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Abstract

GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no
sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups:
Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused
on the initial characterization of AtBPC6, a group II protein from Arabidopsis thaliana. Comparison of orthologous BBR/BPC
sequences disclosed two conserved signatures besides the DNA binding domain. A first peptide signature is essential and
sufficient to target AtBPC6-GFP to the nucleus and nucleolus. A second domain is predicted to form a zipper-like coiled-coil
structure. This novel type of domain is similar to Leucine zippers, but contains invariant alanine residues with a heptad
spacing of 7 amino acids. By yeast-2-hybrid and BiFC-assays we could show that this Alanine zipper domain is essential for
homotypic dimerization of group II proteins in vivo. Interhelical salt bridges and charge-stabilized hydrogen bonds between
acidic and basic residues of the two monomers are predicted to form an interaction domain, which does not follow the
classical knobs-into-holes zipper model. FRET-FLIM analysis of GFP/RFP-hybrid fusion proteins validates the formation of
parallel dimers in planta. Sequence comparison uncovered that this type of domain is not restricted to BBR/BPC proteins,
but is found in all kingdoms.

Citation: Wanke D, Hohenstatt ML, Dynowski M, Bloss U, Hecker A, et al. (2011) Alanine Zipper-Like Coiled-Coil Domains Are Necessary for Homotypic
Dimerization of Plant GAGA-Factors in the Nucleus and Nucleolus. PLoS ONE 6(2): e16070. doi:10.1371/journal.pone.0016070

Editor: Vladimir Uversky, University of South Florida College of Medicine, United States of America

Received August 17, 2010; Accepted December 6, 2010; Published February 10, 2011

Copyright: � 2011 Wanke et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant of the Deutsche Forschungsgemeinschaft (DFG) to KH (Ha2146/9-2). The funder had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dierk.wanke@zmbp.uni-tuebingen.de

. These authors contributed equally to this work.

¤ Current address: Institute of Genetics, Heinrich-Heine-University, Düsseldorf, Germany

Introduction

Eukaryotic gene expression is tightly controlled by enhancer

and silencer elements. Additionally, in between these DNA

regions, insulator elements have been identified in animals, which

are bound by proteins, that mediate insulator function and prevent

illegitimate activation or repression of neighboring loci [1]. In

Drosophila melanogaster about twenty years ago the GAGA-factor

(GAF) encoded by the Trithorax-like (Trl) gene was identified to bind

to GAGA DNA-motifs inside such insulator regions [2,3]. Ten

years later, a second Drosophila protein, Pipsqueak (Psq), was

identified and shown to bind to the same GAGA-motif as GAF,

but with a structurally unrelated DNA-binding domain [4,5].

Although GAGA-motif binding proteins have also been described

in other species like plants and humans [5,6], almost all the

information on these proteins and their functions comes from

Drosophila.

More recent studies revealed that GAGA-binding proteins

aggregate into higher order complexes that locally replace

nucleosomes to form a specific chromatin environment [7,8].

However, functions of GAGA-motif binding proteins are more

diverse and can also be linked to epigenetic regulation of homeotic

genes e.g. by recruiting silencing factors to specific sites, as well as

influencing the promoter-proximal pausing of RNA Polymerase II

(Pol II) [5,9,10,11].

In plants, GAGA-motif binding transcription factors had first

been identified in soybean via their ability to bind to the (GA/

TC)n - dinucleotide repeat enhancer element of the GSA1-

promoter [6].

In barley, the Barley B Recombinant (BBR) protein was the first

functionally characterized GAGA-motif binding transcription

factor, which was shown to be an essential regulator of the

homeobox gene Barley Knotted 3 (BKn3), the ortholog of the well

known homeobox gene Knotted 1 (Kn1) from Zea mays

[12,13,14,15]. In the dominant-active Hooded (K) phenotype of

barley, a homeotic transformation of the floral organs had been

observed due to the constitutive ectopic BKn3 expression in all

floral organs [13,16].

