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ABSTRACT

Structural variation is an important class of genetic
variation in mammals. High-throughput sequencing
(HTS) technologies promise to revolutionize copy-
number variation (CNV) detection but present sub-
stantial analytic challenges. Converging evidence
suggests that multiple types of CNV-informative
data (e.g. read-depth, read-pair, split-read) need be
considered, and that sophisticated methods are
needed for more accurate CNV detection. We
observed that various sources of experimental
biases in HTS confound read-depth estimation, and
note that bias correction has not been adequately
addressed by existing methods. We present a novel
read-depth–based method, GENSENG, which uses a
hidden Markov model and negative binomial regres-
sion framework to identify regions of discrete copy-
number changes while simultaneously accounting
for the effects of multiple confounders. Based on ex-
tensive calibration using multiple HTS data sets, we
conclude that our method outperforms existing
read-depth–based CNV detection algorithms. The
concept of simultaneous bias correction and CNV
detection can serve as a basis for combining read-
depth with other types of information such as read-
pair or split-read in a single analysis. A user-friendly
and computationally efficient implementation of our
method is freely available.

INTRODUCTION

Structural variation (SV), including copy-number vari-
ation (CNV), is a major form of genetic variations in

mammals (1–4). CNVs have been shown to affect gene
expressions in human cell lines (5) as well as in different
tissues of rodents (6–8), and to play an important role
in the etiology of schizophrenia (9,10), autism (11,12)
and non-psychiatric diseases (13–15). In functional
genomic studies, failing to account for copy-number
differences can lead to errors in ribonucleic acid
sequencing, chromatin immunoprecipitation sequencing,
DNase hypersensitive site mapping sequencing and
formaldehyde-assisted isolation of regulatory elements
sequencing (16,17). Thus, accurate detection for CNVs
in a single genome is important.
Microarray technologies were the main platform for

initial work in CNV characterization (18,19) and remain
a cost-efficient choice (20). High-throughput sequencing
(HTS) technologies (21–23) promise a complete catalog
of SV and could replace microarrays as a discovery
platform (20,24). While microarray-based CNV detection
analyzes probe hybridization intensities, HTS-based CNV
detection uses conceptually distinctive approaches: read-
pair, split-read and read-depth (RD) analyses, which vary
in their sensitivity and specificity depending on the sizes
and classes of SVs (1,20,24). Converging evidence suggests
that multiple approaches should be considered together to
maximize CNV detection from HTS data. For example,
the 1000 Genomes Project (1000GP) used 19 algorithms to
independently identify CNVs in 185 human genomes and
pooled the results according to the specificity of each al-
gorithm (1). Recent methods [SPANNER (1), CNVer (24)
and Genome STRiP (25)] integrate read-pair and RD in
the detection process in different ways.
The RD approach looks for higher or lower than

expected sequencing coverage in a genomic region to
infer gain or loss of DNA. RD has been computed in a
variety of ways, including counting the number of frag-
ments (25) or reads (26–29) mapped to a particular
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genomic region and calculating the sum of per-base
coverage within a region (30,31). Existing CNV detection
methods assume that RD follows a Poisson distribution
(or a normal distribution as the large-sample approxima-
tion of the Poisson model) for a diploid genome and
search for regions that diverge from this distribution.
However, in practice, neither sampling nor mapping of
the reads is uniform because of experimental biases. GC
content can lead to certain genomic regions being over- or
under-sampled (22). Repetitive DNA elements are
abundant in the mammalian genomes (32); consequently,
the number of reads unambiguously mapped to a region
could be very different from the number of reads
sequenced from the region. Additional sources of bias,
which are more difficult to trace (e.g. noise arising from
sequencing, sequencing errors), create further variability
in RD coverage. Violation of the assumed Poisson distri-
bution entails loss of sensitivity/specificity to detect CNVs
using RD. In studies of cancer, matched pairs of tumor-
and normal-tissue samples may be used to correct biases
by computing RD ratios (33–36); however, matched
control samples are generally not available.
Bias correction has not been adequately addressed in

the literature. Some existing methods (26,28,31) adopt a
two-step approach where RD is first smoothed for GC
content differences using linear regression, and the
GC-adjusted RD is then segmented. Other methods
(25,29) account for mapping bias of a candidate region
using its effective length (e.g. the number of confidently
mapped bases); however, this approach does not account
for the dependence between consecutive regions or add-
itional sources of noise in the data. While various kinds of
adjusted RD have been used as input data, nearly all
methods (25,28–30) use the Poisson or normal-
distribution assumption without subsequent evaluation
the adequacy of the distributional assumption.
In this study, we first show that evaluation of the distri-

bution assumption for RD is important, as it may not hold
true. Second, we show that it is important to jointly
estimate copy number and the effect of confounding
factors. Third, we develop a novel statistical method to
accurately model RD and detect CNVs from HTS data.
We measure RD by the number of sequence fragments
mapped in sliding windows tiled along the genome, and
we model the fragment counts by negative binomial (NB)
distributions, which allow for over-dispersion and account
for the effects of confounders. Furthermore, we account for
the dependence of fragment counts of adjacent windows
using a hidden Markov model (HMM). Known confound-
ing factors are treated as covariates and corrected explicitly,
while unknown experimental biases are accommodated by
the over-dispersion parameter of the NB distribution and
by an additional noise component via a mixture model.
Fourth, we calibrate our method using simulation and
whole-genome sequencing data from the 1000GP, and we
compare our method with CNVnator (26), the
best-performing RD-based CNV detection algorithm in
the literature (1). Finally, to demonstrate the utility and
robustness of our method, we apply our method to both
human and mouse HTS data sets.

