each
positioned in the middle between two consecutive Cα atoms,
and the united side chains (SC) that are attached to the
respective Cα atoms (Figure 1). If a residue is glycine, the

respective “united side chain” coincides with the Cα atom. The
geometry of the chain can be described in terms of the
Cartesian coordinates of the Cα atoms and those of the SC
centers, in terms of the Cα···Cα and Cα···SC virtual-bond
vectors or in terms of the backbone-virtual-bond angles θ,
backbone virtual-bond-dihedral angles γ, and the zenith and
azimuth angles α and β defining the orientation of a side chain

with respect to the local backbone frame (Figure 1). The
UNRES energy function (hereafter referred to as UUNRES) is
discussed in detail in ref 23, and its physical origin is presented
in detail in our recent work.46 In this work, we use the version
of the UNRES energy function obtained in ref 30 by
calibration with 7 training proteins, which is referred to as
the OPT-WTFS-2 force field.
The complete pseudoenergy function is expressed by eq 7.

= + + + + +U U e w V w V w V w Vtot UNRES DFA dist dist ang ang dih dih SC SC

(7)

where eDFA is the DFA energy (eq 8), Vdist, Vang, Vdih, and VSC
denote the restraining potentials for the Cα distances,
backbone virtual-bond angles, backbone virtual-bond-dihedral
angles, and local side-chain coordinates, respectively (eq 9),
and the w’s denote the weights of the restraining terms; in this
work, we set wdist = 0.5 and wang = wdih = wSC = 1.0,
respectively. The DFA pseudopotentials and restraint terms are
described in detail in Dynamic Fragment Assembly (DFA)
Pseudopotentials and Template-Based Restraints, respectively.

Dynamic Fragment Assembly (DFA) Pseudopoten-
tials. The DFA method28,29 is based on extracting the
structural information, specific for the sequence under
investigation, from the fragment library and then translating
this information into residue-position specific energy terms
(pseudopotentials). The DFA pseudoenergy function is
expressed by eq 8

= + +e w e w e w eDFA DFA,dist DFA,dist DFA,angle DFA,angle DFA,nn DFA,nn

(8)

where eDFA,dist and eDFA,angle are to assimilate the local structure
of a model to its corresponding fragments29 and eDFA,nn
represents the preferred packing environment around each
residue by the number of neighboring Cα atoms from the
fragment library.29 For the respective expressions, the reader is
referred to the original papers.28,29

Template-Based Restraints. Restraint Energy Function.
The geometric restraints derived from the server models
(considered as templates) are imposed on the Cα···Cα

distances, the backbone-virtual-bond angles θ, the backbone-
virtual-bond-dihedral angles γ, and the local coordinates of the
side-chain-direction vectors (Figure 1). The restraint-penalty
function consists of log-Gaussian quasi-harmonic terms, which
can be expressed by a common formula given by eq 9, which is
similar to that adapted from MODELLER24 in our earlier
work,21,22 except that the selected fragments do not have to be
common to all templates.
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Here, Vx is the penalty function imposed on a given set of
geometric parameters (Cα···Cα distances, virtual-bond angles,
virtual-bond-dihedral angles, or local side-chain coordinates),
Mi

incl is the number of templates whose selected fragments
contain the geometric parameter with index i, Mi

excl is the
number of templates whose selected fragments do not contain
the geometric parameter i, Mi

incl + Mi
excl = M, M being the total

number of templates, and m1, m2, ..., mMi
incl are the indices of the

templates that contribute to the restraints on the geometric
parameter i. xi and xi

(mk) are the values of the ith geometric
parameter of a given kind in the calculated and in the mkth

Figure 1. UNRES model of polypeptide chains. Blue spheres
represent the peptide groups (p), spheroids represent the side chains
(SC), and small white spheres represent the α-carbon atoms (which
are not interaction sites but only serve to assist in chain-geometry
definition). The backbone-virtual-bond angle θi, backbone-virtual-
bond-dihedral angle γi, and the two angles αi and βi that define the
location of the ith side-chain center with respect to the backbone are
shown. Reproduced from Zaborowski et al., J. Chem. Inf. Model. 2015,
55, 2050 (DOI: 10.1021/acs.jcim.5b00395). Copyright 2015
American Chemical Society.
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reference structure, respectively, and the σ’s are the standard
deviations of the respective Gaussians, which are set as given
by eqs 10 and 11.
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All of the templates contribute to restraints mostly for the
template-based modeling (TBM) targets and, consequently,
the restraint function given by eq 9 is usually bounded because
Mexcl > 0; the larger Mexcl/M, the shallower is its minimum.
Restraint Derivation. In our earlier work,22,26 the fragments

to derive the restraints from were required to be common to all
models gathered from the top servers (GOAL,47 BAKER-
ROSETTASERVER,19 Zhang-Server,48 and QUARK48 in
CASP1226), 5 models taken from each server. The underlying
assumption was that the parts of the structures, which were
similar in top-server models, were likely to be predicted
reliably. The fragments were defined as the longest fragments
of all templates that superposed within 4 Å CαRMSD. In this
work, we modified the algorithm to select fragments that are
not necessarily common to all templates and to select the
templates from many servers, based on objective quality
assessment, rather than from predefined trusted servers.
Selection of Server Models. The server models were

selected on the basis of their quality, assessed by means of the
DeepQA server.25 By analyzing the correlation between the
DeepQA scores calculated for the CASP12 models and the
GDT_TS of these models shown in Figure 2, we divided the
regions into 0 < DeepQA < 0.5, 0.5 ≤ DeepQA < 0.7, and
DeepQA > 0.7 as low, medium, and high quality regions.
Consequently, the selection procedure was as follows. If there
were enough (20 or more) server models with DeepQA > 0.7,
20 top-DeepQA-ranked models were selected for further steps.

If the DeepQA score was between 0.5 and 0.7, the 20 models
were selected on the basis of DeepQA ranking and by
eliminating those which had weakly defined secondary
structure. If the DeepQA score was below 0.5, the models
from the servers best performing in CASP12 [MULTICOM,25

Zhang-server,48 QUARK,48 RaptorX49 (that split in CASP13
into RaptorX-DeepModeller, RaptorX-TBM, and RaptorX-
Contact, respectively50,51), and BAKER-ROSETTASERVER19

were selected, and the selection process was completed by
removing the models with weakly defined secondary structure.
A bar plot showing the counts of all server models, the

models selected on the basis of DeepQA,25 and those selected
from the servers best performing in CASP12 (for which
DeepQA was too low to judge model quality) in GDT_TS
(which was not known at the prediction time) is shown in
Figure 3A. It can be seen that the scoring using DeepQA

removed the models of poor quality (with low GDT_TS) to a
higher extent than the selection from the best-performing
servers. Additional “pruning” of server models resulted from
fragment selection described in the next paragraph, because the
models which did not share common fragments were rejected.
This is illustrated in Figure 3B, in which the counts of models
sharing and not sharing common fragments are shown as a
function of model GDT_TS (calculated after the completion
of the CASP13 experiment). As can be seen, almost all of the
models not sharing common fragments and, therefore,
removed had GDT_TS < 50, with the peak around 15.
Without filtering, the low-quality models would be over-

Figure 2. Plot of the correlation of the GDT_TS of the server models
from CASP12 exercise with the respective DeepQA25 values (1486
models). The regression line is GDT_TS = −2.47 (0.57) + 97.5 (1.5)
× DeepQA, where the numbers in parentheses are the standard
deviations of the parameters, with a standard deviation of σGDT_TS =
14.8, correlation coefficient r = 0.73, and explained variance r2 = 0.54.

