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Simulating hyperbolic space on a
circuit board

Patrick M. Lenggenhager1,2,3,9, Alexander Stegmaier4,9, Lavi K. Upreti 4,
Tobias Hofmann 4, Tobias Helbig 4, Achim Vollhardt 2, Martin Greiter 4,
Ching Hua Lee 5, Stefan Imhof6, Hauke Brand 6, Tobias Kießling6,
Igor Boettcher7,8, Titus Neupert 2 , Ronny Thomale 4 &
Tomáš Bzdušek1,2

The Laplace operator encodes the behavior of physical systems at vastly dif-
ferent scales, describing heat flow, fluids, as well as electric, gravitational, and
quantum fields. A key input for the Laplace equation is the curvature of space.
Here we discuss and experimentally demonstrate that the spectral ordering of
Laplacian eigenstates for hyperbolic (negatively curved) and flat two-
dimensional spaces has a universally different structure. We use a lattice reg-
ularization of hyperbolic space in an electric-circuit network to measure the
eigenstates of a ‘hyperbolic drum’, and in a time-resolved experimentwe verify
signal propagation along the curved geodesics. Our experiments showcase
both a versatile platform to emulate hyperbolic lattices in tabletop experi-
ments, and a set ofmethods to verify the effective hyperbolicmetric in this and
other platforms. The presented techniques can be utilized to explore novel
aspects of both classical and quantum dynamics in negatively curved spaces,
and to realise the emerging models of topological hyperbolic matter.

Curved spaces, traditionally studied in high-energy physics and cos-
mology, have recently been elevated to paramount importance in
condensed matter physics for two reasons. First, the discovery of
holographic principles1,2 revealed a fundamental hidden structure
underlying certain interacting quantum many-body systems that
allows to compute their properties from a theory in hyperbolic space
of negative curvature. Remarkably, these insights have been applied
successfully to analyze strongly correlated electronic systems with
tools from holography and to gain insight into the nature of quantum
entanglement in condensed matter systems3–11. Second, major
advancements in the mathematical characterization of classical and
quantum states in negatively curved spaces12–15 sparked a resurgence
of interest of the condensedmatter andmetamaterials communities in

hyperbolic lattices16–18, ushering the research of hyperbolic topological
matter19–21. These rapid developments call for new experimental plat-
forms to implement tabletop simulations of hyperbolic toy-models.

However, systems that furnish negatively curved space22,23 are
hard to realize experimentally. The mathematical reason for this is
encompassed inHilbert’s theorem: even the lowest dimensionalmodel
of a hyperbolic space, the hyperbolic plane, cannot be embedded in
three-dimensional Euclidean (flat) laboratory space. We cannot build a
hyperbolic drum. This is in sharp contrast to the case of positive cur-
vature: a sphere can be embedded in three-dimensional space, and we
can study the standing waves (hereafter called eigenmodes) of a
spherical membrane, which directly relate to quantum numbers of
atomic orbitals. Despite such obstacles, hyperbolic space can be
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emulated experimentally. For instance, it has been suggested24 that a
non-trivial metric can be implemented in metamaterials via spatial
variations of the electromagnetic permittivity of continuous media.
However, it is very challenging to induce these variations in a con-
trolled manner, which limits the applicability of such approaches.

Electric circuits25–32 and similar systems, e.g., coplanar waveguide
resonators16, overcome these experimental limitations by relying on a
discretization of space. In electric circuit networks, the physical dis-
tances between the nodes are fundamentally decoupled from the
metric that enters the long-wavelength description of its degrees of
freedom, namely the voltages and currents that pass through the cir-
cuit nodes. The latter depend merely on the circuit elements that
connect the nodes. Compared to other experimental platforms, elec-
tric circuits significantly excel in their flexibility of design, ease of
fabrication, and high accessibility to measurements.

In this workwe present a strategy for verifying that electric circuits
can emulate the physics of negatively curved spaces and we demon-
strate that electric circuits can do so efficiently. For concreteness, we
consider the most fundamental differential operator on curved spaces,
the Laplace-Beltrami operator, which generalizes the notion of the
Laplace operator on flat space. The first key result of our work is the
experimental observation of negative curvature in the spectral ordering
of the eigenmodes of the Laplace-Beltrami operator in hyperbolic
space. To paraphrase the words of ref. 33, our measurements confirm
that a hyperbolic drum has a sound distinct from a Euclidean drum.
Second, since electric circuits allow for time-resolved measurements,
we can study not only static, but also dynamic properties. Our mea-
surements confirm that signals in the present realization travel along
hyperbolic geodesics, a smoking gun signature for the negative curva-
ture of space. Based on our results, we infer that electric circuit net-
works could be readily utilized to implement and to experimentally
verify the predicted features of the recently studied hyperbolic models
of refs. 13–20. We expect the presented methodology for extracting
fingerprints of negative curvature to be generalizable to other plat-
forms, in particular to superconducting waveguide resonators thatmay
allow for exciting future incorporation of quantum phenomena16.