In summary, our method outperforms existing
RD-based CNV detection algorithms and distinguishes
homozygous and heterozygous deletions and high-copy
duplications. Our method complements the current litera-
ture, and the concept of simultaneous bias correction and
CNV detection can serve as a basis for combining RD
with read-pair or split-read in a single analysis. A
user-friendly and computationally efficient implementa-
tion of our complete analytic protocol is freely available
at https://sourceforge.net/projects/genseng/.

MATERIALS AND METHODS

Data sets included in this study

1000GP data
For method development and assessment, we used the
whole-genome sequencing data from three HapMap indi-
viduals sequenced as part of the 1000GP. These include
the CEU parent–offspring trio of European ancestry
(NA12878, NA12891, NA12892), sequenced to 42�
coverage on average using the Illumina Genome
Analyzer (I and II) platform. Sequencing reads were a
mixture of single end and paired end with variable
lengths (36 bp, 51 bp). The complete genome sequence
data were obtained in the form of ‘.bam’ alignment files
from ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/pilot_
data/data/. Reads were aligned to the human reference
genome NCBI37 using BWA (37) (v.0.5.5) as described
in the online documentation: ftp://ftp.ncbi.nlm.nih.gov/
1000genomes/ftp/README.alignment_data.

High-confidence CNVs
To assess the sensitivity of our discovery method, we used
the high-confidence CNVs established for NA12878
[Supplementary Table S6 of Mills et al. (1)] by combining
CNVs reported in earlier surveys that used high-density
microarrays (2,38,39), fosmid sequencing (40) or ABI
tracing mapping (41). This data set included 610 deletions
[�82% from microarray reports (2,38,39)] and 261 dupli-
cations [100% from microarray reports (2,38,39)] from the
autosomes of NA12878. The second high-confidence data
set used in this study was generated by Handsaker et al.
(25) by accurately genotyping deletions from the 1000GP
HTS data (1). The complete data set was downloaded
from ftp://ftp.broadinstitute.org/pub/svtoolkit/misc/1 kg/
NGPaper/ and included deletions for the three aforemen-
tioned HapMap individuals. This data set included 2301
deletions for NA12878, 2200 deletions for NA12891 and
2055 deletions for NA12892. CNV coordinates reported in
both high-confidence data sets were translated from
NCBI36 to NCBI37 using liftOver.

Data from other sequencing projects
To demonstrate the robustness of our method, we used
HTS data from two different studies using various sequ-
encing platforms, sequencing depths and read lengths. In
the first study, we used the whole-genome sequencing data
of three individuals affected with bipolar disorder from a
large multiplex Spanish pedigree currently under investi-
gation. Paired-end sequencing with 100-bp reads was per-
formed at the University of North Carolina on the
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Illumina HiSeq 2000 platform. Each individual was
sequenced to an average of 15� coverage. Reads were
aligned to the human reference genome NCBI37 using
BWA (37) (v.0.5.5) with default parameters. In the
second study, we downloaded (ftp://ftp-mouse.sanger.ac.
uk/current_bams/) the whole-genome sequencing data of
inbred mouse strains made freely available by the Mouse
Genomes Project conducted at the Sanger Institute (42).
All mouse samples were sequenced on the Illumina GAII
platform with a mixture of 54-, 76- and 108-bp paired
reads to a coverage ranging from 17� to 43�. Reads
were aligned to the mouse reference genome NCBI37
using the MAQ aligner (3,43). For this study, we
analyzed the alignment files for 13 inbred strains
(129S1SvlmJ, A/J, AKR/J, BALB/cJ, C3H/HeJ, CAST/
EiJ, CBA/J, DBA/2J, LP/J, NOD/LtJ, NZO/HILtJ,
PWK/PhJ, WSB/EiJ). We also downloaded the released
SV calls for these strains from ftp://ftp-mouse.sanger.ac.
uk/current_svs/. These SVs have been classified into
several categories based on specific paired-end mapping
patterns briefly described in Yalcin et al. (3). From this
SV release, we extracted 2 categories, including deletions
and copy-number gains (GAINS and TANDEMDUP), to
compare with the GENSENG-predicted calls.

Reference genomes
The human reference genome NCBI37 was obtained from
ftp://ftp.ncbi.nlm.nih.gov/1000genomes/ftp/technical/ref
erence/human_g1k_v37.fasta.gz. The mouse reference
genome NCBI37 was obtained from ftp://ftp-mouse.
sanger.ac.uk/ref/NCBIM37_um.fa.

Input data preparation for CNV detection

Our input data are a triplet of RD signal, GC content and
mappability score computed in sliding windows tiled
along the genome.

RD signal
Alignment (.bam) files are parsed out using SAMtools (44)
with a quality control (QC) filter to extract confidently
aligned reads (see Additional file 1, Supplementary
Methods). A (single-end or paired-end) sequence read
represents one or two ends of a DNA fragment
randomly sampled from the donor/sample genome.
Using reads passing the QC filter, the RD signal is
calculated as the number of sequenced DNA fragments
in sliding windows, ensuring each fragment is counted
only once (Supplementary Methods).

GC content
First, we calculate the proportion of G or C bases in each
window from a given reference genome. Then, we apply a
cubic spline smoothing and transform the GC proportion
based on the fitted curve so that the transformed GC pro-
portion and the logarithm of the RD are linearly correlated.
Finally, the transformed GC proportion is median centered
and is referred to as GC content hereafter.

Mappability score
As a function of both reference sequence and read length
(K-mer), mappability score is calculated a priori in four

steps: (i) for each base pair position in the genome, extract
a K-mer from the reference genome, which consists K
consecutive bases starting at this base pair position.
(ii) Align the K-mers back to the reference genome using
a desired aligner, e.g. BWA (37). Ideally, the aligner and
the alignment parameters are chosen to match what was
used for generating read alignment files from the sample
genomes. (iii) Identify mappable base positions where the
corresponding K-mers map back to themselves unambigu-
ously (i.e. there is a single best hit and it is the true pos-
ition of the K-mer). For example, the X0 field produced by
BWA (37) relates a K-mer from a specific place in the
genome to the number of best hits of that K-mer in the
entire genome. If a K-mer has a X0 value of 1, the corres-
ponding base can be identified as a mappable base. (iv)
Compute mappability score as the proportion of
mappable bases in a given window, which measures the
uniqueness of specific regions of the reference genome.