Figure 3. (A) Bar plot of the counts of all server models submitted to
CASP13 (purple), the server models selected using DeepQA25

(green), and those selected from servers that performed well in
CASP12 based on visual inspection (light blue). (B) Bar plot of the
counts of the server models selected to derive restraints (purple) and
rejected (green) as a function of GDT_TS.
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represented and, consequently, the quality of the restraints
would deteriorate.
A bar plot illustrating the numbers of models selected from

particular servers is shown in Figure 4. It can be seen that most

of the models from which restraints were derived were the
Zhang-server (group 261), QUARK (group 145), and the
BAKER-ROSETTASERVER (group 368) models; the models
from those servers were also selected by us during the CASP12
experiment.26 However, RaptorX-TBM (group 221) and
RaptorX-DeepModeller (group 324), which were not present
in CASP12, also have a substantial share.
Selection of Fragments. Once the server models

(templates) to derive fragments from have been selected, the
Cα-RMSD tables ρij

(kl), where i and j are the indices of the first
and the last Cα atoms to superpose and k and l are the indices
of the templates, are constructed for all pairs of templates. On
the basis of these tables, an initial library of fragments common
to pairs of models, defined as those for which the
corresponding Cα atoms are not farther from each other
than the 7 Å Cα distance cutoff, is created. This is done by
initially selecting the pairs of contiguous fragments, whose Cα-
RMSD is within the 7 Å cutoff, and gradually eliminating the
residues whose Cα atoms in one model are farther than 7 Å
from those in the other model of the pair. It should be noted
that the fragments thus constructed are, in general, non-
contiguous. The longest fragment from the library is
subsequently selected to initiate the first cluster of templates
sharing a common fragment; let the indices of the
corresponding templates be kmax and lmax, respectively. To
add the next template to the cluster, the other elements of the
initial template library sharing the kmax or lmax index are
examined, and the one sharing the longest fragment is added to
form a cluster of three fragments; the nonoverlapping residues
were deleted. The process is continued, until the number of
common residues has dropped below 20 (usually, the drop is
rapid). The fragment is considered only if it is shared by at
least 5 templates. The fragment found is deleted from those
elements of the template-pair library, in which it occurs, and
the procedure is iterated, until no more fragments with a
length of at least 20 residues shared by at least 5 templates can
be found. As a result, the clusters of templates, at least 5
members each, sharing fragments of length 20 or more residues
are created. The procedure of fragment selection is illustrated
in Figure 5.

MREMD Simulations. To search the conformational space,
we used multiplexed replica exchange molecular dynamics
(MREMD)37 which, as its predecessor, the replica exchange
molecular dynamics (REMD),36 enables us to search the
conformational space more efficiently than canonical molecular
dynamics (MD). In REMD and MREMD, multiple trajectories
are run at different temperatures (T0, T1, ..., TMT

). The replicas
evolve independently and, after a certain time interval, an
exchange of temperatures between the neighboring replicas (j
= i + 1) is attempted, the exchange being accepted on the basis
of the Metropolis criterion. A single replica and multiple
replicas correspond to a given temperature in REMD and
MREMD, respectively. The details of MD implementation
with UNRES are described in refs 52−54, while the REMD/
MREMD implementation with UNRES is described in ref 38.
In this work, we ran trajectories at 12 replica temperatures, 4

trajectories per temperature (48 trajectories per system total).
The temperatures were determined with the aid of the
Hansmann algorithm,55 which maximizes the extent of walk in
the temperature space. The replica temperatures thus were
260, 262, 266, 271, 276, 282, 288, 296, 304, 315, 333, and 370
K, respectively. Each trajectory usually consisted of 20 000 000
MD steps with a 4.89 fs step length. The adaptive multistep
time-split (A-MTS) algorithm developed in our earlier work54

was used. Replicas were exchanged, and snapshots were saved
every 10 000 MD steps. The temperature was controlled by the
Langevin thermostat, with the solvent friction scaled by 0.01 to
speed up simulations, as in our earlier work.53

For single-chain targets, MREMD was fed with all the
selected models from the servers, which were distributed
between the trajectories to start a production run.
The procedure of the construction of the initial models of

the oligomeric structures is illustrated in Figure 6. For not
excessively large targets (with monomer chain length of up to
500 residues), the KIAS-Gdansk group models of the
respective monomeric structure(s) were used to construct
the initial structures of the oligomers. For large oligomeric
targets (over 500 residues per monomer chain, which included
T0984, T0995, T1003, and T1009), the structures of the
monomers were taken directly from server-group models, and
the DeepQA score25 was employed to rank the models.
Because all large oligomeric targets considered in the CASP13
experiment were very homologous, the DeepQA25 score was
high and, therefore, scoring models by using this measure were
highly reliable. Five top (according to DeepQA) server models
of the monomers were selected for building the initial
structures of a respective oligomeric target. Once the monomer
building blocks had been selected, they were submitted to the
HHpred server56 (except for T0997o, in which case the
ClusPro server44,45 was used) to search the PDB for the
structures of multimeric proteins with the highest sequence
similarity to those of the target oligomeric sequences. If reliable
hits were obtained, monomer models (from either the KIAS-
Gdansk or server predictions) were superposed on the
respective monomers of the oligomer templates found by
HHpred (or ClustPro for T0997o) to form the starting
structures of the oligomers for UNRES/MREMD simulations.
If no reasonable hits were obtained, initial oligomer structures
were constructed by random oligomer packing, subject to
excluded-volume conditions. The initial models were sub-
sequently distributed to MREMD trajectories to start a
simulation.

Figure 4. Bar plot of the summary counts of models from different
servers selected to derive the geometry restraints. The servers are
identified in the abscissa by the respective CASP13 group numbers.
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MREMD production simulations for oligomers were carried
out with restraints imposed on well-defined structure parts of
the monomers (omitting loops, domain linkers, and chain-end
regions), instead of using the consensus-fragment-based
restraints.
For the smallest targets (with chain lengths less than 100

amino-acid residues), MREMD simulations required up to 2−
4 wall-clock hours to accomplish, with 48 cores (1 core per
trajectory). For the medium-size targets (up to 200 residues),
about 12 wall-clock hours with 384 cores (8 cores per
trajectory) were required. For the largest oligomeric targets
(1000 residues or more), 48 wall-clock time hours with 576
cores (12 cores per trajectory) were needed. The timings
pertain to Cray XC40 of the Interdisciplinary Center of
Mathematical and Computer Modeling of the University of
Warsaw, ICM (https://kdm.icm.edu.pl/kdm/Okeanos/en),
the Intel Xeon E5 v3 cluster at the Informatics Center of the
Tricity Academic Computer Network in Gdansk, TASK
(https://task.gda.pl/kdm/sprzet/tryton/), and the Intel Xeon

cluster at the Academic Computer Center CYFRONET in
Krakow (http://www.cyfronet.krakow.pl/komputery/
15207,artykul,prometheus.html). Detailed timing and scalabil-
ity analysis of UNRES runs is presented elsewhere.57,58

Selection of Candidate Predictions. To select candidate
predictions of a given target, the last 200 snapshots from each
trajectory (a total of 9600 conformations) were processed by
WHAM,39 which was implemented in UNRES in our earlier
work.40 WHAM enables us to calculate the probabilities of all
conformations at a desired temperature and, consequently,
ensemble-averaged and thermodynamic quantities, in partic-
ular the heat capacity. The temperature at which the
conformational ensemble was analyzed (Ta) was determined
to be 20 K below the major heat-capacity peak; usually, it
ranged from 260 to 300 K. The conformations were then
sorted in the descending order of probabilities, and those
which constituted together 99% of the ensemble at Ta were
subjected to Ward’s minimum-variance clustering59 into 5
families of conformations. Subsequently, the fractions (prob-

Figure 5. Illustration of the scheme of fragment selection with the example of the CASP13 target T1008. In the upper panel, the five selected
fragments are marked on the experimental structure of this protein (which was unknown at the prediction time) by red, green, blue, purple, and
orange colors, respectively; the remaining part of the protein is colored gray. The panels below depict the history of the determination of these
fragments. For fragment 1, the search started with two models with the longest overlapping segments, which were BAKER-ROSETTASERVER19

models 1 and 3, respectively, and comprised the whole sequence. The models from 9 other servers were found to overlap in the entire sequence
range; then, the last residue did not when model 1 from the Delta-Gelly server was added. Finally, 14 server models were found to overlap over 27
residues. The fragment comprises two disconnected sequence parts corresponding to a helix-strand motif shown in red in part 1 of the upper panel
and also as two boxes in the panel below. The further addition of models resulted in shortening of the length of the overlapping fragment below the
20 residue cutoff. The found fragment was eliminated from the 14 server models that it occurred in, and the procedure was run again to find the
second fragment. This procedure was iterated until no more fragments comprising at least 20 residues and common to at least 5 server models
could be found.
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abilities) of the families of the conformational ensemble at the
selected temperature were calculated by using the procedure
developed in our earlier work,40 and the families were ranked
according to decreasing probabilities. This ranking also
corresponded to the ranking of the models submitted to
CASP. A weighted-average conformation was calculated for
each cluster (with weights determined by WHAM), and the
conformation of the cluster closest to the average con-
formation was selected to represent the entire cluster.10,40

These representative conformations of the five clusters were
then converted to all-atom structures.