Results
Spectra of Euclidean and hyperbolic drums
We start by comparing the eigenmodes of Euclidean and hyperbolic
drums in the continuum. The hyperbolic plane, characterized by a
constant negative Gaussian curvature K < 0, is naturally embedded in
(2 + 1)-dimensional Minkowski space as a hyperboloid sheet with fixed
timelike distance from the origin, see Fig. 1a. To solve for the eigen-
modes of the wave equation, it is convenient to set K = −4 and to
employ the stereographic projection Fig. 1a, which maps the

hyperbolic plane onto the Poincaré disk, i.e., the unit disk with length
element ds2 = ð1� x2 � y2Þ�2ðdx2 + dy2Þ.

The eigenmodes of the hyperbolic drum with x2 + y2 ≤ r20 < 1 cor-
respond to the spectrum17,34,35 of the Laplace-Beltrami operator:

ΔH = 1� x2 � y2
� �2

ΔE, ð1Þ

where ΔE = (∂2/∂x2 + ∂2/∂y2) is the usual Laplace operator in the Eucli-
dean plane. Adopting Dirichlet boundary conditions, which yield
vanishing amplitudeon thediskboundary, the spectrumof the drum is
given by solutions to:

�Δgu
n‘
g = λn‘g un‘

g with un‘
g ∣

x2 + y2 = r20
= 0, ð2Þ

where g∈ {E, H} indicates the geometry, and λn‘g is the frequency of the
mode with angular momentum ℓ and with n radial zeroes. Solutions to
Eq. (2) are superpositions of Bessel functions (associated Legendre
functions) in the Euclidean (hyperbolic) case, cf. Methods.

We plot in Fig. 1b the first few solutions to Eq. (2) on the Euclidean
vs. Poincaré disk for r0 = 0.94, which corresponds to our experimental
realization discussed below.We observe a significant reordering of the
eigenmodes characterizedby (n, ℓ): while in the Euclidean case thefirst
eigenmode with n = 1 is the fourth (not counting degenerate eigen-
modes separately), in the hyperbolic case, it is only the sixth mode.
This reordering becomes even more apparent when considering the
angularmomentumdispersion λn‘g vs. ℓ displayed in Fig. 2a. In both the
Euclidean and the hyperbolic case, several branches (corresponding to
different values of n, indicated by red numbers) are discernible. The
spectral reordering manifests as a reduced slope of the branches
(relative to their spacing) compared to their behavior for the Euclidean
drum. Consequently, eigenmodes with large ℓ and small n appear
much earlier in the spectrum in hyperbolic compared to Euclidean
space. The spectral reordering is stronger for larger radii r0. This is
intuitively understood from the fact that the circumference of a
hyperbolic drum grows superlinearly with its radius, such that oscil-
lations in the angular direction stretch over larger distances. This
makes them energetically favorable over oscillations in the radial
direction, resulting in the observed reordering.

Lattice regularization of the hyperbolic plane
To experimentally realize a hyperbolic drum in an electric circuit
network, we discretize the continuous space formed by the hyperbolic
plane. This is achievedby tessellating the hyperbolic planewith regular
polygons; a regular tessellation with q copies of p-sided polygons
meeting at each vertex is conventionally denoted by the Schläfli

Euclidean drum

Hyperbolic drum

a b

Fig. 1 | Continuum spectra. a The hyperboloid (orange) defined by t2 − x2 − y2 = +1
in (2 + 1)-dimensional (x, y, t) Minkowski space is mapped (black rays) by the ste-
reographic projection through the point (0, 0, −1) (black dot) to the unit disk (blue)
at t =0. The geodesics (red) are given by intersections of the hyperboloid with
planes passing through the origin (0, 0, 0) (green dot), and are mapped by the
projection to circular arcs perpendicular to the boundary of the Poincaré disk.

bComparison of the first few eigenmodes of the Euclidean and hyperbolic drum of
radius r0 = 0.94 according to increasing eigenvalues λn‘g . Their spatial profile un‘

g is
shown with yellow (green, blue) denoting maxima (zeros, minima). The number of
radial zeros inside the disk, n, and the angular momentum (number of angular
zeroes), ℓ, can easily be inferred from the plots. Modes with ℓ =0 are indicated with
a gray background.
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symbol {p, q}. The curvature of the continuous space constrains the
possible choices of p and q: for vanishing curvature (Euclidean plane)
they need to satisfy (p − 2)(q − 2) = 4, while negative curvature
(hyperbolic plane) requires (p − 2)(q − 2) > 4. A given regular hyper-
bolic tessellation uniquely fixes the distance between neighboring
sites (cf. Supplementary Note 3), in contrast to the Euclidean case
where the distance can be scaled arbitrarily.