Window consideration
The window size and the degree of overlap between them
are adjusted for specific data. In this study, a window size
of 500 bp with 200-bp overlap was chosen for all data sets
for several reasons: first, the window size should be no less
than the mean DNA fragment size of the sequencing
library. Second, using a larger window size (e.g. 1 kb) or
non-overlapping windows would decrease precision in
defining CNV break points and miss CNVs that only par-
tially span one window. Third, a higher degree of overlap
introduces more inter-window correlation, which necessi-
tates appropriate adjustment in modeling the RD signals.

CNV detection method

This triplet of data for each individual genome is input
into an integrative HMM, which classifies each window to
a copy-number state based on maximum a posteriori prob-
ability, while simultaneously accounting for sources of
bias. The state changes mark the predicted break points
of CNVs. Below we present a short intuitive view of our
method and the elements needed in HMM characteriza-
tion; full details are given in the Supplementary Methods
(see Additional file 1).

Hidden states and transition probability
While microarray analysis suffers from over-saturation at
high copy numbers, HTS allows RD-based methods to
determine high copy numbers with improved accuracy
(27). The total number of hidden states is implemented
as an input parameter of GENSENG and can be freely
specified by users. Theoretically, the more copy-number
states specified, the more accurate the model becomes.
However, a number of practical issues must be considered.
For example, specifying more states means longer
computing time, and for some data sets, there may not
exist sufficient regions from which to estimate parameters.
For the HTS data sets used in this study, we assume seven
hidden states representing copy numbers of 0, 1, 2, 3, 4, 5
and 6 or more. For homozygous populations such as
inbred mice, we assume four hidden states representing
copy numbers of 0, 2, 4 and 6 or more. We collapse the
duplications with six or more copies into one state because
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they are difficult to distinguish because of both experimen-
tal (reduced signal-to-noise ratio) and computational
concerns (having few regions with very high RD signal).
State transitions proceed from one window to the next

according to a first-order time-homogeneous Markov
process. The transition probability describes the probabil-
ity of having a copy-number state change between two
adjacent windows. Intuitively, the copy-number state is
unlikely to change for nearby windows but is more
likely to change for windows that are far apart.

Emission probability
The hidden copy-number states emit probabilistic outputs
at each window, i.e. the observed RD signal representing
integer-valued count data. In the absence of sources of
bias, sequencing coverage is uniform across the genome
such that the emission probability of RD could be
modeled by a Poisson distribution with equal mean and
variance. In the presence of sources of bias, sequencing
coverage is not uniform, and the Poisson-distribution as-
sumption fails. To account for biases, the emission prob-
ability of RD is modeled as a mixture of uniform
distribution and NB, expressed as the following:

c=Rm+ð1� cÞ
�ðot+1=�jÞ

ot!�ð1=�jÞ

1

1+�j�tj

� �1=�j �j�tj

1+�j�tj

� �ot

where c is the mixing probability, ot is the RD signal for
window t, �tj is the mean RD for window t given state j, �j
is the over-dispersion parameter given state j. The uniform
distribution has a density function 1/Rm to model any
random fluctuation of RD, where Rm is treated as a
known constant using the largest RD among all
windows of the chromosome. When non-overlapping
windows are used, the mean RD for each window, �tj, is
modeled by an NB regression model, where the predictors
include copy-number state, GC content and mappability
score. When overlapping windows are used, the observed
RD is drawn from an autoregressive process; thus, a
residual term is included as an additional predictor in
the NB regression model assuming first-order
autoregression. The additional noise in the data that
cannot be explained by variability in GC content and
mappability is accommodated by �j, the over-dispersion
parameter of the NB distribution (allowing variance to be
larger than mean) and the uniform distribution in the
mixture model.

Tuning parameters
Given the HMM topology, the challenge lies in optimizing
model parameters given the observed data, also known as
HMM training. There are many parameters to be
optimized. To reduce computational difficulty, we choose
to specify a subset of HMM parameters based on previous
knowledge and user preference, including the initial state
probability, state transition probability and the mixing
probability in emission probability. These tuning param-
eters can be influential and should be chosen carefully.
The remaining emission parameters, including the coeffi-
cients and over-dispersion parameters in the NB regression
model, are estimated for each data set.

Parameter estimation
The optimization problem is solved by the Baum–Welch
algorithm (45), which maximizes the data likelihood for an
individual chromosome in iterative steps, including initial-
ization, expectation and maximization. In the initializa-
tion step, we rely on intuitive guesses as well as
empirical values. The initial emission parameters were
estimated from the 1000GP and the Mouse Genomes
Project data sets where known CNVs are available.
These initial emission parameters are saved for the
human and mouse genomes, respectively, and are used
for any new sample without previous knowledge of its
CNVs. In the maximization step, we obtain
maximum-likelihood estimates of emission parameters.
We apply a weighted NB regression model, where the
weights are posterior probabilities for each window be-
longing to a particular copy-number state, given the
observed data of an entire chromosome. These weights
represent current knowledge of the probabilistic classifica-
tion of a window to copy-number state and are updated in
the expectation step. While included as a predictor in the
regression model, the copy number is the hidden variable
to be inferred from the observed data. Intuitively, using
posterior probability as regression weights, we are able to
partition the observed RD across all hidden states, pro-
portional to the likelihood. The weighted NB regression
model is fitted by alternately estimating regression coeffi-
cients using iteratively reweighted least squares and
estimating the over-dispersion parameter using a
Newton–Raphson method. In the expectation step, we
update the forward, backward and posterior probability,
given the current estimates from the maximization step.
The expectation and maximization steps iterate until the
convergence criterion (<10�6 change in the log-likelihood)
is reached.