■ RESULTS
Regular Targets. In this section, we describe the

performance of the KIAS-Gdansk group in the regular 3D
prediction of single-chain proteins, Tnnnn, and subunits of
multichain proteins, Tnnnnsm, where nnnn and m are the
integers denoting target and unit numbers, respectively,
including the leading zeros. The rankings and the measures
of model quality as well as the GDT_TS plots were taken from
the official CASP13 page (http://predictioncenter.org/
casp13/index.cgi).
As the KIAS-Gdansk group, we submitted predictions of 71

regular targets (out of 72 targets, which were not canceled or
converted to the server-only category), which comprised 127
evaluation units (EUs) out of 131 EUs total, each EU being
defined as a protein domain or whole protein molecule. T0999
was skipped by the KIAS-Gdansk group due to its large size
and, thereby, not accomplishing the prediction within the 3-
week time window.
The assessors divided the CASP12 EUs into 4 difficulty

categories, based on the correlation plot between the
arithmetic mean of the HHpred score (accounting for the
sequence similarity to database proteins),60 the LGA (local and
global structure alignment) score,33 and the GDT_TS of the
20 top performing servers. These categories are the template-
based modeling (TBM) category [(HHpred + LGA)/2 > 60,
GDT_TS > 50 except for the EUs on the boundary of the
region], the free modeling (FM) category [(HHpred + LGA)/
2 < 60, GDT_TS < 50 except for the EUs on the boundary of
the region], and the FM/TBM category for the EUs not

belonging to these regions (i.e., with high HHpred/LGA
scores but low performance of the top 20 servers or low
HHpred/LGA scores and high performance of the top 20
servers, respectively).61 For the EUs close to the boundary of
the TBM or FM regions, the classification was adjusted on the
basis of visual inspection. This classification was carried over to
CASP13 except that the TBM category was split into TBM-
easy and TBM-hard.62 To keep the consistency with the
CASP12 classification, in the analysis presented in this work,
the CASP13 TBM-easy and TBM-hard categories are merged
into a single TBM category. Following this classification, our
models pertained to 12, 17, and 38 EUs of the TBM, FM/
TBM, and FM categories in CASP12 and 50, 12, and 31 EUs
of these categories in CASP13, respectively. Because we
applied a different protocol than the standard KIAS-Gdansk
protocol to the CASP13 target FM/TBM T0997 (see
Prediction Protocol), we excluded it from the GDT_TS
analysis; this left 11 FM/TBM EUs. The other EUs (23 in
CASP12 and 27 in CASP13, respectively) were unclassified or
classified as the FM-special category (whole CASP13 targets
T1000 and T1002, respectively); usually, these are whole
multidomain proteins. We grouped these unclassified and FM-
special EUs into the “other” category. It should be noted that
many of the unclassified multidomain targets could be FM
targets, an example being the CASP10 target T0663, which is
composed of two TBM domains, only the complete protein
being an FM target.63

We also processed the refinement targets. However, our
method has not been designed for refinement, unless
substantial rearrangement of the substructures with respect
to their packing in the template takes place, which was not the
case for CASP13. Therefore, we did not obtain exceptionally
good results for any of the refinement targets. In CASP12, we
obtained very good results for targets TR872 and TR898,
because repacking of α-helices that were incorrectly packed in
the templates occurred.26 On the other hand, our group ranked
18th out of 31 groups in the refinement category in CASP13,
compared to 29th out of 39 groups in CASP12, which suggests
some improvement.

Comparison with the Parent Server Models and with
CASP12 Results. The candlestick plots showing the average,

Figure 6. Scheme of the construction of initial oligomer-target models. See text for description.
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maximum, and minimum values as well as the standard-

deviation range of the GDT_TS of the first, all, and the best

(with the highest GDT_TS) models obtained by the KIAS-

Gdansk group in CASP13 and CASP12 for comparison as well

as the corresponding plots for the server models selected to

derive restraints and all server models for each of the target-

difficulty categories (TBM, FM/TBM, FM, and “other”) are

shown in Figure 7. The GDT_TS values and ranks of the first

Figure 7. Candlestick plots of the GDT_TS of the CASP12 and CASP13 models produced by the KIAS-Gdansk group (left pairs of sticks in panels
A−C), server models selected by the KIAS-Gdansk group to derive restraints and select starting models (middle pairs of sticks in panels A−C), and
all server models (right pairs of sticks in panels A−C) for the TBM, FM/TBM, FM, and unclassified (other) EUs. Panel A: the KIAS-Gdansk and
server “Model 1” predictions; panel B: all KIAS-Gdansk and server models; panel C: best KIAS-Gdansk and server models. The horizontal lines in
the middle of each bar correspond to the mean values; the bars range from the mean minus the standard deviation to the mean plus the standard
deviation, and the whiskers correspond to the minimum and maximum values. The colors corresponding to each category and CASP experiment
are shown above the graphs: KG denotes the KIAS-Gdansk models, ss denotes selected server models, and as denotes all server models,
respectively.
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and best KIAS-Gdansk models, together with target catego-
rization with regard to difficulty (TBM-easy, TBM-hard, FM/
TBM, FM, and “other”),62 are summarized in Table S1, while
the minimum, maximum, and average GDT_TS values as well
as the standard deviations of the average GDT_TS values,
calculated over the KIAS-Gdansk, selected server, and all server
models of the respective categories are summarized in Table
S2. Figure 8 displays the differences of the GDT_TS of the
first, all, and the best KIAS-Gdansk, selected server and all
server models from CASP12 to CASP13. The values of these
differences, their standard deviations, and significance levels
calculated by means of the Student’s test are summarized in
Table S3. The GDT_TS differences between the KIAS-Gdansk
models and selected server models, the KIAS-Gdansk models
and all server models, and the selected server models and all
server models, respectively, and their standard deviations are
shown in Figure 9 (for the first, all, and the best models). Their
values and the significance levels are summarized in Table S4.
It should be noted that the standard deviations of the mean
differences decrease in the order KIAS-Gdansk > selected
server > all server models, which results from the fact that the
numbers of models taken to compute averages increase in this
order (Table S2).
As can be seen from Figures 7 and 8 and Tables S2 and S3,

the average GDT_TS obtained by the KIAS-Gdansk group in
CASP13 increased, for all target-difficulty categories, with
respect to CASP12 values,26 regardless of whether the first, all,
or the best models are considered. The least increase is
observed for the TBM and the biggest, for the FM and “other”
models. When considering the “Model 1” predictions (which
are the first choices when utilizing predictions as protein-
structure models), the GDT_TS increased from 62.51 to 65.23
(by 2.72, 92% significance) for the TBM models, from 47.97 to
58.64 (by 11.47, 97% significance) for the FM/TBM models,
from 29.88 to 40.82 (by 10.94, 100% significance) for the FM
models, and from 24.66 to 36.97 (by 12.31, 100% significance)

for the “other” models (Table S3). Similar GDT_TS increases
can be observed for the all and best models (Figure 8 and
Table S3). As mentioned in the beginning of Comparison with
the Parent Server Models and with CASP12 Results, some of
the “other” category models could probably be regarded as
another variant of FM; however, because of its being out of
clear classification, caution should be exercised when using it
to assess the improvement of the prediction methodology. The
increase of the GDT_TS difference in the order TBM < FM/
TBM < FM/“other” with a jump from TBM to FM/TBM is
not surprising, because our methodology is aimed at finding
the correct arrangement of the fragments of a structure that is
correctly predicted by bioinformatics approaches and not at
refining the models of homology targets.
As can be seen from Figures 7 and 8 and from Tables S2 and