Interpreting the vertices as sites of a lattice and the edges as
connections between nearest neighbors, we obtain a hyperbolic lat-
tice. The sites and nearest-neighbor connections form a graph whose
Laplacian matrix gives the lattice regularization of the continuum
Laplace-Beltrami operator17, which is fully determined by the topology
of the lattice. The metric of the underlying continuous space is mani-
fested in the connectivity of the lattice sites and therefore in the graph
without reference to the positions of the vertices. However, the posi-
tions of the graph nodes (i.e., lattice sites) are relevant for the inter-

pretation of the graph as a lattice when explaining the effective
physics.

Different tessellations of the hyperbolic plane are possible, and
they generally differ in their symmetries and in how densely their
vertices cover the disk. For our experiments, three different aspects of
themodeled lattice are important: (i) the lattice should provide a good
approximation of the continuum, (ii) a large fraction of the Poincaré
disk should be covered to obtain strong signatures of the negative
curvature, and (iii) ℓ =0modes shouldbeeasy to excite anddistinguish
from ℓ ≠0 modes. While aspects (i) and (ii) can both be satisfied by
having a sufficiently large number of vertices, in practice, there will be
a trade off between the two aspects: for a fixed number of vertices,
tessellations with larger area per vertex cover a larger fraction r0 of the
Poincaré disk, while for fixed coverage r0 a good approximation of the
continuum is naturally achieved by tessellations that feature small area
per vertex (i.e., which tile the hyperbolic plane densely)17. Finally, (iii)
depends on the symmetry properties of the lattice: a vertex at the
origin of the disk allows for easy excitation and identification of ℓ = 0
modes and a high order of rotation symmetry prevents ℓ ≠0modes to
have non-vanishing weight at the origin of the disk, which would
impede the identification of ℓ = 0 modes. We analyze and compare
several different tessellations with respect to these three aspects in the
Supplementary Note 3. These considerations favor the {3, 7} tessella-
tion, which exhibits a seven-fold rotation symmetry with respect to a
site at the center, and which covers a disk with radius r0 = 0.94 with
only 85 sites, see Fig. 3a.

In the long-wavelength-regime, eigenvectors of the Laplacian
matrix can be associated with eigenmodes of the Laplace-Beltrami
operator in the continuum. We match them by systematically deter-
mining the absolute value of the angular momentum ℓ of the eigen-
vectors by a Fourier transform of their components on the outermost
sites. Due to the discreteness of the lattice, this analysis is only reliable
for modes with sufficiently small ℓ and n, i.e., in the long-wavelength
limit. Note that while the Laplacian matrix is defined purely on the
graph, to define angular momentumwe need to interpret the graph as
a regular lattice, i.e., identify the vertices with lattice sites. But, as
mentioned above, the (relative) positions of those sites are uniquely
defined by the graph via the values of p and q. We extract the angular
momentum dispersion for the chosen tessellation, and in Fig. 2b
compare it to the corresponding Euclidean {3, 6} tessellation with the
same number of sites. As in the continuum, a strong spectral reor-
dering is observed. This reordering is a universal feature of the spatial
curvature and does, therefore, not rely on the details of the tessella-
tion, as long as it adequately approximates the continuum.
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Fig. 2 | Angular momentum dispersion. a Rescaled frequency λn‘g vs. angular
momentum ℓ for eigenmodes un‘

g of the continuum Laplace-Beltrami operator, i.e.,
solutions to Eq. (2), for the Euclidean (left) and hyperbolic (right) geometry. For the
first six branches, the value of n is indicated by red numbers. b Same data for a
Euclidean {3, 6} (left) and hyperbolic {3, 7} (right) tessellation, eachwith 85 sites. For
the hyperbolic lattice, we additionally show the experimental results (orange
squares) obtained from the electric circuit.
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Fig. 3 | Experimental data. a Schematic of hyperbolic tessellation (left half) with
the unit circle in blue and the circle with radius r0 = 0.94 in red, and photograph of
the electric circuit (right half). b Measurement of impedance to ground Za of the
circuit at node a as a function of input frequency f for different nodes (see inset
legend and panel a for an identification of the nodes). Each impedance peak indi-
cates an eigenmode at that corresponding frequency, which can be excited at the