CNV calling
Using the parameters at convergence, first we obtain the
final estimates of the posterior probability for each
window belonging to a particular state, given the
observed data from the entire chromosome. Second, we
assign the final estimate of copy number for each window
using the state with the largest posterior probability. The
state changes mark the predicted breakpoints of CNVs.
The confidence score of a CNV region is computed as the
sum of the posterior probabilities of all windows enclosed
within the break points. Next, a two-step merging algo-
rithm is carried out to refine the boundaries of the CNVs.

Prioritization of CNV calls
A CNV QC step can be applied to remove CNVs pre-
dicted with the lowest confidence. We recommend
removing predicted CNVs shorter than 800 bp (i.e.
removing those that appear in only one window as
shown in Supplementary Table S2), or predicted CNVs
with an average mappability <0.3 (i.e. removing
those that cannot be confidently predicted as shown in
Figure 1b). An additional prioritization approach was im-
plemented via the RD-accessibility (RDA) statistic, which
reflects the signal-to-noise ratio of a predicted CNV region
after accounting for known confounders in RD. The term
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of RDA was first coined by Abyzov et al. (26), but for a
different purpose. The RDA statistic is computed in three
steps: (i) after CNV calling, identify all compatible
copy-number–neutral windows the GC content and
mappability scores of which are the same as those from
the region of interest; (ii) calculate the average window
counts from (i) as the expected RD for the region of
interest; and (iii) obtain the RDA by dividing the
observed RD by the expected RD for the region of
interest. Using a copy number of two as normalization
for copy-number–neutral autosomal regions, the theoret-
ical signal-to-noise ratios are 0, 0.5, 1.5 and 2 for copy
numbers of 0, 1, 3 and 4, respectively. Therefore, a
region is considered to be RD accessible if its RDA
value is <0.5 for homozygous deletions, <0.75 for hetero-
zygous deletions and >1.25 for duplications. In general,
we recommend removing CNVs predicted from regions
that are not RD accessible (e.g. if its RDA values range
between 0.75 and 1.25). In addition, we recommend
ranking the predicted regions by their RDAs, where a
higher signal-to-noise ratio reflects higher confidence
that the predicted CNVs are correct; this is analogous to
ranking by fold change in gene expression analysis.

Performance assessment

While the high-confidence data set compiled by Mills et al.
(1) indicates where the true positive CNVs are for

HapMap individuals, the true negatives are unknown.
Therefore, we used two approaches to assess our
method’s performance. First, we conducted a simulation
to estimate the sensitivity and specificity to detect CNVs.
Then, we analyzed the high-coverage 1000GP trio data,
where we estimated the sensitivity using high-confidence
CNVs and used the total number of base pairs or calls as a
surrogate measure for specificity. For comparison, we
applied CNVnator (26) in parallel, using its recommended
parameter setup and QC filter. The methodology differ-
ences between GENSENG and CNVnator are detailed in
Supplementary Table S5. The main differences are in bias
correction and segmentation techniques.

Simulation
We simulated two data sets for performance assessment.
The first simulation directly generated RD data (28).
Using chromosome 1 from NA12878 as a template, we
implanted 76 high-confidence CNVs (25 duplications
and 51 deletions) (1) by assigning a copy number of four
to any window that overlapped the duplications and a
copy number of zero to any window that overlapped the
deletions. All other windows were assigned to have a copy
number of two. The covariate matrix (the assigned copy
number, mappability score and GC content of each sliding
window) and coefficient vector were passed to the ‘garsim’
function from R/gsarima to simulate the RD for each
window. The ‘garsim’ model we applied was the NB

Figure 1. Relationship between read-depth and mappability in high-confidence CNVs (1). (a) The boxplot of read-depth from windows mapped to
the 610 high-confidence deletions (red) and 261 high-confidence duplications (blue), suggesting a similar read-depth distribution between deletions
and duplications and no power in detecting CNVs. (b) The boxplot of read-depth stratified by mappability classes, color-coded such that darker
shades reflect higher mappability. The labels of the x-axis indicate the CNV class (DEL: deletions; DUP: duplications) and mappability class. For
example, label (DEL: 0.2–0.3) indicates windows from the high-confidence deletions and with mappability score ranging from 0.2 to 0.3. Within each
mappability class, duplications show higher mean read-depth than deletions, suggesting that correction for mappability improves the ability to detect
CNVs. Furthermore, when mappability falls below 0.3, read-depth distribution becomes increasingly similar between deletions and duplications,
suggesting that the ability to detect CNVs in those regions is limited. For example, for windows with mappability ranging from 0.2 to 0.3, �50% of
windows in the duplication regions had read-depths equal to or lower than the average read-depth from compatible copy-normal regions; �20% of
windows in the deletion regions had read-depths equal to or higher than the average read-depth from compatible copy-normal regions.
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distribution with the log link function, where the
autoregressive parameter was set to 0.6, the zero correc-
tion parameter was set to ‘zq1’ and the inverse of the over-
dispersion parameter was set to 0.01.
The second simulation mimicked a sequencing experi-

