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Identification of key genes 
of the ccRCC subtype with poor 
prognosis
Grigory Andreevich Puzanov

Clear cell renal carcinoma has been reported in many research studies as a rather heterogeneous 
disease. Identification of different subtypes and their molecular characteristics can help in choosing a 
more effective treatment and predicting a response to it. In this study, using multi-omics clustering of 
RNA-Seq data of patients with clear cell renal carcinoma from TCGA. Specific genes were identified for 
the most aggressive ccRCC subtype associated with metastasis and a subtype associated with a more 
favorable course of the disease. Among them were genes associated with blood clotting (FGA, FGG) 
and genes associated with changes in the immune characteristics of a tumor (ENAM, IGFBP1, IL6). In 
addition, an association of hub genes of poor survival ccRCC subtype with the levels of infiltration of 
endothelial cells, hematopoietic stem cells, T cells NK and mast cells was revealed. It was shown that 
MFI2, CP, FGA, and FGG expression can predict the response to sunitinib, while the APOB, ENAM, 
IGFBP1, and MFI2 expression predict the response to nivolumab. The results obtained provide insight 
into the genetic characteristics underlying the aggressive subtype of ccRCC and may help develop new 
approaches to the treatment of this disease.

Abbreviations
ccRCC​	� Clear cell renal carcinoma
PPI	� Protein–protein interactions
DEGs	� Differentially expressed genes
KIRC	� Kidney renal clear cell carcinoma
HSCs	� Hematopoietic stem cells
TKIs	� Tyrosine kinase inhibitors
TME	� Tumor microenvironment

Clear cell renal carcinoma (ccRCC) is the most common subtype of renal cancer1. The 5-year survival of ccRCC 
patients is about 60–70%2. The available data show an increase in the number of new cases of ccRCC over the 
past decades2. Despite the extensive data accumulated recently, the identification of reliable genes that make it 
possible to predict and select therapy for ccRCC is still an urgent problem.

To date, abundant evidence suggests that ccRCC is a rather heterogeneous type of cancer3. In particular, 
subtypes of metastatic ccRCC have been identified based on their response to sunitinib4. Recently, different 
subtypes of ccRCC have been identified based on the activity of transcription factors5. These data show that 
within the histologic type, ccRCC group of samples can be distinguished by the general unique characteristics.

Common TNM classification of samples is often insufficient to prescribe a suitable targeted treatment6. It was 
shown that gene expression depends on the stages of ccRCC, and different stages of ccRCC are characterized by 
different aberrant regulated pathways, including the coagulation cascade7.

Early identification of the most aggressive tumors could significantly improve the treatment of ccRCC. The 
identification of key molecular changes specific to such malignant subtypes can help in the development of 
effective personalized therapies. Thus, the aim of this work is to reveal major subtypes of ccRCC tumors and to 
identify key genetic characteristics of these subtypes.
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Results
Clustering of ccRCC samples revealed three subtypes with different survival rates.  Clustering 
of ccRCC samples from the TCGA database was carried out by the k-means method with 100 replicates. For the 
clustering of samples, k = 3 was chosen, since it was previously reported that clustering stability increases from 
k = 2 to k = 3, but not at k > 3 for the ccRCC samples3. For analysis, I selected tumor samples for which no radio-
therapy or additional pharmacotherapy was performed. As a result, 456 samples were divided into two large 
clusters (n = 299 and n = 126) and one smaller (n = 31).

Survival analysis revealed that Cluster 2 was associated with worse overall survival, while Cluster 1 was 
associated with better overall patient survival (Fig. 1b). At the same time, in Cluster 2, samples with late stages 
(III and IV) as well as samples with metastases prevail (Fig. 1c). While in Cluster 1, samples with stage I prevail 
(Fig. S1b). In addition, the available data suggests patients from Cluster 1 respond better to treatment than 
patients from Cluster 2 (Fig. S1c,d).