S3, the GDT_TS values of the selected server and all server
models have also increased with respect to CASP12, which is
in agreement with the overall improvement of model quality
from CASP12 to CASP13.15 Except for the best models, this
increase is significantly smaller for all server models, compared
to that for the KIAS-Gdansk and selected server models, which
strongly suggests that the procedure of server-model selection
developed in this work enabled us to choose the highest-
quality models to derive restraints. For the TBM category, the
increase seems to be partially due to higher sequence identity,
on average, of the CASP13 compared to that of the CASP12
target (see Figure 1A in ref 14). The constant improvement of
the predictions of the FM targets has also been observed from
CASP10 to CASP13 (Figure 6 in ref 15), which probably
results from the use of methods for contact or even longer
distance prediction, which are steadily improving.13,15

It can be seen from Figure 8 and Table S3 that the GDT_TS
values of the FM/TBM and FM KIAS-Gdansk models
increased from CASP12 to CASP13 more than those for
selected server models, regardless of whether the first, all, or
best models are considered. For the FM category models, the

Figure 8. Candlestick plots of the difference of the GDT_TS of the CASP12 and CASP13 models, ΔGDT_TS = GDT_TS(CASP13) −
GDT_TS(CASP12), produced by the KIAS-Gdansk group (left), the server models selected by the KIAS-Gdansk group to derive restraints and
select starting models (middle), and all server models (right) for the TBM, FM/TBM, FM, and unclassified (other) EUs. The horizontal lines in
the middle of each bar correspond to the difference between the means over the CASP13 and CASP12 models of each category, and the bars range
from the difference between the means minus the standard deviation of this difference to the difference of the means plus the standard deviation of
this difference. The colors corresponding to each category are shown above the graphs: KG denotes the KIAS-Gdansk models, ss denotes selected
server models, and as denotes all server models, respectively.
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GDT_TS increased by 2.56 units more for the first KIAS-
Gdansk models and by 7.28 units more for the best KIAS-

Gdansk models, compared to the selected server models. The
selected server TBM models improved more than the KIAS-

Figure 9. Candlestick plots of the differences of the GDT_TS of the KIAS-Gdansk and selected server models, ΔGDT_TS(KG,ss) =
GDT_TS(KG) − GDT_TS(ss), KIAS-Gdansk and all server models, ΔGDT_TS(KG,as) = GDT_TS(KG) − GDT_TS(as), and the selected
server and all server models, ΔGDT_TS(ss,as) = GDT_TS(ss) − GDT_TS(as), in CASP12 and CASP13 for the first (panel A), all (panel B), and
best (panel C) models of the TBM, FM/TBM, FM, and unclassified (other) EUs. The horizontal lines in the middle of each bar correspond to the
differences between the GDT_TS means over respective categories; each bar ranges from the difference of the mean minus the standard deviation
of this difference to the difference of the mean plus the standard deviation of this difference. The colors corresponding to each category are shown
above the graphs: KG denotes the KIAS-Gdansk models, ss denotes selected server models, and as denotes all server models, respectively.
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Gdansk models when considering all and the best models, and
the selected server models of the “other” category improved
more when considering all and the first models. In summary, a
greater improvement of the KIAS-Gdansk models compared to
that of selected server models was observed in 8 out of 12
instances, which strongly suggests that not only model
selection but also improvements of the prediction protocol
contributed to the improved performance of the KIAS-Gdansk
group in CASP13 (Figure 8 and Table S3), even though our
method certainly benefits from the continuing improvement of
the server models utilized to derive geometric restraints.
The differences of the GDT_TS values of the KIAS-Gdansk

models and those of the selected server models and all server
models as well as the GDT_TS differences of the selected
server models and all server models are compared in Figure
9A−C (for the first, all, and the best models, respectively) and
summarized in Table S4. It can be seen that, in CASP12, the
KIAS-Gdansk values were lower than those for the selected
server models for all and the best models and slightly higher for
the first models (the differences being, however, of low
statistical significance, as shown in Table S4). In CASP13, the
KIAS-Gdansk models of the FM targets turned out to have
higher GDT_TS values than those of the parent servers, the
mean differences being 1.83 (93% significance) for the first
models, 3.56 (100% significance) for all models, and 4.66
(100% significance) for the best models. The GDT_TS values
are also higher than those for the selected server models for the
FM/TBM target category, although the differences are of low
statistical significance. The selected server models of the TBM
targets have higher GDT_TS values, on average, than the
KIAS-Gdansk models, regardless of whether the first, all, or the
best models are considered, and the “other” category models
from selected servers have higher GDT_TS values, except for
those averaged over all models (although the statistical
significance of the differences is low).
In agreement with the above observations, for many targets,

the mean GDT_TS values are higher and the GDT_TS
distributions are more focused than those of the server models.
This is illustrated by the scatter-whisker plots shown in Figure
10A,B for the targets for which the server models were selected
on the basis of DeepQA scoring25 and those from the servers
that performed best in CASP12, respectively. It can be seen
from Figure 10 that, although the ranges of the server-model
GDT_TS (represented by horizontal whiskers) touch higher
values than those of the KIAS-Gdansk models, they also
comprise small GDT_TS values. Conversely, the highest
values of the KIAS-Gdansk model GDT_TS are smaller than
those of selected server models but the GDT_TS ranges (the
vertical whiskers in the plots) do not contain excessively small
values.
The correlation between the GDT_TS values of the “Model

1”, best and worst server, and KIAS-Gdansk predictions is
shown in more detail in Figure 11, in which the points
corresponding to the five servers from which the models were
the most frequently used to derive restraints are shown as
different symbols. As can be seen from Figure 11A, the points
corresponding to the “Model 1” predictions are located almost
equally on both sides of the diagonal. For the best models
(Figure 11B), most of the points are below the diagonal, which
means that the majority of the best server models have higher
GDT_TS than the KIAS-Gdansk models of the corresponding
targets, a conclusion that can also be drawn from Figure 7A.
There are, however, several points above the diagonal, and the

GDT_TS is distinctively higher for target T0960-D1; this
model ranks 12 among all the models of this evaluation unit
submitted to CASP13 (see Table S1). The GDT_TS of the
worst KIAS-Gdansk models is usually higher than that of the
corresponding server models (Figure 11C), an observation that
we also made in our earlier work by analyzing the CASP12
KIAS-Gdansk predictions.26 This observation suggests that the
restraints from the lowest-quality server models do not
influence much of the KIAS-Gdansk models. The reason for
this is that these restraints usually correspond to a small
number of consensus fragments and do not, therefore, make a
substantial contribution to the restraint function (eq 9). On
the other hand, there are several points in Figure 11C for
which the worst KIAS-Gdansk predictions are worse than the
worst server predictions. These points correspond to the
evaluation units derived from targets T0960 and T0963, which
are viral pyocins (PDB codes: 6CL5 and 6CL6, respectively),
for which additional information about the extended shape of
the structures was released a few days before the submission
deadline. We used this information to impose additional
restraints but, because of the large size and trimeric structure of

Figure 10. Whiskered scatter plots of the GDT_TS of the KIAS-
Gdansk models vs those of the selected server models for targets, for
which selection was based on DeepQA25 scoring (A) and those where
the servers that performed best in CASP12 were selected (B). Filled
red circles represent the mean values; horizontal whiskers represent
the GDT_TS ranges of the server models and vertical whiskers, those
of the KIAS-Gdansk models.
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both targets, with chains intertwined in the dimer, we were
able to run only short simulations, which were not sufficient to
achieve convergence. To obtain the other restraints and to

construct the starting structures of targets T0960 and T0963,
RaptorX_TBM51 model 1 and RaptorX_DeepModeller50

model 3, respectively, were used.
A detailed comparison of the server and KIAS-Gdansk

models of targets T0960 and T0963 is shown in Figure S1 and
Table S1. It can be seen that, although many KIAS-Gdansk
models are worse than the server models used to derive
restraints, there are also models that are better. In particular,
for T0960-D1, the GDT_TS of the initial model (Rap-
torX_TBM51 Model 1) was 33.59 and the average GDT_TS of
the respective KIAS-Gdansk models was 43.13 (49.22 for the
best model). The KIAS-Gdansk models of the EUs pertaining
to the other large targets that were run as oligomers T0984,
T0995, T1003, and T1009 were better than average as shown
in Figure S2.