ment to generate paired-end reads from a CNV containing
a hypothetical chromosome. To simulate reads, we used
chromosome 1 of the reference human genome as a
template and modified the template sequence based on
the 76 high-confidence CNVs (51 deletions and 25 dupli-
cations) (1). For any deletion, we removed the correspond-
ing sequence of the deleted DNA, and for any duplication,
we inserted an extra copy of the duplicated sequence. As a
result, the implanted deletions were copy number 0 dele-
tions, and the implanted duplications were copy number 4
duplications. Among the 76 high-confidence CNVs, eight
deletions and four duplications overlap with other dele-
tions or duplications. Thus, 64 independent CNVs were
implanted (43 deletions and 21 duplications) into the
chromosome 1. Second, after the CNV-containing hypo-
thetical chromosome was created, we applied the
sequencing simulator, wgsim, as implemented in
SAMTools (44) to generate 36-bp paired-end short
reads. For wgsim simulation, the mean value of the
outer distance between the two ends was set to 200, the
standard deviation was set to 20 and the sequencing error
model was the empirical error model of the Illumina
sequencing platform. A total of 150 million paired-end
reads were generated, which gave an average sequencing
coverage of 40�. Third, we used BWA (37) to map the
reads to the unmodified reference human genome. The
resulting alignment file was used as input to apply
GENSENG and CNVnator (26). Among CNVs predicted
by either approach, a true discovery was defined when a
predicted CNV overlapped with at least 50% of a
simulated CNV and had the same copy number.

1000GP data
We analyzed the high-coverage sequencing data for the
CEU trio from the 1000GP. To facilitate the comparison
between the predicted CNVs and the high-confidence
CNVs, which only provide deletion and amplification
calls rather than the particular copy number, we defined
deletions as any GENSENG calls where the inferred copy
numbers were 0 or 1, and duplications as any calls where
the inferred copy numbers were >2. Sensitivity was
calculated by dividing the number of total base pairs of
the overlapping events (>1-bp overlap, or >50% recipro-
cal overlap with the high-confidence CNVs) by the total
number of high-confidence CNVs.

Performance on low-coverage data
The native coverage of both our simulated data and the
1000GP high-coverage data is �40�. To identify the lower
bound that GENSENG can handle, we applied
GENSENG to data with varying sequencing coverage
and compared the performance with that based on the
native coverage using the same evaluation metrics. First,
we repeated the simulation process as described earlier,
with the targeted coverage been set as 5�, 10�, 20�,
30� and 40�. To test the consistency of our simulation,

we also simulated data at 40� coverage for 10 times and
observed replicable results (data not shown). Second,
using the DownsampleSam.jar tool from Picard (http://
picard.sourceforge.net), we down-sampled the high-cover-
age 1000GP data from NA12878 and achieved a series of
sequencing coverage of 5�, 10�, 20�, 30� and 40�.

RESULTS

Evaluation of experimental biases in HTS

Under idealized scenarios, HTS RD is expected to follow
a Poisson distribution with variance equal to the mean.
However, we found that the observed variance is much
greater than the mean (Supplementary Figures S1a and
S2a), indicating substantial deviation from the Poisson
distribution. We found that some of the non-uniformity
in RD is caused by genome-wide variability in mappability
and GC content. Supplementary Figures S1b and S2b
show a positive correlation between mappability and
RD, where low mappability scores indicate a higher pro-
portion of repetitive sequences, resulting in lower RD;
high mappability scores indicate a higher proportion of
unique sequences, resulting in higher RD. Supplementary
Figures S1c and S2c show a non-linear relationship
between GC content and RD, where sequences with
extreme GC content (low or high) tend to have lower
RD. In addition to the general trends observed across
various data sets, we found that the curves of RD versus
GC content varied from sample to sample. For example,
the peak of the mouse sample slightly shifted to the right
(Supplementary Figure S2c). The fractions of mappable
bases in the genomes were found to be 80–90% and
increased moderately as the read-length increased (Supple-
mentary Table S1). Lastly, we found that the
non-uniformity in RD could not be explained solely by
GC content or mappability. We examined the RD distri-
bution from compatible windows that had the same GC
content, had the same mappability scores and were mostly
likely copy-number normal (e.g. did not overlap any
high-confidence CNVs or other candidate CNVs). Then
we compared the observed distribution from these com-
patible windows with the theoretical expectations. If GC
content and mappability were the only sources of biases,
the observed distribution should have closely followed a
Poisson distribution. However, Supplementary Figure S3
suggests that the Poisson distribution still fails because it
restricts variance to equal the mean; in contrast, the NB
distribution fits the data well because its over-dispersion
parameter accommodates additional sources of noise in
the data.

To investigate how experimental biases impact
copy-number inference, we examined the relationship
between mappability and RD in high-confidence CNVs
(610 deletions and 261 duplications) (1). Without account-
ing for mappability, duplicated and deleted regions could
not be distinguished because the RD distributions were
very similar (Figure 1a). However, after stratification by
mappability scores, the mean RDs became significantly
different between duplicated and deleted regions within
a mappability class, such that these CNVs could be
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recovered (Figure 1b). This observation suggests that it is
important to jointly estimate copy number and the effect
of confounding factors. Copy-number inference made
without correcting for bias may lead to systemic errors.
Furthermore, as shown in Figure 1b, when mappability
scores are extremely low (e.g. <0.3), too few reads can be
confidently aligned to those regions, and consequently
CNVs cannot be confidently predicted. This observation
suggests that a CNV QC filter based on mappability score
could be applied to reduce false-positive predictions.

The GENSENG method

To mitigate the effects of experimental bias and improve
RD-based CNV detection, we developed a novel statistical
method called GENSENG. The unique feature of
GENSENG is to integrate the correction of multiple
sources of bias and the inference of the copy-number
states in a single analysis. Figure 2 gives an algorithmic
overview of GENSENG. The tasks of input preparation
were implemented in R, perl and python programming
languages. The computational core of GENSENG was
implemented in C++. Recommendation for the tuning
parameters and initial emission parameters are provided
as part of the software release. Given the input,
GENSENG can report CNVs from an �40� human
chromosome within a couple of hours.