For gene clustering, I selected 2000 genes with the most highly variable expression. As a result, the genes 
were divided into 5 clusters (Fig. 1a). At the same time, the analysis of gene ontology shows a pronounced cluster 
associated with ion transport and pH maintenance, an immune response cluster, a cluster associated with an 
acute-phase response, a cluster associated with transmembrane organic anion transport, and a cluster associated 

Figure 1.   Clustering by the k-means method of ccRCC samples from the TCGA database (a). The heat map 
shows the distribution of 456 samples across three clusters (matrix columns) and the distribution of the 2000 
most variable genes in five gene clusters (matrix rows). Survival analysis for the three resulting clusters (b). The 
P-value shows the difference between the three groups according to the Logrank test. Distribution of samples 
with metastases depending on the cluster (c). The blue gradient increases towards a more significant P-value. 
The difference was considered significant at the P < 0.05. In Cluster 2, samples with the presence of metastases 
prevail, and in Cluster 1 with the absence of metastases.
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with cell adhesion and organization of the extracellular matrix (Fig. S2). Thus, ccRCC subtypes with different 
survival rates and different responses to treatment were identified.

Identification of hub genes specific for the poor prognostic subtype.  For the detected clusters, 
I identified differentially expressed genes using the rank sum test (Fig.  2a,b). The difference was considered 
significant at P < 0.05, and identified 310 genes for Cluster 2 and 315 genes for Cluster 1. Then, a network of 
protein–protein interactions (PPI) of Cluster 1 and Cluster 2 was built, taking into account changes in gene 
expression in ccRCC (Fig. 2c,d).

For Clusters 1 and 2, I calculated the top 10 hub genes (Fig. 3a,b). The Maximal Clique Centrality (MCC) 
algorithm was used, which was reported as the most effective method to find hub genes8. Clustering with k = 4 for 
the cluster with poorest survival revealed the same 10 hub genes: APOB, IGFBP1, CP, ENAM, MFI2, CHRDL1, 
IL6, TF, FGA, FGG. Interestingly, among the hub genes of Cluster 1 was the SERPINA5 gene, one of the most 
decreased in ccRCC (Fig. 2d). CP was also revealed as a hub gene for Cluster 2, which had one of the most 
increased expressions in ccRCC (Fig. 2c). The genes encoding the fibrinogen alpha chain (FGA) and fibrinogen 
gamma chain (FGG) have been identified as key for both clusters. Moreover, Cluster 2 is characterized by higher 
expression of these genes (Fig. 3). Gene set enrichment analysis revealed that Cluster 2 genes are associated with 
regulation of insulin-like growth factor, endoplasmic reticulum, and protein post-translational modifications 
(Fig. S3b). For Cluster 1, there is an association with fibrinolysis, hemopexin, and negative regulation of coagula-
tion (Fig. S3a). Interestingly, for the expression of most of the detected genes, a clear bimodal or trimodal distri-
bution was observed, which also indicates the presence of subpopulations in the sample under study (Fig. S4)9.

Hub genes of the PPI network of the aggressive subtype are associated with a poor prognosis 
of ccRCC​.  Survival analysis for hub genes revealed increased expression of 5 out of 10 genes in Cluster 2 is 

Figure 2.   Identification of marker genes for Cluster 1 and Cluster 2 (a) using the rank sum test. Scheme of 
PPI taking into account changes in gene expression (b). Volcano plot of DEGs for Cluster 1 (a); volcano plot of 
DEGs for Cluster 2 (b). The dotted line shows the twofold change in expression clipping; red shows an increase 
in expression, blue a decrease in gene expression; PPI for Cluster 1 (c); PPI for Cluster 2 (d); the gradient from 
blue to red shows the change from lower to higher gene expression in ccRCC.
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associated with poor survival (Fig. 4a). The same cannot be said about the Cluster 1 hub genes. Gene expression 
varies in Cluster 1 and Cluster 2 (Fig. 4b). If increased gene expression is associated with a poor prognosis, then 
its expression is increased in Cluster 2 and decreased in Cluster 1 (Fig. 4a). Conversely, if decreased expression 
is associated with poor prognosis, its expression is decreased in Cluster 2 and increased in Cluster 1 (Fig. 4b).