corresponding input node. The highest six frequencies are indicated by vertical
gray lines and the corresponding eigenmodes are shown in c. cMeasurement of the
voltage profile of the first six eigenmodes (only onemode is shown for each pair of
degenerate modes). The saturation encodes the magnitude as a fraction of the
voltage (white denotes 0 and full saturation 1) at the input node (black dots), and
the color encodes the phase relative to the reference voltage (see legend).
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Implementation in an electric circuit
In our experiments, the tessellation is realized as an electric circuit
network (right half of Fig. 3a) with a node at each site. Nodes are
coupled capacitively among each other and inductively to ground. The
boundary conditions are implemented by additional capacitive cou-
pling of the nodes in the outermost shell to ground. Effectively, this
corresponds to adding one more shell with all nodes shorted to
ground, i.e., it represents the lattice equivalent of the Dirichlet
boundary conditions. A generic electric circuit network is described by
Kirchoff’s law:

Ia = ∑
b
JabðωÞVb, ð3Þ

where Ia and Va are the input current and voltage amplitude (for
angular frequency ω) at node a, respectively. The matrix J(ω) is
called29 the grounded circuit Laplacian, and generally depends onω.
In the continuum limit, the input current I at some position is
related to the divergence of the current density j via I =∇ ⋅ j, with
j = σE = σ∇V, σ the conductivity, E the electric field due to an applied
voltage V, and ∇ the del operator (for brevity, we dropped the
subscript g indicating the geometry). Hence, I =∇ � σ∇Vð Þ= σΔV ,
establishing the interpretation of J as the restriction of the con-
tinuum Laplace operator to the grounded circuit. The impedance to
ground of node a, Za(ω) = Va/Ia, is fully determined by J and its
resonances correspond to eigenmodes of Jwith eigenvalues λ ∝ 1/ω2

(see Methods). Note that this relationship could be changed to
λ ∝ω2 by exchanging the roles of capacitors and inductors in
implementing the connections between the nodes resp. to the
ground.

Three types of experiments are performed. First, an impedance
analyzer is used to measure Za as a function of frequency f =ω/2π for
each node a. The data for three input nodes are shown in Fig. 3b.
Second, these eigenmodes are resonantly excited and their voltage
profile is measured using lock-in amplifiers. For the modes at the
highest six frequencies, both magnitude (relative to the voltage at the
input node) and phase (relative to a reference signal) are shown in

Fig. 3c. In the final experiment, the circuit is stimulated by the broad-
band voltage pulse shown in Fig. 4b fed into the circuit as a current
pulse at a node close to the boundary. Subsequently, the voltage is
measured as a function of time at each node. We observe the pulse to
propagate in the Poincaré disk (the full time dependence is shown in
Supplementary Movie 1 and discussed in Supplementary Note 6). A
snapshot of the instantaneous phase profile (obtained via a Hilbert
transform) is shown in Fig. 4d, which visualizes the propagation of
the pulse.

Evaluation of the experimental data
We proceed with discussing the results of these three measurements.
Comparing the impedanceof input node 1 (blue curve) to nodes 14 and
18, see Fig. 3b, we clearly observe the spectral reordering discussed in
the previous section: there are four additional peaks for input node 14
and 18 located between the two highest-frequency peaks for input
node 1. This implies that the second ℓ =0mode (i.e., thefirstmodewith
n > 0) is the sixth eigenmode. The explicit values of ℓ and n for specific
modes can be deduced from the voltage profiles of the eigenmodes
obtained in the second experiment, see Fig. 3c.

We further plot (orange squares in Fig. 2b) the extracted disper-
sion of the Laplacian frequencies λn‘H with the angular momentum ∣‘∣,
obtained by a circular Fourier transform of the measured signal. We
observe an almost perfect match with the theoretically predicted
values (blue dots in Fig. 2b) for the first few measured modes. How-
ever, higher modes are increasingly difficult to excite and detect, due
to the finite resolution in frequency and space. We remark that the
boundary sites of the present experimental realization of a hyperbolic
lattice could be used to probe holographic dualities. For each eigen-
mode of the system, only its angular distribution on the boundary is
important (cf. the angularmomentum dispersion in Fig. 2b), yielding a
novel and universal one-dimensional physical systemon the boundary.
We leave a detailed examination of these intriguing edge modes to
future studies.