The methodological details of GENSENG are
described in the ‘Methods’ section and in the
Supplementary Methods (see Additional file 1). Briefly,
the key components of GENSENG are summarized
below. First, we used an HMM with seven states (0–6)
for modeling of copy number. In contrast, existing
methods find only two general types of copy numbers,
i.e. ‘loss/deletion’ and ‘gain/duplication’. The support for
the seven-state modeling strategy is evident from examples
shown in Figure 3, where GENSENG correctly recovered
high-confidence CNVs and identified their status as homo-
zygous deletion, heterozygous deletion and multi-allelic
duplications. Some discrepancies in the boundaries
between the predicted CNVs and the high-confidence
CNVs were observed, reflecting technological differences
between HTS and microarrays.

Second, we used an NB regression model for RD and
included known confounders as covariates, such that their
effects on RD were removed. The emission probability of
RD was made even more robust against RD outliers using
a mixture model of NB and uniform distributions, such
that any additional biases in the data could be modeled by
the NB over-dispersion parameter and the uniform distri-
bution. These modeling strategies permit simultaneous
bias correction and CNV detection. Some of the benefits
of such simultaneous analysis is illustrated in Figure 3e,
which demonstrates good sensitivity for detecting duplica-
tion from a noisy region with a medium mappability score
(0.58) after accounting for mappability and additional
noises.

Multiple techniques were introduced in GENSENG,
including correcting for GC content and mappability,
modeling autoregression, fitting a mixture of NB and
uniform distributions and applying QC to prioritize

CNV calls (see ‘Methods’ section). To study the effects
of these techniques on CNV detection and identify the
best-fitting model, we examined the sensitivity and the
number of CNV calls made by different partial versions
of our method (Supplementary Table S2). We found that
correcting for GC content alone was not sufficient; and
further correcting for mappability resulted in the most
substantial improvement, with gains in both sensitivity
and specificity. QC including both size and RDA filters
substantially improved specificity, with minimal loss in
sensitivity. The best GENSENG model was selected
based on these results and included all aforementioned
techniques.

Performance assessment and comparison

To benchmark the performance of GENSENG, we
carried out two sets of simulations. In the first simulation,
we applied GENSENG to simulated RD data
(sequence-fragment counts across tiled windows) for a
single chromosome. For 76 simulated CNVs, we
observed 88% sensitivity and 100% specificity. The re-
maining 12% simulated CNVs (three duplications and
six deletions) did not pass CNV QC filters (RDA filter
and mappability <0.3).
In the second simulation, we applied both GENSENG

and CNVnator to the simulated sequence reads (instead of
window read counts) for a single chromosome, and we
compared the sensitivity and specificity between
GENSENG and CNVnator (Table 1). Before any CNV
QC filter was applied, GENSENG produced 1478 fewer
false CNV calls (69% fewer false deletions and 56% fewer
false duplications), demonstrating a better specificity. A
total of 12 simulated CNVs (10 deletions and two dupli-
cations) were not detected by GENSENG, and they were
missed because they were smaller than the minimum size
of CNVs detectable by GENSENG (i.e. <800 bp), or had
mappability <0.3 (i.e. unreliable regions). After the rec-
ommended CNV QC filters were applied (RDA filter for
GENSENG and the default q0 filter for CNVnator),
GENSENG outperforms CNVnator in both sensitivity
and specificity. Specifically, for 43 simulated deletions,
GENSENG had 77% sensitivity, 7% higher than
CNVnator. For 21 simulated duplications, GENSENG
had 90% sensitivity, 33% higher than CNVnator. The
specificity for duplications was 100% for both
GENSENG and CNVnator. Both methods made false
deletion discoveries, but GENSENG had better specificity
(1328 fewer false deletions, 12% lower false discovery rate
(FDR) than CNVnator). Increasing the stringency of the
CNV QC filter by removing CNVs with mappability <0.3
further improved GENSENG’S specificity (9% FDR for
deletions, or 43% lower FDR than CNVnator based on
the same stringent CNV QC filter), while maintaining its
good sensitivity (67% for both deletions and duplications,
or 15% higher sensitivity than CNVnator). This result and
the result from Figure 1b suggest the usefulness of the
mapability filter. In Supplementary Figure S4, we show
that ranking the RDA statistic (i.e. signal-to-noise ratio
after accounting for confounders) computed for each
CNV is an effective approach to correctly prioritize the
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prediction made by GENSENG or CNVnator. Most re-
maining false-positive deletions in the CNVnator data set
were likely influenced by multiple sources of bias, and the
52% FDR is a reasonable estimate for CNVnator based
on the experimental validation conducted by the 1000GP
(reported to range from 14.3 to 74.1%) (1,46). In
summary, the simulation studies demonstrate that
GENSENG outperforms CNVnator, suggesting that
integrating bias correction from multiple sources and
copy-number inference is a desired strategy for RD-
based CNV detection.
To further evaluate GENSENG’s performance, we

analyzed the 1000GP data. First, we applied both
GENSENG and CNVnator to the high-coverage HTS
data for NA12878 and focused on calling autosomal
CNVs (Table 2). Sensitivity was estimated by comparing
the predicted CNVs to the high-confidence CNVs from
Mills et al. (1) (610 deletions and 261 duplications).
GENSENG gave an overall sensitivity of 56% (73% for
deletions and 17% for duplications) using the 50% recip-
rocal overlap criterion. In contrast, CNVnator gave a
lower overall sensitivity of 50% (64% for deletions and
16% for duplications) using the same criterion.
Approximately 87% of the high-confidence CNVs were
obtained from high-density microarrays based on
changes in probe intensities (2,38,39). For these CNV
regions, the evidence for changes in RD may or may not
be observed from HTS data (26) (also see ‘Discussion’
section), which could be predicted by the RDA statistic.
Similarly to Abyzov et al. (26), we found that �76% (462
of 610) high-confidence deletions were RD accessible (i.e.
RDA< 0.75) from the HTS data, whereas only �21%
high-confidence duplications (53 of 261) were RD

accessible (i.e. RDA> 1.25). Given these observations,
we then recomputed sensitivity by comparing the pre-
dicted CNVs with the high-confidence CNVs that are
RD accessible (462 deletions and 53 duplications), which
yielded an overall sensitivity of 90% for GENSENG and
an overall sensitivity for 79% for CNVnator [the 79%
sensitivity is similar to that reported by the authors of
CNVnator (26)]. The high-confidence CNV set (1) does
not provide information on the true negatives needed to
assess specificity; thus, we focused on calibrating sensitiv-
ity as described above and used the volume (i.e. the total
number and total base pairs) of the predicted CNVs as a
surrogate measure of specificity. We found that the pre-
dicted volumes are comparable between the two methods.