Hub genes of the ccRCC cluster with the worst survival predict the response to TKIs.  To fur-
ther check the association of Cluster 2 hub genes with poor survival in ccRCC in an independent sample, the 
GSE3538 dataset was used. Using multivariate Cox analysis, expression of a gene signature including MFI2, 
APOB, IGFBP1, CP, FGA, FGG, IL6, and APOB was shown to be associated with poor survival (P < 0.05, Fig. 5a). 
A statistically significant increase in expression in samples with a high risk was observed for the genes APOB, CP 
(P < 0.001), MFI2 (P < 0.01) and a decrease in expression in samples with a high risk for the FGG gene (P < 0.001) 
(Fig. 5b). In addition, the datasets E-MTAB-3218 and E-MTAB-3267 showed that hub genes expression of Clus-
ter 2 are associated with a response to TKIs nivolumab and sunitinib (P < 0.05) (Fig. 5c,d). The highest AUC 
and the most significant ROC P-value was found for MFI2 with sunitinib (0.71, P < 0.001), and for CP (0.73, 
P < 0.001) with nivolumab.

Association of the aggressive subtype of ccRCC with the TME.  According to the TIMER2.0 data-
base, the expression of the Cluster 2 hub genes correlates with the infiltration level of a number of cells in the 
TME in KIRC. In particular, with endothelial cells, HSCs, T cells NK, and mast cells. For the ENAM gene, there 
is an opposite correlation in comparison with other genes; in particular, a negative correlation with T cells NK 
and a positive correlation with Neutrophils (P < 0.05) (Fig. 6A). For MFI2, there is the strongest inverse correla-
tion with endothelial cells and HSCs (P < 0.05) (Fig. 6A). In addition, according to the survival analysis, there is 
a negative correlation of 10 hub genes of Cluster 2 with endothelial cells and HSCs (Fig. 6B,C). At the same time, 
I found a positive correlation in survival time for natural killer T cells (T cells NK) and mast cells (Fig. 6C,D). 
We also found a significant positive correlation of mutations in the SETD2 gene with the expression of the FGG 
(rs = 0.55, P < 0.001), FGA (rs = 0.78, P < 0.001), and IL6 (rs = 0.56, P < 0.001), and a negative correlation with the 
expression of ENAM (rs = -0.67, P < 0.001, Fig. 6F–I). The frequency of the SETD2 mutation in KIRC samples is 
about 12% (45/370).

Discussion
Using data from patients with ccRCC from TCGA, this study identified specific genes for subtypes of ccRCC 
with the most and least favorable survival rates. The data obtained indicate the heterogeneity of clear cell renal 
carcinoma and are consistent with previous studies indicating two distinct molecular subtypes of ccRCC with dif-
ferent survival rates—ccA and ccB10. Ten hub genes have been identified for genes that are specifically expressed 
in this aggressive ccRCC subtype. According to gene set enrichment analysis, these genes are involved in vital 
cellular functions, such as post-translational protein modifications, endoplasmic reticulum, and insulin growth 
factor receptor signaling (Fig. S3b).

The revealed 10 hub genes associated with Cluster 1 and Cluster 2 represent targets for the development of 
targeted therapy for the corresponding ccRCC subtype. The involvement of some of the identified hub genes 
in the development and progression of ccRCC has already been reported earlier. In particular, increased TF 
expression and its effect on metastasis in ccRCC have been reported before11. As well as IL6 has previously 
been reported as an early-stage immunologic prognostic factor for organ-confined ccRCC patients12. Recently, 
IGFBP1 has been shown to regulate monocytes and play a vital role in the immune system of ccRCC tumors 
and enhances their progression13. According to the received data, a high level of T cells NK at a high expression 

Figure 3.   Top 10 highest score hub genes for Cluster 1 (a) and Cluster 2 (b). The edges of the graph show 
interactions between nodes. Red color corresponds to a higher MCC score, and thus of greater importance in 
the network of interactions. Yellow color corresponds to a lower MCC score, and thus of lower importance in 
the network of interactions.
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Figure 4.   Survival curves by Kaplan–Meier method of ccRCC samples for hub genes of both clusters (a). Red 
indicates the group with higher gene expression, blue indicates the group with lower gene expression. The 
P-value of the Logrank test shows the difference in the two groups. P < 0.05 were considered significant. Changes 
in the expression levels of hub genes in the ccRCC samples (b). The rectangles represent interquartile ranges 
from 25 to 75 percentiles; the horizontal lines within the rectangles represent the medians. Vertical lines indicate 
the maximum and minimum values. P < 0.001 in each case (Wilcoxon Rank Sum Test).
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of the Cluster 2 hub genes corresponds to poor survival, which indicates enhanced immunosuppression of the 
TME in this subtype of ccRCC (Fig. 6D).