Finally, we discuss the time-resolved measurements. We excite
the densest region of the frequency spectrum (Fig. 3b) using a current
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Hyperbolic drum
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Fig. 4 | Time-resolved measurement. a Schematic illustration of the wave pro-
pagationafter exciting a Euclidean (top) andhyperbolic (bottom)drumwith a short
and spatially localized pulse. Thewaves travel along geodesics originating from the
source (red lines) and wave fronts at different times are given by concentric circles
perpendicular to the geodesics. Several equidistant circles with radii 0.5, 1,… (in
the appropriate metric) are shown (black circles) for both cases, illustrating dis-
tances dE anddH to the source.bBroadband excitationpulse (blue) which is fed as a
current pulse into node 31 at the boundary, and the voltage response measured at
the same node (orange). The time corresponding to the instantaneous phases in
d–f is marked by a red vertical line. c Frequency spectrum (blue) of the excitation
pulse shown in b, demonstrating the wide range of frequencies contained in the

pulse by comparison to the impedance to ground Z31

�� �� (gray; shown on a loga-
rithmic scale on the right axis from 20 to 500 Ω). d Instantaneous phases of the
pulse propagating on the hyperbolic drum (see legend) at time t = 2.032μs. The
nodes are indicated by black dots, and concentric hyperbolic circles with center at
node 31 are shown in black to illustrate the hyperbolic metric. e Difference of the
instantaneous phaseφ at each node to the one at the source of the signal (node 31)
φ0 vs. the hyperbolic distance dH to the source. f Difference of the instantaneous
phase φ at each node to the one at the source of the signal (node 31) φ0 vs. the
Euclidean distance dE to the the source. The shaded region in e, f indicates the
approximate spread of the instantaneous phase as a function of dH and dE,
respectively.
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pulse (Fig. 4b) of mean frequency 500 kHz (Fig. 4c). By exciting a large
number of modes, we approximate the continuum response. The
propagation of the pulse through the circuit network leads to
the profile of instantaneous phases depicted in Fig. 4d, where the
phase fronts can be easily identified by the positions of equal instan-
taneous phase. Since the connectivity of the nodes implements the
metric of the Poincaré disk, these phase fronts form concentric
hyperbolic circles, highlighted by black circles in Fig. 4d. This agrees
with the theoretical expectation that the signal emanates from the
excited node along geodesics, which are the generalization of straight
lines in curved space (red lines in Fig. 4a).

Wave fronts are perpendicular to these geodesics and thus con-
stitute concentric circles (black circles in Fig. 4a) up to corrections due
to boundary reflections. In Fig. 4d–f, we have chosen an early time
during the excitation such that contributions from such reflections do
not have a significant impact on the measured phases. Finally, when
plotting the phase vs. hyperbolic (dH) and Euclidean (dE) distance in
Fig. 4e, f, respectively, we observe that the correlation of the phase
with dH is stronger thanwith dE. Thismanifests that the propagation of
the signal indeed follows hyperbolic rather than Euclidean geodesics,
thereby verifying that the system realizes the hyperbolic rather than
Euclidean metric.

Discussion
We have experimentally simulated the negatively curved hyperbolic
plane, as evidenced both in the spectral ordering of the Laplace
operator and in the signal propagation along curved geodesics. With
an implementation encompassing only 85 lattice sites, we have readily
observed an excellent approximation of the hyperbolic plane; at the
same time, no technical constraint hinders significantly enlarging the
number of sites in future applications. In particular, using existing chip
manufacturing technology and commercially available components,
electric circuits representing lattices with ~104 sites should be within
reach. In combination with the presented results, the efficient fabric-
ability and high scalability of electric circuits elevates them into a
versatile platform for emulating classical hyperbolic models, with
several advantages over the previously considered methods16,24.

First, electric circuits provide easy means for embedding hyper-
bolic lattices on a flat physical geometry, while allowing for uncon-
nected wire crossings. Such flexibility could be utilized to include
coupling beyond nearest neighbors and to implement the plethora of
other hyperbolic tessellations22,23. In particular, going beyond the
presented emulation of the Laplace operator in a negatively curved
space, the platform allows to emulate much more complex tight-
bindingmodels. These could, for example, be used to test the recently
emerging concepts of hyperbolic band theory12–14, hyperbolic
crystallography15, and hyperbolic topological insulators19,20. Electric
circuits also excel at providing time- and spatially resolved access to
the individual degrees of freedom.