The mutation of the Hooded phenotype was mapped to an

intragenic duplication of a 305 bp region inside the fourth intron

of BKn3, which containes a (GA/TC)8- dinucleotide repeat motif

[13,16]. The BBR protein was identified through its specific
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binding to this (GA/TC)8- dinucleotide repeat enhancer element

[13]. The ectopic expression of BBR in Nicotiana tabaccum results in

an enlargement of all plant organs [13].

A BBR member from Arabidopsis named Basic Pentacysteine

(BPC) protein, was found essential for the activation of INNER

NO OUTER (INO) by binding to a GA/TC-dinucleotide rich

sequence its promoter [17]. Basic pentacysteine refers to five

highly conserved Cysteine residues in the basic zinc finger-like

DNA-binding domain, the characteristic hallmark of the plant

specific BBR/BPC protein family [17,18].

BBR and BPC proteins are nuclear targeted proteins with a

plant specific zinc finger like DNA-binding domain at their

carboxy termini [13,17].

Moreover, cooperative binding of BPC1 proteins to GA-rich

motifs in the SEEDSTICK (STK) promoter region leads to a

condensation and looping of DNA [18], similar to what has been

described for GAGA-motif binding factors from Drosophila [19,20].

Sequence comparison revealed that at least two major groups of

BBR/BPC proteins can be differentiated: group I and group II

[17]. Previous publications have concentrated on the functions of

group I proteins, and as such, there is no information on group II

BBR/BPC proteins.

In this study we analyzed two phylogenetically conserved

domains of Arabidopsis AtBPC6 as a first step to understand the

function of group II BBR/BPC proteins in plant cells. First, a 31

amino-acid long region was found to be essential and sufficient for

the localization of AtBPC6 to the nucleus and the nucleolus.

Second, a novel type of a zipper-like coiled-coil was found to

functions as dimerization domain, and this novel coiled-coil

domain is present in all kingdoms, from bacteria to plants and

humans. We show that Arabidopsis group II BBR/BPC proteins can

form homotypic dimers in parallel alignment via this coiled-coil

domain in yeast and in plant cells.

Results and Discussion

Drosophila and Plant GAGA-binding proteins are
phylogenetically unrelated

The BBR/BPC proteins of plants do not share sequence

similarities with the Drosophila GAGA-motif binding proteins Trl

and Psq (Figure 1A), although all of them bind to purine rich GA-

dinucleotide repeat motifs. Trl and Psq share the BTB/POZ-

domains as protein interaction surfaces and glutamic acid (Q) rich

pattern [5]. However, both proteins differ in their DNA-binding

domains. While Psq possesses a Helix-Turn-Helix domain for

DNA-binding at its C-terminus, Trl binds GAGA-DNA motifs by

a zinc-finger like domain. Similar to Trl, plant specific BBR/BPC

proteins have a highly conserved zinc-finger like DNA-binding

domain. Trl and Psq mediate partially redundant and opposing

functionality [4,10,11,21]. One might propose that the two major

groups of BBR/BPC proteins also mediate different functions by

analogy. Based on protein sequence analysis, group I proteins

share at least three distinct domains (Figure 1A): a BBR/BPC

specific domain of unknown function at the N-terminus, a central

nuclear localization signature and the conserved DNA-binding

domain at the C-terminus. Similar to Trl or Psq, some group I

members, such as the barley BBR, contain glutamic acid (Q) or

histidin-glutamic acid (HQ) rich patterns [13]. Both motifs are

known to activate gene expression in plants and other eukaryotes

[22,23,24,25,26]. For group II proteins, such as AtBPC6 from

Arabidopsis, only two domains were predictable from sequence

analyses, which are a coiled-coil signature and the conserved

DNA-binding domain shared with group I members.