It has also recently been shown that ENAM can suppress cell proliferation in ccRCC and significantly increase 
cytotoxic cells, CD56 NK cells, NK cells, and CD8 + T cells in the immune TME14. In this work, a correlation was 
revealed between the hub genes of the ccRCC subtype with poor prognosis and the immune cell infiltration cells. 
Negative correlation of MFI2, FGA, and FGG with endothelial cells and hematopoietic cells, which contribute 
to angiogenesis15,16. Apparently, this explains the poorer response to TKIs in samples with higher expression of 
MFI2, CP, FGA, FGG, and APOB (Fig. 5c,d). The negative correlation between the expression of the hub genes 
of Cluster 2 with mast cells and better survival at a high level of mast cells (Fig. 6E) is probably explained by the 
ability of mast cells to release heparin17.

Interestingly, FGA and FGG have been identified as specific markers for both clusters. An increase in the 
expression of these two genes, as well as F2, a coding prothrombin, is specific to poor prognostic Cluster 2 
(Fig. 4b). The role of fibrinogen as a marker of poor prognosis and metastasis for kidney cancer has been shown 
previously18. Fibrinogen has an advantage as a prognostic marker due to its easier availability19,20. The key genes 
for Cluster 1 are associated with fibrinolysis and regulation of coagulation.

It is known that accumulations of lipids are observed in the cytoplasm of ccRCC tumor cells21, and the 
importance of changes in lipid metabolism in the development of ccRCC was studied previously22. Therefore, it is 
interesting that among the hub genes of the malignant subtype ccRCC, the APOB gene was also identified, encod-
ing apolipoprotein B, which is involved in lipid metabolism and the main protein component of lipoproteins23.

In this work, it was revealed that mutations in the SETD2 gene in ccRCC correlate with the expression of 
FGG, FGA, IL6, and ENAM, the hub-genes of Cluster 2 (Fig. 6F–I). Histone methyltransferase gene SETD2 is 
frequently mutated and is a suppressor gene in ccRCC​24. Recently, SETD2 mutations have been shown to sup-
press autophagy in ccRCC​25. In addition, mutations in SETD2 are known to be one cause of sunitinib resistance 
in renal cell cancer26.

From the data obtained, it follows that increased coagulation is one of the key features of the malignant 
subtype of ccRCC. Apparently, in ccRCC, the hematogenous route of metastasis predominates in the lungs, 
bones, and liver27. In addition, according to the NDEx Biological Network Repository, FGA, FGB, and FGG 
are associated with positive regulation of heterotypic cell-cell adhesion (P < 0.001)28. Previous studies reported 
changes in the expression of CP, FGA, and FGG in metastatic ccRCC samples29. Therefore, the combined use of 
anticoagulants with conventional treatment can be useful in therapy of malignant forms of ccRCC. In particular, 

Figure 5.   Analysis of the survival rate of the hub genes on an independent sample. Kaplan–Meier curve for the 
GSE3538 dataset (a). Expression of eight hub genes in high (red) and low risk (blue) groups (b). ***P < 0.001; 
**P < 0.001. ROC curves for four hub genes associated with response to nivolumab (c) and sunitinib (d).
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the safe use of sunitinib and dalteparin to treat metastatic forms of ccRCC has already been described30. There 
is also evidence that heparin, commonly used to treat thromboembolic events in cancer patients, contributes to 
their survival and has anti-metastatic activity31.

Thus, the subtypes of ccRCC associated with the least and most favorable prognosis and with better response 
to treatment were studied (Fig. S1). Hub genes and the processes in which they are involved were identified 
for each of the subtypes. The identified genes specific to both subtypes may be of interest for further study and 
development of new approaches to the treatment of different ccRCC subtypes.

Methods
Public data sources.  Normalized data from 606 samples, their phenotypes including and clinical patho-
logical characteristics and curated survival data, were downloaded from The Cancer Genome Atlas (TCGA) 
using the UCSC Xena Functional Genomics Browser32. The downloaded data included the RNA-Seq dataset 
(Illumina HiSeq platform, gene-level RSEM-normalized, log2 transformed). The GSE3538 database was taken 
as an independent verification sample, which includes microarray data from 177 conventional renal cell carci-
noma samples. To analyze the response to tyrosine kinase inhibitors, I downloaded the E-MTAB-3218 database, 
including sequencing data of 114 biopsies from metastatic clear cell renal carcinoma before or after treatment 
with nivolumab, and E-MTAB-3267, including sequencing data from 59 patients with metastatic ccRCC treated 
with sunitinib.