Comparison of the Performance of the KIAS-Gdansk
Group with Other Groups. As can be seen from Figure 11,
Zhang-server,48 QUARK,48 and RaptorX-DeepModeller50

server predictions have usually higher, while those from
BAKER-ROSETTASERVER19 and RaptorX-TBM51 have
lower GDT_TS values compared to KIAS-Gdansk models.
This observation is confirmed by comparing the rankings of
the KIAS-Gdansk first and best models with those of the five
servers, which are summarized in Table 1 for all types of
targets considered. It can be seen that Zhang-server,48

QUARK,48 and RaptorX-DeepModeller50 rank better than
the KIAS-Gdansk group for all categories, BAKER-ROSET-
TASERVER19 and RaptorX-TBM51 rank worse for the FM
category and for all targets, while RaptorX-TBM also ranks
worse for the FM/TBM category. The ranking of the KIAS-
Gdansk group has increased compared to CASP12 for all
categories except TBM (Table 1), the most significant increase
being noted for the FM category. It should be noted that, in
CASP12, the KIAS-Gdansk group did not outrank any of the
four servers, from which the models were used to derive
restraints (Zhang,48 QUARK,48 BAKER-ROSETTA-
SERVER,19 or GOAL47), while it outranked two of the servers
from which the bulk of models were used, BAKER-
ROSETTASERVER19 and RaptorX-TBM51 in CASP13 for
the FM category, regardless of whether the “Model 1” or the
best predictions are considered.
It should be noted that there were more participating groups

in CASP12 (128) compared to CASP13 (99). Of those groups,
122, 126, and 127, respectively, submitted predictions in the
TBM, FM/TBM, and FM categories in CASP12 and 99, 97,
and 98, respectively, submitted predictions in these target
categories in CASP13. Therefore, for an objective comparison,
the relative ranks of the KIAS-Gdansk group, computed as the
ranks divided by the number of groups in the respective
categories, are also included in Table 1. As can be seen from
Table 1, the relative ranks of the KIAS-Gdansk group have also
increased for the FM category for both the first and the best
models. For the “Model 1” predictions of the FM targets, the
relative rank reached the top 14.3% of the submitted models of
this category, which is 4.5% higher compared to CASP12. The
moderate increase in the relative ranking of the FM models
compared to a much more remarkable increase of GDT_TS
compared to CASP12 (Figures 7 and 8 and Tables S2 and S3)
results from the overall improvement of the server models
selected to derive restraints (Figure 7), in particular those from
Zhang-server48 and QUARK48 (Table 1). For the FM/TBM
models, the relative ranks change little from CASP12 to

Figure 11. Scatter plots of the GDT_TS of the “Model 1” KIAS-
Gdansk predictions vs the respective “Model 1” server predictions
(A), the best KIAS-Gdansk predictions vs the respective best server
predictions (B), and the worst (lowest GDT_TS) KIAS-Gdansk
predictions vs the respective worst server predictions (C). The
evaluation units for which the KIAS-Gdansk models were remarkably
better or remarkably worse compared to server models are marked in
the plots. The points corresponding to each of the 5 servers from
which the models were most frequently selected by the KIAS-Gdansk
group in CASP13 to derive restraints are shown as different symbols,
the respective legend being located above the plot.
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CASP13, being slightly higher for the first and slightly lower in
CASP13 for the best models (Table 1).
The ranks of the KIAS-Gdansk group in CASP12 and

CASP13 and their changes from CASP12 to CASP13 confirm
that using the restraints from server models in UNRES
simulations produces the best results for the free-modeling
targets, which was the aim of the approach.22 The contribution
of UNRES improves server models in two ways. First, it results
in reorienting the fragments that are improperly packed in the
server models and, second, using the multimodal restraint
function (eq 9) results in selecting the distances and angles
that are compatible with the UNRES energy function. The
most important restraints from the server models are the
distance restraints, which help to shape the tertiary structures.
In this regard, the KIAS-Gdansk group performed worse, both
in CASP12 and in CASP13, than the Zhang, Zhang-server, and
QUARK groups (the two last of them being server groups).
These groups heavily rely on contact prediction. The KIAS-
Gdansk group was also outperformed by the new groups that
use sophisticated machine-learning methods: A7D from
DeepMind64 and Destini, which uses an enhanced TAS-
SERVMT protocol.65 It was also outperformed, in both
CASP12 and CASP13, by the MESHI group that uses a
quality-assessment and refinement protocol to select predic-
tions from the server models66 and by the wfAll-Cheng group,
which is a part of the WeFold co-opetitive experiment67 and
uses both server models and the models produced by other
groups participating in WeFold. In CASP13, the KIAS-Gdansk
group was also outranked by the Grudinin group that
developed the BROD approach to score server models.68

Consequently, the development of the UNRES force field to
enhance its power to distinguish the native topology from
alternative topologies and to produce higher-resolution
structure is needed. On the other hand, it should be noted
that some of the groups that performed better than KIAS-
Gdansk in CASP12 (e.g., BAKER and BAKER-ROSETTA-
SERVER) were outranked by it in CASP13 in the free-
modeling category.

Examples of Predictions. Cartoon drawings of the best
KIAS-Gdansk models of the selected FM, FM/TBM, and
TBM targets (gray) superposed on the respective experimental
structures (rainbow-colored) are shown, together with their
GDT_TS and Cα-RMSD values as well as CASP13 ranks, in
Figure 12A−D. The models shown are those that have a higher
GDT_TS than those of any of the server models selected to
derive restraints (the points above the diagonal in Figure 11B)
and are in the upper 10% of the models for the respective
target. All of the KIAS-Gdansk models shown in Figure 12
overlap very well with the respective experimental structures,
which is manifested in their high GDT_TS and low RMSD
values. In their free-modeling assessment paper,15 the CASP13
assessor also featured the KIAS-Gdansk model 1 of T0957s1-
D1.
The single domain target T0955 (the corresponding EU

denoted as T0955-D1; Figure 12A), classified as the FM/TBM
type, is a small (41 residue) α + β protein. The servers
produced very consistent models, which resulted in only one
consensus fragment that encompassed the entire sequence.
Our best prediction has a low RMSD and a high GDT_TS and
ranked 15 out of 413 submitted models. However, this good
result is likely to be caused by including FALCON69 model 2
in restraint derivation, which was the best model of this target,
in the sets of models from which restraints were derived. On
the other hand, all other server models that served to derive
the restraints, BAKER-ROSETTASERVER,19 Delta-Gelly-
Server, QUARK,48 RBO-Aleph,70 slbio_server, and Zhang-
Server,48 ranked much lower than the KIAS-Gdansk models,
which suggests that UNRES either corrected minor inaccur-
acies of these models or was able to choose FALCON69 model
2 to guide the search.
Target T0968s2 is a 116 residue single-domain target (the

corresponding EU denoted as T0968s2-D1; Figure 12B),
which is a β-sheet unit of a heterotetrameric protein. It has
been classified as an FM target. For this target, only short
consensus fragments were found comprising at most 31
residues, but the largest discontinuous fragment embraced a
110 residue range. Our model 2 ranked 39 out of 452 models

Table 1. Rankings and Percentage Rankings (in Parentheses) in the Respective Target-Difficulty Categories and for All Targets
of the KIAS-Gdansk Group and of the Server Groups for Which the Models Were Most Frequently Used To Derive Restraints
in CASP12 and CASP13a

TBMb FM/TBM FM all

group CASP12 CASP13 CASP12 CASP13 CASP12 CASP13 CASP12 CASP13

KIAS-Gdansk 32 (26.3%) 33 (33.3%) 33 (26.2%) 25 (25.7%) 24 (18.9%) 14 (14.3%) 27 (21.1%) 20 (20.2%)
33 (27.0%) 39 (39.4%) 38 (30.2%) 31 (31.2%) 32 (25.1%) 24 (24.5%) 35 (27.3%) 29 (29.3%)

Zhang-Server 17 (13.9%) 4 (4.0%) 8 (6.3%) 10 (10.3%) 13 (10.2%) 6 (6.1%) 3 (2.4%) 5 (5.1%)
24 (19.7%) 11 (11.1%) 20 (15.9%) 24 (24.7%) 9 (7.1%) 13 (13.3%) 13 (10.2%) 12 (12.1%)

QUARK 23 (18.9%) 6 (6.1%) 16 (12.7%) 7 (7.2%) 12 (9.4%) 4 (4.1%) 14 (11.0%) 4 (4.0%)
32 (26.2%) 10 (10.2%) 25 (19.8%) 18 (18.6%) 14 (11.0%) 19 (19.4%) 17 (17.3%) 16 (16.2%)