Alignment of group II BBR/BPC-proteins
To gain an insight into possible domains present in group II

BBR/BPC proteins, we identified AtBPC6 orthologs from two

close relatives of Arabidopsis, Olimarabidopsis pumila and Cardamine

pratensis. Protein sequences of more distantly related group II

proteins from rice, tomato and Medicago truncatula were retrieved

from GenBank. Sequence comparison revealed several regions

that exhibited local conservation in their amino acid positions

(Figure 1B). Besides the highly conserved DNA-binding domain at

the C-terminus and the predicted coiled-coil domain at the N-

terminus, two evolutionary conserved regions between AtBPC6

orthologs were discovered: first, a region spanning amino acid

residues 110–152 that has no homology to any previously

described structure. Second, residues 164–195 are rich in basic

amino acids and its sequence is similar to nuclear localization

signatures [27,28,29,30]. Indeed, a monopartide NLS motif

(192KxKK195) is predicted by analysis algorithms. However, a

second basic motif 184KRxxK188, which resembles NLS motif

consensi, is positioned only 4 amino acids apart from the first; and

a third NLS-like motif (165KPKRxKR171) is phylogenticaly

conserved, which has not been recognized by any prediction

algorithms.

AtBPC6 localizes to the nucleus and the nucleolus
The sequence alignment of AtBPC6 orthologs and structural

prediction programs (Supporting Figure S1) led to clues where to

dissect the protein into fragments for further functional analyses

(Figure 1C). The full-length cDNA and five fragments of AtBPC6

were cloned in ENTRY-vectors and recombined into binary

expression vectors to make GFP-fusion proteins. We identified the

residues 164–195 to be essential and sufficient for the targeting of

AtBPC6 protein to the nucleus and the nucleolus in transient

expression assays using Agrobacterium mediated transformation of

Nicotiana benthamiana epidermis cells (Figure 1D).

All fusion proteins containing this 31 amino acid long peptide

signature exhibited the same localization as the full-length

AtBPC6-GFP (Figure 1E). In the nucleoplasm the GFP-fusion

proteins co-localized with DNA or in distinct speckle-like domains.

At the nucleolus AtBPC6-GFP fluorescence signals formed a ring-

shaped localization pattern around the central nucleolar cavity

(Supporting Figure S2).

Interestingly, BPC6-DN183-GFP also localized to the nucleus,

but not to the nucleolus (Supporting Figure S3). Although the

predicted monopartide NLS motif (192KxKK195) and the second

basic motif 183KRxxK187 were contained within the BPC6-DN183-

GFP protein, it was unable to localize to nucleolus. This suggests

that all three NLS-like motifs are required for recognition and the

proper targeting of AtBPC6 to the nucleolus.

AtBPC6 is retained in isolated nuclei
The import into the nucleus across the membranes of the

nuclear envelope is governed by importins localized at the nuclear

pores that recognize the NLS signatures of the proteins and

actively recruit them for translocation [27,30]. However, the

nucleolus is not surrounded by an additional membrane and the

localization to this subnuclear domain likely requires interaction

with other components in the nucleus or the nucleolus [31,32,33].