Clustering of ccRCC samples.  Analysis of TCGA (The Cancer Genome Atlas) data performed using the 
Profiler of Multi-Omics data (PROMO) software33. This software, developed by Ron Shamir’s lab, allows analyz-
ing large genomic cancer datasets and their associated clinical information. The Cancer Genome Atlas Kidney 

Figure 6.   Association of the expression of the cluster 2 gene hub and the TME. The heat map shows the 
correlation coefficients of expression for 10 hubs of genes with the level of infiltration of immune cells in 
ccRCC (A). Cell color changes from blue to red depending on the Spearman’s correlation coefficient. Clustering 
distance method was performed for rows by Pearson correlation. Survival curves for hub genes associated 
with levels of endothelial cell infiltration (B), hematopoietic stem cells (C), NK T cells (D) and mast cells (E). 
Correlation of the expression of FGG (F), FGA (G), IL6 (H), and ENAM (I) with mutations in the SETD2 gene 
(P < 0.001).
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Renal Clear Cell Carcinoma (TCGA-KIRC) data and their clinical characteristics were loaded into PROMO with 
further pre-processing and preparation for subsequent analysis. The integrity of the data was checked, and their 
distribution was characterized. Unsupervised clustering was carried out using the k-means method at k = 3 for 
samples and k = 5 for genes. The program algorithm was run 100 times. Identification of differentially expressed 
genes for individual clusters was carried out using the rank sum test. The change in expression at P < 0.05 was 
considered statistically significant. The predictive value of the identified sample clusters was studied by survival 
analysis using the Kaplan–Meier method and a log-rank test.

Survival and ROC analysis.  Survival analysis was performed using the Gene Expression Profile Inter-
active Analysis GEPIA tool34. Survival plots were constructed using the Kaplan–Meier method with cut-off 
by medians. The difference in the samples of low and high expression is considered through the logrank test. 
P-values < 0.05 were considered statistically significant. To visualize differentially expressed genes in ccRCC clus-
ters and construct the histogram of gene expression distribution, I used the ImageGP platform (http://​www.​
ehbio.​com/​Image​GP). The construction of survival curves by the Kaplan–Meier method for the control dataset 
GSE3538, including RNA-Seq data of 177 ccRCC patients, was carried out using the SurvExpress tool, which 
allows analyzing the prognostic value of multiple genes as a signature35. The ROC plotter tool36 was used to 
analyze the predictive ability of genes for response to TKIs. Multivariate Cox regression was used to construct 
the prognostic risk models.

Building networks of protein–protein interactions.  The construction of networks of protein–protein 
interactions carried out using the Cytoscape program. The interaction data was downloaded from the STRING 
database of known and predicted protein–protein interactions, version 1137. Differentially expressed genes in 
TCGA samples were identified using the GEPIA tool with ANOVA test and q-value cutoff = 0.05. The identifica-
tion of hub genes was carried out using the CytoHubba plugin with the topological analysis method Maximal 
Clique Centrality (MCC)8. Gene set enrichment analysis (GSEA) was performed for identification of pathways 
associated with hub genes38. Visualization of networks of interactions was carried out using Cytoscape 3.7.1 
software39.

Analysis of the correlation of gene expression with the TME.  The Tumor Immune Estimation 
Resource (TIMER2.0) resource was used to analyze the relationship between gene expression and the level of 
immune-cell infiltration in the ccRCC TME40. TIMER2.0 allows us to estimate the immune infiltration levels 
for TCGA using six state-of-the-art algorithms, including TIMER, xCell, MCP-counter, CIBERSORT, EPIC, and 
quanTIseq. In addition, using TIMER2.0, I searched for the correlation of gene expression levels with the status 
of non-synonymous somatic mutations in the most frequently mutated genes in ccRCC.

Statement.  TCGA and GEO belong to public databases. The patients involved in the database provided 
ethical approval. Users can download relevant data for free for research and publish relevant articles. This study 
is based on open-source data, so there are no ethical issues.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request. All methods were carried out in accordance with relevant guidelines and regulations.
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