BAKER-ROSETTASERVER 16 (13.1%) 27 (27.2%) 16 (12.7%) 21 (21.6%) 15 (11.8%) 34 (34.7%) 15 (11.8%) 15 (11.7%)
12 (9.8%) 29 (29.3%) 15 (11.9%) 21 (21.6%) 18 (14.2%) 34 (34.7%) 15 (11.7%) 30 (30.3%)

RaptorX/RaptorX-TBMc 12 (12.1%) 33 (34.0%) 33 (33.7%) 24 (24.2%)
31 (31.3%) 37 (38.1%) 38 (38.3%) 35 (35.4%)

RaptorX-DeepModellerc 10 (10.1%) 17 (17.5%) 10 (10.2%) 9 (9.1%)
25 (25.3%) 26 (26.8%) 23 (23.5%) 23 (23.2%)

GOALc 7 (5.7%) 21 (21.6%) 23 (18.1%) 22 (17.2%)
15 (12.3%) 28 (22.2%) 28 (22.2%) 25 (19.5%)

aUpper rows: values corresponding to the first models; lower rows: values corresponding to the best models. bTo compare with CASP12 in which
only the TBM category was present, the combined TMB and TMB-hard rankings of CASP13 appear in this part of the table. cNot present in
CASP12/CASP13.
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submitted to CASP. Of the server models used to derive the
restraints, AWSEM-Suite71 models 1−5, BAKER-ROSETTA-
SERVER19 models 1−5, QUARK48 models 1, 3, and 5,
RaptorX-DeepModeller50 model 2, rawMSA, model 3, and
Zhang-Server48 models 1−5 ranked worse than the KIAS-
Gdansk model. Only BAKER-ROSETTASERVER19 models 2
and 3 had higher ranks than that of our model.
Target T0986s1, a 92 residue, single-domain protein (the

corresponding EU denoted as T0986s1-D1; Figure 12C), is an

α + β protein, which is a part of a heterodimer. It has been
classified as an FM/TBM target. Only short consensus
fragments, comprising no more than 26 residues and some
discontinuous fragments encompassing a 90 residue sequence
range, were found, these being derived from BAKER-
ROSETTASERVER19 models 1−4, Delta-Gelly-Server model
1, FALCON69 models 1 and 2, QUARK48 models 1−5,
rawMSA models 1, 3, and 5, and Zhang-Server models 1−5.
Our model 2 ranked 14 out of all models submitted for this

Figure 12. Cartoon representation (left) of selected KIAS-Gdansk models (gray) superposed on the respective experimental structures (colored
from blue to red from the N- to the C-terminus) and the GDT_TS plots of the KIAS-Gdansk models (purple) shown together with other groups’
plots (orange). The GDT_TS plots were downloaded from the CASP13 Web site, http://predictioncenter.org/casp13/results.cgi, and modified to
emphasize the lines corresponding to KIAS-Gdansk models and to enlarge the characters in the axis description (A) T0955-D1, 41 residues, PDB:
5WF9, an FM/TBM target, model 4, GDT_TS = 93.3, RMSD = 1.13 Å, rank 15/413; (B) T0968s2-D1, PDB: 6CP9, 116 residues, an FM target,
model 1, GDT_TS = 64.8, RMSD = 3.36 Å, rank 39/452; (C) T0984-D1, PDB: 6NQ1, 504 residues, a TBM-easy target, model 2, GDT_TS =
67.3, RMSD = 5.20 Å, rank 1/393; (D) T0986s1-D1, PDB: 6D7Y, 92 residues, an FM/TBM target, GDT_TS = 69.3, RMSD = 3.21 Å, rank 14/
443.
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target, outranking all server models used to derive restraints
except for the BAKER-ROSETTASERVER19 model 1.
Target T0984, a two-domain α-helical target comprising 752

residues, has been partitioned into two EUs that contain 504
(T0984-D1) and 147 (T0984-D2) residues, respectively. This
protein forms a homodimer. We used BAKER-ROSETTA-
SERVER19 models 1−4, Distill72 models 2 and 3, FALCON69

model 1, MULTICOM_CLUSTER25 model 1, MULTICOM-
Novel25 model 1, QUARK48 models 1−4, RaptorX-TBM51

model 1, Seok-server73 model 1, and Zhang-server48 models
1−5 to derive the restraints. Because the target is highly
homologous, all server models superposed very well and,
therefore, we constructed the consensus fragments by
removing the flexible loop regions from the sequence. The
KIAS-Gdansk model 1 of T0984-D1 (Figure 12D) is the
CASP13 prediction with the highest GDT_TS of this target,
and the KIAS-Gdansk models 3 and 4 (not shown) are the
second and the third predictions according to GDT_TS,
respectively. This target belongs to the TBM-easy category,

which demonstrates that UNRES is able to improve the
models of the proteins for which very good templates exist; this
observation has already been made in our earlier work.22

UNRES simulations were carried out for the dimer of this
target (Figure 6). It is likely that packing the monomers in the
dimer helped to rectify minor discrepancies between the model
and the experimental structure.

Oligomeric Targets. We submitted the models of 23 out
of 43 homoligomeric (Tnnnno type) and heteroligomeric
(Hnnnn type) targets, where nnnn denotes the target number.
The KIAS-Gdansk group ranked 13th out of 23 groups
regarding all and 10th out of 20 groups regarding hard
oligomeric targets. These rankings are worse compared to
CASP12, in which the group ranked 8th out of 33 groups
regarding all and 8th out of 19 groups regarding hard targets.
However, a target-by-target comparison of rankings turns more
in favor of our performance in CASP13. In CASP12, the
highest-ranking models of 3 targets (out of 13) were within the
upper 10% of the models, while in CASP13, the highest-

Figure 13. Candlestick plots of the Interface Patch Similarity (IPS), quantified as the Jaccard coefficient34,35 (A, C, E) and the Interface Contact
Similarity (ICS) quantified as the F1 score (B, D, F) of the KIAS-Gdansk models of oligomeric targets (left pairs of sticks) and other group models
(right pairs of sticks) obtained in the CASP12 (red) and CASP13 (green) experiments. Panels A and B: all models; panels C and D: “Model 1”
predictions; panels D and E: best models (with the highest score as determined by CASP assessors). The horizontal lines in the middle of each bar
correspond to the mean values; the bars range from the mean minus the standard deviation to the mean plus the standard deviation, and the
whiskers correspond to the minimum and maximum values. The negative values are clipped in all plots.
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ranking models of 7 targets (out of 23) were within the upper
10% of all models. Moreover, no KIAS-Gdansk oligomer
model scored rank 1 in CASP12, while rank 1 was achieved by
our model 4 of H0968, which is a hard oligomeric target35 (our
model 2 having rank 2), and model 2 of T0997o, which is a
medium-difficult target. Of the 7 KIAS-Gdansk models that are
within the 10% of the best models, 4 correspond to hard and 3
to medium-difficult targets; as expected, the approaches with a
greater bioinformatics component handle the easy targets
much better than our largely physics-based approach. Thus,
the overall decrease of KIAS-Gdansk rankings, compared to
CASP12, is likely to be caused by greater improvement of
other groups’ methods with respect to CASP12 compared to
that of our approach.
The candlesticks plots of the Interface Patch Similarity and

Interface Contact Similarity, expressed as the Jaccard
coefficient (JC) and F1 score, respectively34 (see Measures of
Structure Similarity for definition), averaged over all, first, and
the best models of the oligomeric targets, respectively,
obtained by the KIAS-Gdansk and other groups in CASP12
and CASP13, respectively, are shown in Figure 13A−E. The
corresponding numerical values are collected in Table S5.
As can be seen (Figure 13), the average JC and F1 values of