To test whether AtBPC6 retained in the nucleus, we performed a

flow cytometric analysis on isolated Nicotiana benthamiana nuclei

expressing BPC6-GFP and BPC6-NLS-GFP compared to free

mGFP. A propidium iodide (PI) co-staining was performed to

restrict the analysis to identify released nuclei (Figure 2). We

showed previously that mGFP localized to the cytoplasm and

inside the nucleus (Figure 1D and Supporting Figure S3), as it is a

Dimerization of Plant GAGA-Motif Binding Factors
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Figure 1. Protein organization and subcellular localization of GAGA-motif binding proteins. (A) Schematic representation of Drosophila
and plant GAGA-motif binding proteins. Locations of homologous domains are shown for the DNA-binding domains (black), putative protein
interaction domains (grey) and Q-rich domains (dark grey). (B) Protein sequence alignment of AtBPC6 orthologs. Conserved amino-acids are
highlighted, invariant positions (black) and positions that are preserved in at least half of the aligned sequences (grey). Sequences are retrieved from
Olimarabidopsis (Olimarabidopsis pumila), Cardamine (Cardamine pratensis), Solanum (Solanum lycopersicum), Medicago (Medicago truncatula) and
Oryza (Oryza sativa). Three distinct domains with putative conserved functions are predicted and highlighted by bars on top of the sequences:
Coiled-coil (checked-grey), nuclear localization signal (dark grey) and zinc-finger like DNA-binding domains (black). Invariant Cystein positions within
the basic DNA-binding domain are indicated by asterisks. (C) Schematic representation of AtBPC6 fragments used for functional analyses and hybrid
protein fusions. (D) Laser confocal microscopy analysis of BPC6-GFP, BPC6-NLS-GFP and mGFP localization in Nicotiana benthamiana epidermis cell
nuclei. (E) Hetreologous expression in Nicotiana benthamiana epidermis cells identified the 31 amino-acid long NLS to be responsible for targeting
GFP-fusion proteins to the nucleus and the nucleolus.
doi:10.1371/journal.pone.0016070.g001
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Figure 2. Stable localization of BPC6 fusion proteins to the nucleus. Quantification of fluorescence signals in Nicotiana benthamiana nuclei
using flow-cytometry. Nuclei are prepared from non-transformed wildtype cells (A) and epidermis cells expressing BPC6-GFP (B), BPC6-NLS-GFP (C),
mGFP (D). GFP fluorescence and DNA content is measured after incubation of nuclei in propidium iodide (PI) solution. Representative signal intensity
plots of PI- and GFP-fluorescence for ,250000 events are shown (left). Histograms of PI-fluorescence (top right) and GFP-fluorescence (bottom right)
intensity counts are given for each of the measurements. For comparison, normalized background fluorescence of non-transformed wildtype cells are
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small protein that does not necessarily need an active transport by

the nuclear import machinery. Thus, we expected a leaking of

mGFP from the nucleus during the isolation and incubation

procedures. Indeed, the flow cytometric fluorescence measure-

ments of mGFP expressing cells exhibited no differences from

untransformed wildtype nuclei (Figure 2D).

In contrast, BPC6-GFP and BPC6-NLS-GFP expressing cells

displayed a stabile GFP fluorescence inside the nuclei (Figures 2B

and C). Both fusion proteins were prevented from being washed

out during isolation and incubation, which implies an active

retention due to interaction with components present inside the

nucleus. Hence, the 31 amino acids of the NLS were necessary

and sufficient for localization and nuclear retention.

Dimerization studies with Yeast-two-Hybrid Assay
It is known for the Drosophila GAGA-motif binding proteins

that dimerization is a prerequisite for their function [5,34,35].

Moreover, interaction and cooperative binding to DNA has

already been inferred for AtBPC1 on the basis of DNA-bending

capabilities in vitro [18]. Therefore, we analyzed the ability of

AtBPC6 to form dimers in vivo that might also give us a clue to the

nuclear/nucleolar retention of the proteins during the flow

cytometry. We exploited the yeast-2-hybrid assay to systematically

test BPC6 prey fragments against different BPC bait proteins.

Indeed, AD-BPC6 and BD-BPC6 expressing yeast grew on

selective media and displayed significant b-galactosidase activity,

which is indicative for the formation of AtBPC6 homodimers

(Figure 3A). After testing all five fragments and the full-length

BPC6 protein in all possible AD- and BD-combinations (data not

shown), we found that the fragment BPC6-DC is responsible for

the homodimerization of the AtBPC6 protein (Figure 3A). The

BPC6-DC fragment contains the entire N-terminus harboring the

conserved coiled-coil domain (Figure 1 and Supporting Figure S4).

A fragment that lacks the C-terminus and half of the coiled-coil

region, BPC6-DN69DC, could not evoke reporter gene activity or

confer growth on selective media (Figure 3A), which indicates that

the entire coiled-coil region is required for dimerization.

Interestingly, both AD- or BD-combinations of BPC6-DC with

the full-length BPC6 protein did not exhibit any significant

reporter activities, which suggest a negative regulatory function on

the dimerization by one of the other AtBPC6 domains.

To test the ability of AtBPC6 to form heterodimers with other

BPC proteins, we tested AtBPC4, another group II protein in

Arabidopsis, and AtBPC1, a group I member that has been

studied previously [18].