Furthermore, including non-linear and non-reciprocal ele-
ments in the network, such as transistors and diodes, is trivial36. This
enables experimental investigation of how phenomena like topo-
logical insulators19,20,27,28, the non-Hermitian skin effect37,38, further
non-Hermitian topological systems39 or non-linear topological
systems40–42 interact with with the negative curvature underlying
hyperbolic lattices. Given their large scalability, electric circuits
could be manufactured with the goal to experimentally study non-
linear dynamics of systems with sizes that are unwieldy for
numerical simulations. Staying instead within the linear regime,
there is a relationship between particles moving freely on geodesics
of negatively curved space and deterministic chaos, as illustrated by
the Hadamard system43. In combination with our experimental
verification of the signal propagation along the geodesics, this
relationship designates electric circuits a promising experimental
platform to investigate classical models of chaos.

Crucially, our work demonstrates the experimental viability of
two methods for verifying the hyperbolic nature, i.e., the negative
curvature, of the simulated model, which is an important step toward
realizing more complicated models. The two methods rely on
approximating the Laplace-Beltrami operator using a simple nearest-
neighbor tight-binding model and then observing (1) a reordering of
eigenmodes compared to flat space, or (2) the propagation of a pulse
along hyperbolic geodesics. These methods are, at least in principle,
transferable to other platforms, even though itmay generally bemore
challenging to experimentally access the necessary (spatially or time-
resolved) information. However, the first method can be applied in a
minimal fashion that requires access to significantly less experimental
data. As we show in Fig. 3b, it is sufficient to measure the response
(here the impedance to ground) at two vertices, one at the origin and
one away from it, in order to distinguish ℓ = 0 from ℓ ≠0 modes and
observe the predicted mode reordering. In this respect, note that
waveguide resonator circuits, were previously proposed as a platform
for realizing hyperbolic models as well16. However, no substantial
experimental verification of the curvature has been performed so far.
Our methods could be used to perform a similar analysis on that
platform.

Let us finally remark that while coplanar waveguide resonators
have been proposed as a promising platform for implementing
quantum hyperbolic matter, it is also conceivable36 that super-
conducting qubits could potentially be combined with electric cir-
cuits in the future. This suggests another route toward exciting
future generalizations of our work to quantum models. We expect
such generalizations to inspire a new paradigm for designing and
measuring holographic toy-models and topological or conformal
boundary field theories in discrete geometries. In this context, it is
worth reminding that theoretical models of hyperbolic quantum
systems were proposed44, which still await experimental imple-
mentation, including MERA tensor networks5,8 and topological
quantum memories45,46. These efforts have the potential to funda-
mentally alter our understanding of physics in curved spaces and
imply novel views on problems in condensed matter theory, quan-
tum gravity, cosmology, and holography.

Methods
Eigenmodes of the Laplace-Beltrami operator
The solutions to Eq. (2) on the disk Dr0

of radius r0 < 1 correspond to
the eigenmodes of a drumof radius r0 in the corresponding geometry.
They can be conveniently expressed using special functions. Going to
polar coordinates (r, θ), one finds (cf. Supplementary Note 1) for the
Euclidean metric:

un‘
E ðr, θÞ=J ‘ðkn‘rÞei‘θ, ð4Þ

where J ‘ðzÞ are the Bessel functions of the first kind and knℓ is the
(n + 1)th zero of k 7!J ‘ðkr0Þ. From the angular part of the solution it
follows that ℓ can be interpreted as the angular momentum. Further-
more, kn‘ =

z‘,n+ 1
r0

, where zℓ,n is the nth zero ofJ ‘ðzÞ. The radial zeroes rm
of un‘

E ðr, θÞ are then given by:

rm =
z‘,m
kn‘

= r0
z‘,m
z‘,n+ 1

, ð5Þ

such that m = 1, 2,…, n for the non-trivial zeroes rm < r0. Thus, un‘
E has

exactly n non-trivial radial zeroes.
For the hyperbolic metric, on the other hand, one finds (cf. Sup-

plementary Note 1):

un‘
H ðr,θÞ=P‘

1
2 �1 + ikn‘ð Þ

1 + r2

1� r2

� �
ei‘θ ð6Þ
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with P‘
λðzÞ the associated Legendre functions and knℓ the (n + 1)th zero

of k 7!P‘
1
2 �1 + ikð Þ

1 + r20
1�r20

� �
. Again we can interpret ℓ as the angular

momentum and n as the number of radial zeroes of un‘
H .

Lattice regularization
The graph Laplacian of a simple (i.e., undirected) graph is given by:

Q=A� D, ð7Þ

where D is the degree matrix (the diagonal matrix containing the
number of adjacent sites for each site as entries) and A the adjacency
matrix (Aab = 1 if sites a and b are adjacent and zero otherwise).
Assuming the graph represents a lattice regularization of a continuum,
then any function u(x, y) induces a function on the lattice, via a↦
u(xa, ya) =: ua, and the action of the Laplacian matrix, ∑b Qabub, can be
expressed in terms of the continuum Laplace-Beltrami operator, e.g.,
following the steps outlined in ref. 17.