KIAS-Gdansk predictions are lower than those averaged over
the respective CASP13 models, regardless of whether “Model
1”, best-model, or all-model average predictions are consid-
ered. In CASP12, the JC and F1 averaged over our “Model 1”
predictions and all models were higher than those averaged
over other groups’ models (Figure 13A−D); however, the
values averaged over our best models were lower than those
averaged over other groups’ models (Figure 13E,F). Compared
to CASP12, our best-model averages of JC increased from 0.28
to 0.36 (by 0.08; 88% significance) and the respective F1
values increased from 12.4 to 17.8 (by 5.4; 76% significance).
The “Model 1” averages of JC and F1 are almost the same as
those in CASP12, the differences being statistically insignif-
icant (Figure 13A,B). The JC and F1 values averaged over all
KIAS-Gdansk models increased from 0.21 to 0.25 (by 0.05;
89% significance) and from 7.7 to 10.9 (by 3.2; 87%
significance), respectively (Figure 13C,D). It should also be
noted that the maximum values of JC and F1 corresponding to
the KIAS-Gdansk group models increased with respect to
CASP12 (Figure 13A−E). Therefore, net improvement was
obtained with respect to CASP12. However, as could also be
seen from the comparison of rankings of the KIAS-Gdansk
group in CASP12 and CASP13, the increases of the JC and F1
values of “Model 1” and all-model averages were significantly
greater for the other groups. The “Model 1” and all-model
averaged JC increased by 0.15 and 0.13, respectively, and those
of F1 increased by 12.7 and 11.5, respectively, all these values
having over 99.99% significance. For other groups’ best-model
averages, the increases of JC and F1 from CASP12 to CASP13
were comparable to those of the KIAS-Gdansk group,
amounting to 0.10 (98% significance) and 4.5 (74%
significance), respectively.
Overall, our methodology has performed worse on

oligomeric targets compared to regular targets. One reason
for this can be that the protein-docking problem is harder for
physics-based methods because of a larger number of degrees
of freedom and larger system size, which makes the search of
the docking space challenging, in particular when monomer
conformations undergo major changes upon docking. Another
reason is that UNRES has been parametrized with monomeric

proteins only,30 which might overemphasize local-interaction
components of the force field relative to long-range
components.
In Figure 14A−C, the best KIAS-Gdansk group models for

three selected targets, H0968, T1003o, and T1009o, are
shown.
Target H0968 (PDB: 6CP9) is a tetramer composed of two

dimers, each of which consists of an α + β-protein and a mainly
β-protein (with only a small α-helical section). The largest
interface is between the β-structure parts. It has been classified
as a hard target,35 for which our model 4 (Figure 14A) is the
best of all models of this target submitted to CASP. It can be
seen from Figure 14A that the main interface (between β-
sheets) is well reproduced, which is also reflected in the low
interface RMSD of 1.33 Å. However, the α + β chains have a
different orientation compared to that in the experimental
structure, which results in comparatively low F1 (5.3) and JC
(0.30) values, as well as comparatively low GDT_TS of the
whole oligomer (26.3). Nevertheless, the overall shape of the
tetramer is similar to the native shape.
Target T1003o is a homodimer with a monomer size of 474

residues, which has been classified as an easy target.35 The
KIAS-Gdansk model 4 of this target is superposed on the
6HRH experimental structure in Figure 14B. This prediction
has been ranked 73 out of 164 models. As can be seen, our
model matches the experimental structure well, which is
reflected by comparatively high F1 (61.5), JC (0.69), and
GDT_TS of the whole complex (82.3).
Target T1009o is a homodimer composed of two large

monomers (718 residues each). It has been classified as a
target of medium difficulty.35 Our model 4 superposes quite
well on the experimental 5DRU structure and ranks 12th out
of 126 models. The F1 (4.8) and JC (0.39) are comparatively
low, which suggests that the interface contacts are not modeled
very well, but the GDT_TS (40.0) is much higher than that of
our model 4 of H0968, which agrees with the overall good
superposition of our model on the experimental structure.

■ CONCLUSIONS
In this work, we improved our methodology of bioinformatics-
assisted prediction of protein structures with the UNRES force
field by introducing server-model selection based on the
DeepQA score25 and by developing an automatic protocol for
the selection of the consensus fragments illustrated in Figure 5.
Moreover, an upgraded version of the UNRES force field30 was
used, and DFA pseudopotentials28,29 were fully implemented
in the total pseudoenergy function. In terms of GDT_TS,
significant progress was made for regular targets of the FM/
TBM and FM category relative to CASP12. For these targets,
the average GDT_TS increased by 8.96 and 11.08 GDT_TS
units, respectively, for the “Model 1” predictions and by 11.04
and 11.09 units for the best models, respectively (Figures 7 and
8 and Tables S1−S3). The ranking of the KIAS-Gdansk
predictions has also increased remarkably for the FM category,
for which it reached the top 14.3% of all “Model 1” predictions
(compared to 18.9% in CASP12; Table 1). The increase of the
KIAS-Gdansk model ranking is even more remarkable in view
of the fact that a significant jump in model quality was
observed from CASP12 to CASP13, owing to exceptionally
good performance of the methods based on deep learning.15

This progress was achieved owing to the selection of higher-
quality server models to derive restraints compared to that in
CASP12 (Figure 7), introducing the automatic protocol for
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fragment selection, improvement of the restraint function to
alter the depth of its minima depending on the number of
server models contributing to a given geometry restraint (eq
9), implementation of DFA pseudopotentials,28,29 and using an
upgraded version of the UNRES force field.30

The models of the FM targets produced by the KIAS-
Gdansk group in CASP13 have definitely higher GDT_TS, on
average, than the server models selected to derive restraints,
regardless of whether the averages over the first, best, or all
models are considered (Figure 9 and Table S4); the differences
are 1.83, 3.66, and 3.56 units, respectively, and all differences
are statistically significant. For the FM/TBM category, the
KIAS-Gdansk models also have higher GDT_TS than those of
the selected server models; however, the differences are only
0.80, 1.38, and 2.03 units for the first, best, and all models,
respectively; the statistical significance of these differences is
low. This is a clear improvement with respect to CASP12, in
which the average GDT_TS of only the “Model 1” KIAS-
Gdansk predictions was slightly higher than that of the selected
server models, irrespective of difficulty category (Figure 9).
This result strongly suggests that the improvements of our
protein-structure-prediction protocol introduced in this work
resulted in improved performance of the method for free-
modeling targets, which has been the aim of our approach.
The GDT_TS values of the KIAS-Gdansk models and of the

selected server models are significantly greater than those of all
server models, irrespective of difficulty category and
irrespective of whether the first, the best, or all models are
considered. It can, therefore, be concluded that the quality-
assessment-based procedure of server-model selection intro-
duced in this work, as opposed to using the top five models
from preselected servers,26 enabled us to use the best server
models for restraint derivation. We are now working on further
improvement of fragment selection by including the
information about conserved motifs and sequence-based
features (e.g., prediction of disordered regions), which can
be obtained by using the tools such as Pse-in-One,74 BioSeq-
Analysis,75 or BioSeq-Analysis2.0.76

Some KIAS-Gdansk models, including those of the TBM
targets, outperformed those from the servers (Figures 11B and
12). Also, as in CASP12,26 the majority of the worst server
models have lower GDT_TS than the worst KIAS-Gdansk
models (Figure 11C); exceptions were the models of the
targets T0960 and T0963 for which the simulation time was
apparently insufficient due to the large target size.
For the oligomeric targets, the KIAS-Gdansk group results

are worse, compared to other groups, than those for the regular
targets, the average Interface Patch Similarity (JC) and
Interface Contact Similarity (F1)34 being lower than that
over all the CASP13 models (Figure 13). The probable reasons
for this are (i) larger sizes of oligomeric targets compared to
those of the regular targets (this demands a higher simulation
time, which is not readily possible for large targets given the 3-
week prediction-time window) and (ii) the fact that the
UNRES force field used by the KIAS-Gdansk group was
calibrated with monomeric proteins.30 Insufficient sampling is
also a problem in the prediction of the structure of large
regular (monomeric) targets. Nevertheless, improvement with
respect to CASP12 has been achieved; in particular, a greater
fraction of models (7 out of 23 targets compared to 3 out of 13
targets in CASP13) is within the top 10% of all models and 2
KIAS-Gdansk models have rank 1, while there was no rank 1
model in CASP12.
Apart from the improved selection of high-quality server

models, which contributed to the increased performance of the
KIAS-Gdansk group relative to CASP12, the improvement of
the force-field quality is essential to achieve higher model
quality compared to that of the server models from which to