Then, we applied GENSENG and CNVnator to the
1000GP HTS data from the CEU trio (NA12878,
NA12891, NA12892), and we evaluated the sensitivity
for detecting deletions as compared with the deletions
from Handsaker et al. (25), which represent the
combined CNV calls from 1000GP (1). We found that
an average of 49% deletion calls from Handsaker et al.
(25) intersected with GENSENG calls (Supplementary
Table S3). In contrast, we found an average of�37%
intersected with CNVnator calls. The deletions reported
in Handsaker et al. (25) were derived from the results from
the 19 algorithms used by the 1000GP (1) and contained
many deletions that are smaller than the minimum size of
CNVs (<800 bp) detectable by GENSENG. For
NA12878, 89% of deletions (1026 of 1148) from
Handsaker et al. (25) missed by GENSENG were due to
the size. Similarly, for NA12891, 51% of deletions (547 of
1072) were missed owing to the size, and for NA12892,
51% of deletions (523 of 1030) were missed owing to the

Figure 2. Overview of GENSENG inference framework. The required input contains two parts: the triplet data (read-depth, GC content and
mappability score) and the initial parameter values. The input is passed to the GENSENG engine for parameter training based on the Baum–
Welsh algorithm. To update the emission probability and the parameters for the negative binomial regression model, the weighted generalized linear
model (GLM) fitting algorithm is applied iteratively, which uses the updated posterior probability of the copy-number state as the regression weights
in each iteration. At the convergence of parameter training, GENSENG identifies the state with the largest posterior probability and assigns the
associated copy number to the corresponding window. Finally, GENSENG outputs the coordinates of CNV segments and the confidence scores.
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Figure 3. Example high-confidence CNVs predicted by GENSENG from the NA12878 HTS data. Each subfigure (a–e) has four panels from top to
bottom, and the x-axis of each subfigure indicates genomic position in base pairs. In the first panel, the black dots on the y-axis indicate read-depth
signal; red dashed lines are boundaries from GENSENG prediction; green solid lines are boundaries reported in the high-confidence CNV set (1);
and grey lines are the median read-depth of the chromosome. The GC content and mappability of the region are plotted in the second and the third
panels respectively. The fourth panel shows the locations of segmental duplication (purple, from the UCSC hg19 segmental duplication track) and
repetitive DNAs (orange, from the UCSC hg19 repeatmask track). Shown here are a homozygous deletion (a), a heterozygous deletion (b), a simple
and large duplication (c) and a complex duplication (d) that was predicted to be copy number 6+ and was right flanked by a large region with a
median mappability of 0.2. Finally, (e) shows a duplication predicted to be copy number 4 from a noisy region with a median mappability of 0.58,
illustrating good sensitivity for detecting duplications using simultaneous bias correction and copy-number inference.
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size. In summary, the analyses of the 1000GP data confirm
that GENSENG have better detection sensitivity than
CNVnator and suggest similar or better specificity.

Finally, we demonstrate that, as expected, higher
sequencing coverage improves CNV detection power,
and that the lower bound of sequencing coverage that
yields reasonably good performance of GENSENG is
10� (Supplementary Tables S6 and S7). GENSENG
could potentially work on data sequenced to as low as
5� but with much reduced sensitivity (decreased by 33%
for deletions and decreased by 10% for duplications,
Supplementary Tables S6 and S7).

Application to other HTS data

As a proof of concept, we applied GENSENG to
whole-genome HTS data from human and mouse
samples and evaluated the validity of its prediction using
an allele-sharing principle as well as additional genetic
information available in our data. By allele sharing, we
mean the following. From a sequencing study, genetic mu-
tations can be readily detected with a broad spectrum of
allele frequency, ranging from singleton variants that are
unique to individual genomes to variants observed in
multiple genomes. A variant shared among multiple
genomes could arise from the inheritance of the same an-
cestral allele, i.e. identity by descent (IBD), such that
shared variants could receive higher detection confidence.
The idea of searching for shared variation to increase the
power of CNV detection was previously explored by
Handsaker et al. (25) in the 1000GP samples from
low-coverage population-scale sequencing. In our study,
we first predicted CNVs from individual genomes and
then identified shared CNVs that could arise from IBD
as an evaluation of GENSENG’s performance.