Tessellations of the Euclidean or hyperbolic plane constitute a
lattice regularization of the continuum17, and the boundaries of the
tiles (i.e., vertices and edges) can be interpreted as forming a graph. If
only a finite segment of the plane is tiled, the tessellation has a
boundary, which corresponds to vertices of the graph that are
attached to fewer edges than the bulk vertices. Naturally, this is
reflected both in the adjacencymatrix A as well as in the degreematrix
D. However, if we impose Dirichlet boundary conditions for u(x, y) as
we do in the main text, then u vanishes on the boundary sites, which
allows us to drop them from thematrix description. Consequently, we
are left only with the bulk part of Q. For a Euclidean {3, 6} tessellation,
we find (cf. Supplementary Note 2):

∑
b
Qabub =

3
2
d2ΔEua +Oðd3Þ, ð8Þ

where d is the distance between sites. For the hyperbolic tessellation
{3, 7}, on the other hand, we find (cf. Supplementary Note 2):

∑
b
Qabub =

7
4
h2ΔHua +Oðh3Þ, ð9Þ

where h= tanhðd0Þ=0:496970, and d0 = 0.545 275 is the hyperbolic
distance between two neighboring sites in the Poincaré disk repre-
sentation. For both tessellations, the leading contribution is the
Laplace-Beltrami operator for the appropriate metric, such that
eigenstates of Q correspond to un‘

g from Eq. (2) and the eigenvalues
are proportional to λn‘g (up to higher-order corrections).

Extraction of angular momentum dispersion
The angular momentum dispersion, λn‘g vs. ∣‘∣, shown in Fig. 2b is
extracted from the spectrum and eigenstates of the graph Laplacian
using Fourier analysis on shells of the graph, i.e., sites that have
approximately the same distance from the disk center and form a
circle. A shell can thereforebe considered as a one-dimensional system
with periodic boundary conditions with the polar angle taking the role
of position. For each eigenvector u, its components on one of the
shells, therefore, define a periodic function ushell(θ) defined at discrete
θ. By first interpolating ushell(θ) and then performing a discrete Fourier
transform on regular samples, we determine the dominant Fourier
component which is interpreted as the angularmomentum ∣‘∣ of u. For
the eigenstates shown in Fig. 2b it is sufficient to consider the outer-
most shell, but for higher eigenstates, considering additional shells can
improve the results.

Theoretical description of electric circuit
In our circuit network, nodes are coupled with capacitance C, each
node is coupled to ground via an inductance L and the boundary

conditions are implemented by adding additional capacitive couplings
to ground such that each node is capacitively coupled to seven other
components. The grounded circuit Laplacian is then given by the
graph Laplacian Q of the underlying (bulk) lattice and a contribution
from the inductive grounding (neglecting resistances and other para-
sitic effects):

JðωÞ=�iωCQ+
1

iωL
1: ð10Þ

The spectral decomposition is therefore given by the eigenstates ψβ

and eigenvalues qβ of the Laplacian matrix, −Qψβ = qβψβ, with eigen-
values:

jβðωÞ= 1� qβω2LC
iωL

: ð11Þ

The eigenmode index can be decomposed into the principal and
orbital index, β = (n, ℓ), to match the analytic solution in the
continuum.

The inverse of J is called the circuit Green function and can be
obtained by expanding J into eigenmodes (here we assume that J is
Hermitian and the circuit grounded, as is the case for our circuit)
JðωÞ=∑βj

βðωÞψβψβy; then:

GðωÞ= ∑
β

1

jβðωÞ
ψβψβy: ð12Þ

Assuming current fed into node a, i.e., Ia =∑cIδca, the impedance
of that node to ground can be written in terms of the eigenmodes of J:

ZaðωÞ=GaaðωÞ= ∑
β

1

jβðωÞ
∣ψβ

a∣
2
, ð13Þ

and the stationary voltage response, i.e., after equilibration, at some
other node b is given by:

Vb =GbaðωÞIa = ∑
β

1

jβðωÞ
ψβ
bψ

β
a
*
: ð14Þ

We observe that in both cases the result is a superposition of
eigenmodes of J with the weight proportional to 1/jβ(ω), which has a
resonance at:

ωβ =
1ffiffiffiffiffiffiffiffiffiffiffi
LCqβ

p : ð15Þ

By combining this result with Eq. (9) for the bulk-to-lattice cor-
respondence, it follows that a resonance of Za at frequency fβ =ωβ/(2π)
corresponds to an eigenmode of the hyperbolic drumwith eigenvalue:

λβ =
1

7π2h2LC

1

f β
� �2 : ð16Þ

This results in a spectral reversal where the lowest-frequency
(small λ) eigenmodes of the Laplace-Beltrami operator correspond to
the highest-frequency (large f) oscillations of the electric circuit.
Equation (16) is used to plot the experimental data in Fig. 2. If the
circuit is probed at one of the resonance frequencies, ωβ, then the
dominant contribution to Vb is:

Vb≈
1

jβðωβÞ
ψβ
bψ

β
a
*
=
ψβ
b

ψβ
a

Va, ð17Þ
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where jβ does not diverge in practice due to the presence of small
resistive terms (see Supplementary Note 4 for a discussion of the
impact of parasitic resistances and Supplementary Note 5 for an
extended analysis of measured eigenmodes). This implies that the
voltage profile encodes the eigenvectors ψβ

b.

Electric circuit parameters
The capacitances of the electric circuit are implemented by ceramic
capacitors with C = 1 nF and 1% tolerance, the inductances as power
inductors with L = 10μH, 5% tolerance and a minimal quality factor of
40 at 1MHz. Nodes on the boundary have additional capacitors C to
ground such that each node is connected to seven identical capacitors
in total. Finally, each node ismade accessible for in- and ouput via SMB
connectors.

Measurement details
The impedance measurements were performed in a two-terminal
measurement configuration using a Zurich Instruments MFIA 5MHz
impedance analyzer. A short/open compensation routine was used to
remove the residual impedance and stray capacitance of the test fix-
ture. The impedance of all 85 circuit nodes has been recorded for
frequencies in the range from 250KHz to 1.75MHz. To exclude
transmission line effects in the measurement, the maximum cable
length was restricted to be below 1.8m.

For the measurement of the voltage profiles of the eigen-
modes, a reference voltage signal and phase sensitive detection is
needed. This was achieved by using three Zurich Instrument MFIA
5MHz impedance analyzers as lock-in amplifiers synchronized in
frequency and phase. Each mode was excited by a current signal of
the corresponding frequency fed into the node with the highest
impedance peak at that frequency. The current signal was obtained
by applying the sinusoidal reference voltage signal with fixed peak-
to-peak voltage of 1 V produced by one of the lock-in amplifiers to a
shunt resistor of 12Ω. The other two lock-in amplifiers were used to
measure the voltages of the different nodes. All voltage signals
demodulated with the reference signal were filtered with a digital
low-pass filter of eighth order and a cutoff frequency of f−3 dB =
0.7829 Hz. The readout of the real and imaginary part of the vol-
tage took place after at least 16 filter time constants which corre-
sponds to at least 99% settling of the low-pass filters in a step
response.

The time-resolved measurements were carried out by seven
Picoscope 4824, which are eight channel USB oscilloscopes with
20MHz bandwidth and 12 bit resolution. In the experiment, the circuit
was stimulated at node 31 by the broadband pulse:

V ðtÞ=V0 sinð2πf tÞe�
1
2 4 f t�1ð Þð Þ2 ð18Þ

with V0 = 4.3 V and f = 500 kHz. The pulse is generated by a 50 Ω
function generator and the output current was fed directly into the
input node. Since the oscilloscopes do not provide a separate trigger
channel, one channel of each instrument was fed with a rectangular
pulse synchronized with the excitation pulse to trigger the instru-
ments. They used an edge trigger at 1 V in rapid trigger mode and
sampledwith 40MS/s, i.e., every 25 ns. Assuming equal behavior of the
circuit under repeated stimulation, which was verified during the
measurement process by repeating the process described below ten
times, the measurement was performed in two steps. First, the seven
oscilloscopes were used to measure the voltage at nodes 1 through 49
(including the input node 31), then, in the second run, the input node
and nodes 38 through 85 were measured. Finally, the measured real-
valued signals V(t) were transformed into complex-valued ones using
the Hilbert transform, therefore giving access to the instantaneous

phase as the argument of the complex-valued signal:

vðtÞ=V ðtÞ+ i
π

p:v:
Z 1

�1
dτ

VðτÞ
t� τ

: ð19Þ

Data availability
All the data (both experimental data and data obtained numerically)
used to arrive at the conclusions presented in this work are publicly
available in the following data repository: https://doi.org/10.3929/
ethz-b-000503548.

Code availability
All the Wolfram Language code used to generate and/or analyze the
data and arrive at the conclusions presented in this work is publicly
available in the form of annotated Mathematica notebooks in the fol-
lowing data repository: https://doi.org/10.3929/ethz-b-000503548.
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