Figure 14. Cartoon representation of sample KIAS-Gdansk models of
the oligomeric target (gray) superposed on the corresponding
experimental structures (rainbow-colored). (A) Target H0968 (a
dimer of heterodimers, monomer chains consisting of 126 and 116
residues, respectively, PDB: 6CP9, hard target), model 4, JC = 0.30,
F1 = 5.3, GDT_TS = 26.3, RMSD = 16.0 Å, I-RMSD = 1.33 Å, rank
1/63. (B) Target T1003o (homodimer, monomer chain consisting of
474 residue, PDB: 6HRH, easy target), model 4, JC = 0.69, F1 = 61.5,
GDT_TS = 82.8, RMSD = 5.20 Å, I-RMSD = 6.45 Å. (C) Target
T1009o (homodimer, PDB: 6DRU, monomer chain consisting of 718
residues, medium target), model 4, JC = 0.39, F1 = 4.8, GDT_TS =
40.0, RMSD = 8.54 Å, I-RMSD = 9.03 Å.
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derive restraints. Recently, we developed a scale-consistent
version of UNRES,77 which showed an improved performance
in the unassisted and contact-assisted UNRES prediction.78

We are now working on improving this version to separate
side-chain-specific local and correlation energy terms from the
backbone components and to improve the side-chain-
interaction potentials. We are also adapting UNRES code to
run big targets by introducing cutoff on the interactions, which
should alleviate insufficient-sampling problems. To improve
the performance of the method on oligomeric targets, we will
include oligomeric proteins in force-field calibration.
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regular targets (T0984, T0995, T1003, and T1009), for
which the server models selected on the basis of
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GDT_TS values and rankings of the KIAS-Gdansk first
and the best (highest GDT_TS) models of the CASP13
regular targets; Table S2: numbers of EUs and their
minimum, maximum, and average GDT_TS values as
well as the standard deviations of the GDT_TS for the
respective target categories for the KIAS-Gdansk,
selected server and all server first, all and best models
obtained in the CASP12 and CASP13 experiments;
Table S3: differences of the mean GDT_TS values
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the standard deviations of these differences, and their
statistical significances; Table S4: Differences of the
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the KIAS-Gdansk models and all server models, and
selected server models and all server models (first, all
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Rafał Ślusarz − Faculty of Chemistry, University of Gdanśk,
Gdanśk 80-308, Poland
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A. S.; Kryshtafovych, A.; Leitner, A.; Liwo, A.; Lubecka, E. A.;
Monastyrskyy, B.; Pages, G.; Rappsilber, J.; Sieradzan, A. K.; Sikorska,
C.; Trabjerg, E.; Fiser, A. Assessment of Chemical-Crosslink-Assisted
Protein Structure Modeling in CASP13. Proteins: Struct., Funct., Genet.
2019, 87, 1283−1297.
(32) Lensink, M. F.; Brysbaert, G.; Nadzirin, N.; Velankar, S.;
Chaleil, R. A. G.; Gerguri, T.; Bates, P. A.; Laine, E.; Carbone, A.;
Grudinin, S.; Kong, R.; Liu, R. R.; Xu, X.-M.; Shi, H.; Chang, S.;
Eisenstein, M.; Karczynska, A.; Czaplewski, C.; Lubecka, E.; Lipska,
A.; Krupa, P.; Mozolewska, M.; Golon, Ł.; Samsonov, S.; Liwo, A.;
Crivelli, S.; Yan, Y.; Huang, S.-Y.; Rosell, M.; Rodríguez-Lumbreras, L.
A.; Romero-Durana, M.; Díaz-Bueno, L.; Fernandez-Recio, J.;
Christoffer, C.; Terashi, G.; Shin, W.-H.; Aderinwale, T.;
Raghavendra, S.; Subraman, M. V.; Kihara, D.; Kozakov, D.; Vajda,
S.; Porter, K.; Padhorny, D.; Desta, I.; Beglov, D.; Ignato, M.;
Kotelnikov, S.; Moal, I. H.; Ritchie, D. W.; Chauvot de Beauchene, I.;
Maigret, B.; Devignes, M.-D.; Ruiz Echartea, M. E.; Barradas-Bautista,
D.; Cao, Z.; Cavallo, L.; Oliva, R.; Cao, Y.; Shen, Y.; Baek, M.; Park,
T.; Woo, H.; Seok, C.; Scheidman, D.; Dapku̅nas, J.; Olechnovic,̌ K.;

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.9b00864
J. Chem. Inf. Model. 2020, 60, 1844−1864

1862

https://dx.doi.org/10.1107/S0021889800014126
https://dx.doi.org/10.1107/S0021889800014126
https://dx.doi.org/10.1016/j.str.2013.04.020
https://dx.doi.org/10.1016/j.str.2013.04.020
https://dx.doi.org/10.1002/prot.25452
https://dx.doi.org/10.1002/prot.25452
https://dx.doi.org/10.1002/prot.25452
https://dx.doi.org/10.1021/ac991081o
https://dx.doi.org/10.1021/ac991081o
https://dx.doi.org/10.1021/ac991081o
https://dx.doi.org/10.1073/pnas.1320298111
https://dx.doi.org/10.1073/pnas.1320298111
https://dx.doi.org/10.1002/prot.24452
https://dx.doi.org/10.1002/prot.24452
https://dx.doi.org/10.1021/acs.chemrev.6b00163
https://dx.doi.org/10.1093/bioinformatics/btw404
https://dx.doi.org/10.1093/bioinformatics/btw404
https://dx.doi.org/10.1093/bioinformatics/btw404
https://dx.doi.org/10.1073/pnas.1314045110
https://dx.doi.org/10.1073/pnas.1314045110
https://dx.doi.org/10.1073/pnas.1314045110
https://dx.doi.org/10.1002/prot.25425
https://dx.doi.org/10.1002/prot.25425
https://dx.doi.org/10.1002/prot.25423
https://dx.doi.org/10.1002/prot.25423
https://dx.doi.org/10.1002/prot.25423
https://dx.doi.org/10.1002/prot.25800
https://dx.doi.org/10.1002/prot.25787
https://dx.doi.org/10.1002/prot.25787
https://dx.doi.org/10.1002/prot.25787
https://dx.doi.org/10.1002/prot.25824
https://dx.doi.org/10.1002/prot.25824
https://dx.doi.org/10.1002/prot.25824
https://dx.doi.org/10.1002/prot.25792
https://dx.doi.org/10.1002/prot.25792
https://dx.doi.org/10.1002/prot.25064
https://dx.doi.org/10.1002/prot.25064
https://dx.doi.org/10.1016/S0076-6879(04)83004-0
https://dx.doi.org/10.1126/science.aah4043
https://dx.doi.org/10.1126/science.aah4043
https://dx.doi.org/10.1021/acs.jcim.5b00117
https://dx.doi.org/10.1021/acs.jcim.5b00117
https://dx.doi.org/10.1021/acs.jcim.6b00189
https://dx.doi.org/10.1021/acs.jcim.6b00189
https://dx.doi.org/10.1021/acs.jcim.6b00189
https://dx.doi.org/10.1007/s00894-014-2306-5
https://dx.doi.org/10.1007/s00894-014-2306-5
https://dx.doi.org/10.1007/s00894-014-2306-5
https://dx.doi.org/10.1186/s12859-016-1405-y
https://dx.doi.org/10.1186/s12859-016-1405-y
https://dx.doi.org/10.1186/s12859-016-1405-y
https://dx.doi.org/10.1016/j.jmgm.2018.05.008
https://dx.doi.org/10.1016/j.jmgm.2018.05.008
https://dx.doi.org/10.1016/j.jmgm.2018.05.008
https://dx.doi.org/10.1002/prot.25421
https://dx.doi.org/10.1002/prot.25421
https://dx.doi.org/10.1002/prot.25421
https://dx.doi.org/10.1016/j.cplett.2004.11.134
https://dx.doi.org/10.1016/j.cplett.2004.11.134
https://dx.doi.org/10.1016/j.bbrc.2008.02.048
https://dx.doi.org/10.1016/j.bbrc.2008.02.048
https://dx.doi.org/10.1016/j.bbrc.2008.02.048
https://dx.doi.org/10.1021/acs.jcim.7b00254
https://dx.doi.org/10.1021/acs.jcim.7b00254
https://dx.doi.org/10.1002/prot.25816
https://dx.doi.org/10.1002/prot.25816
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.9b00864?ref=pdf
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