The three human individuals affected by bipolar
disorder that we examined were cousins, and therefore,
they were expected to share �1.5% of their genomes
(1.5% IBD). If a genomic region is IBD, we expect to
see a similar RD pattern for that region in each individual
genome and in the pooled reads from all individuals. If the
IBD region contains a true CNV, this CNV could be
detected based on higher or lower than expected RD
using either individual alignment files or the pooled align-
ment file. Known confounders such as genomic GC
content and mappability could also create similarity in
RD pattern across different genomes and consequently
predict CNVs that are shared among them. However,
because GENSENG accounts for these confounding
factors while inferring copy-number states, shared CNVs
that arise from such artifacts have been minimized. In
summary, GENSENG identified 831 candidate CNVs
that are shared among the three cousins. Shared CNVs,
especially those unique to this pedigree, could indicate an
enrichment of high-risk disease alleles, and these CNVs are
reported elsewhere. To illustrate the utility of GENSENG,
Supplementary Figure S5a shows an example of shared
deletion, also included in the 1000GP SV release (1,25).
This suggests that alleles segregated in the general popula-
tion at an appreciable frequency (e.g. >1% in 1000GP
samples) would generally be shared among multiple

individuals sequenced (25). In contrast, Supplementary
Figure S5b shows an example of a singleton duplication
that warrants further experimental validation.
Similarly, we examined shared CNVs in the mouse

genome. A genome-wide haplotype and IBD map has
been established in 100 classical mouse strains using
high-density single-nucleotide polymorphism(SNP) geno-
types (47). Strains belonging to the same haplotype in a
genomic region had >99% sequence identity and were
considered IBD over that interval (47). Supplementary
Figure S6 shows two examples of shared CNVs that
stem from IBD. In addition, for the mouse strains, we
compared the deletions and duplications predicted by
GENSENG with those predicted by the Mouse Genomes
Project (3,30). We found that the overall concordance rates
ranged from 3 to 46% (Supplementary Table S4). A
similar range of concordance was observed by the
1000GP by comparing CNV call sets generated by 19 al-
gorithms. Furthermore, compared with the algorithms
used by the Mouse Genomes Project (3,30), we found
that GENSENG had higher sensitivity for detecting dupli-
cations and comparable sensitivity for deletions
(Supplementary Table S4). We note that the improved sen-
sitivity could be credited to GENSENG’s bias-correction
ability, which was absent in the approaches used by the
Mouse Genomes Project (3,30); this improved sensitiv-
ity warrants further experimental validation of the
GENSENG-predicted duplications for the mouse strains.

DISCUSSION

We have developed a novel method, GENSENG, for de-
tecting copy-number gain and loss from HTS data. One
unique feature and a key advantage of our method is the
ability to simultaneously correct for multiple sources of
bias and infer CNVs from RD. The concept of simultan-
eous bias correction and CNV inference can serve as a
basis for combining RD with read-pair or split-read in a
single analysis.
The GENSENG method can be applied to whole-

genome sequencing data using either single-end or paired-
end reads or a mixture of the two. It does not require
matched control genomes, and it does not rely on
evidence from multiple individuals. The smallest CNVs
that can be detected by GENSENG are 800bp, and
discrete copy numbers (0, 1, 2, 3, 4, 5 and 6+) are
reported. Based on extensive benchmarking, GENSENG
provides a better sensitivity–specificity profile than the pre-
viously best-performing RD-based algorithm, CNVnator
(1,26), when applied to high-coverage HTS data. We
have also demonstrated that our method works on both
human and mouse samples with lower coverage (15�).
In the current implementation of GENSENG, the top

priority has been efficient and accurate detection of simple
CNVs. We used reads with unambiguous mapping to
compute RD signal, which reduced the method’s sensitiv-
ity to detect complex CNVs within repetitive regions. A
number of specialized algorithms have been developed to
reconstruct CNVs in repeat-rich regions by considering all
alignment positions (31,48–51). We used a window size of
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500-bp with 200-bp overlap to compute RD, which limits
the break point resolution. Currently, we are developing a
refinement pipeline to locally assemble the reads at the
predicted break points to define break points at base
pair resolution. This feature will be available in the
future release of our software.
Our likelihood-based method can be readily extended to

incorporate all the sequence reads and the mapping uncer-
tainty. In addition, we can incorporate other types of in-
formation, such as haplotype, read-pair, split-reads and
allele-specific RD, that can infer allele-specific copy
number. Allele-specific RD can be informative for CNV
calling. For example, in one window, if we observe �50
reads from paternal allele and 100 reads from maternal
allele, a reasonable guess is that the ratio of the number
of maternal allele versus paternal allele is 1:2, which will
favor copy number 3 (one paternal+two maternal), or
copy number 6 (two paternal+four maternal) etc. The
allele-specific RD can be incorporated as part of the
emission probability, e.g. using a beta-binomial distribu-
tion similar to the setup of the B-allele frequency following
the genoCN method (52).
Not all the CNVs can be detected by RD data. On

examining the high-confidence CNVs, we found that
�76% of high-confidence deletions and only �21% of
high-confidence duplications were RD accessible from
the 1000GP HTS data using 36-bp and 51-bp reads. The
percentage of RD-accessible regions may increase for
longer reads and when we incorporate reads that are
mapped to multiple locations in the genome. In contrast,
the high-confidence CNVs may be inaccurate. For
example, undetected CNVs in a reference individual can
lead to mistaken copy-number calls in the study samples
(26,28,53). Overall, we recommend RDA ranking as an
effective way for prioritizing the CNVs predicted by
GENSENG because it reflects the strength of the RD
signal after accounting for confounders.
Duplications are generally more challenging to detect

than deletions by RD-based methods for several reasons
(20,26,54). First, the RD distribution (Poisson or NB)
suggests that the higher the RD signal, the larger the
signal variance. As expected, RD-based methods suffer
reduced sensitivity in the detection of duplications
(higher variance) compared with deletions (lower
variance). Second, as mentioned in the proceeding para-
graph, the proportion of RD-accessible high-confidence
duplications is much less than that for deletions (21%
versus 76%), thus reducing the sensitivity (Table 2).
Lastly, as noted by Abyzov et al. (2011) (26), abnormally
high RD signal may not necessarily represent a true du-
plication but rather the effect of an ‘unknown reference’.
QC procedures that are aimed to reduce such false-posi-
tive duplications (e.g. removing windows that are RD
outlier or have any overlap with known genomic gaps)
would lead to reduced sensitivity for duplications overall.
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