AtBPC4 also contains the coiled-coil domain characteristic for

group II proteins, and indeed, we found AD-BPC4 able to form

homodimers with itself (Figure 3B). Moreover, BPC4 combina-

tions with either BPC6-DC or BPC6 conferred growth on selective

media and exhibited significant b-galactosidase activity, which

both indicates homotypic dimer formation between group II

proteins in the yeast cells.

Here again, dimerization could only be detected with constructs

that express the entire coiled-coil domain.

However, strong yeast growth and reporter gene activity could

be detected with full-length AD-BPC4 protein and BD-BPC6-DC.

Hence, we have to conclude that AtBPC4 lacks the inhibitory

function that acts negatively on BPC6-DC and its homodimeriza-

tion with full-length BPC6. We can not rule out that this essential

function is contained in the most N-terminal part of AtBPC6 and

AtBPC4 that shares much less similarities than the coiled-coil

regions of both proteins, which are highly conserved.

When testing the group I protein AtBPC1 for homo- and

heterodimerization, a weak growth on selective media was

detected accompanied by b-galactosidase activity (Figure 3B).

This supported the idea of homo- and heterotypic dimer formation

within and between the different groups of BBR/BPC proteins in the

heterologous yeast expression system. However, the homotypic

interaction between the group II proteins that was mediated by the

characteristic coiled-coil domain was the strongest in all combina-

tions. Moreover, the retention of BPC6-NLS inside the nucleus and

nucleolus can possibly not be explained by interaction with BBR/

BPC family members, as none of its tested fragment combinations

mediated reporter activity. Hence, other jet unknown interaction

partners will likely be responsible for this localization.

However, we consider an additional observation as noteworthy:

None of the BPC bait constructs evoked any transactivation of the

yeast reporters (Figure 3). This implies that Arabidopsis group II

BPC proteins as well as AtBPC1 lack eukaryote transcription

activation domains.

BiFC supports the formation of BPC homo- and
heterodimers in planta

To test whether the interactions found in the heterologous yeast

system can also be detected in planta, we made use of the

bimolecular fluorescence complementation (BiFC) assay [36]. In

transiently transformed Nicotiana benthamiana epidermis cells we

could detect strong complemented YFP signals for homodimers of

BPC6 and BPC6-DC as well as BPC6/BPC4 homotypic dimers

(Figure 4). Thus, the interaction mediated by the coiled-coil

domain takes place in the plant’s nucleus and nucleolus.

Consequently, both group II proteins BPC6 and BPC4 are

localized to the same nuclear expression domains.

Heterotypic dimers of BPC1/BPC6 as was implicated by the

yeast-two-hybrid assays could not be verified in planta, as the

observed signals with this combination did not exceed the

background fluorescence of the negative control combinations

YFPN-BPC6/YFPC-bZIP63 or YFPN-BPC6/YFPC (Figure 4).

Therefore, an interaction between BPC1/BPC6 in planta is likely

not existing under physiological conditions inside the plant’s

nucleus or it is very transient and, hence, below detection level.

In silico Analysis of the novel Alanine Zipper-like Domain
The occurrence of BBR/BPC-family proteins is restricted to the

plant kingdom and its BPC-type DNA-binding domain is of

monophyletic nature [17]. In contrast, the characteristic coiled-

coil domain of group II BBR/BPC-proteins exhibits similarities to

various proteins of all organism kingdoms, including brown algae,

fungi as well as humans (Figure 5A and Supporting Figure S5).

However, only few of these proteins have an assigned cellular role,

e.g. HsSMC1A (structural maintenance of chromosomes 1A),

SsMAP1A (microtubule-associated protein 1A) or ScRPL7b

(ribosomal protein L7) [37,38,39], however, some localize in the

nucleus similar to BBR/BPC-proteins.

Characteristic of this BBR/BPC type coiled-coil domain is the

presence of alanine residues with an even spacing of seven amino

acids in the extended alpha-helical region (Figure 5A).

accompanying histograms of GFP-transformed cells (black lines). BPC6-GFP and BPC6-NLS-GFP are retained inside the nucleus in a stabile manner,
while mGFP leaks out and gives background signals perfectly overlapping with wildtype (black line). Black arrowheads indicate significant retention
of the GFP signals inside the nuclei.
doi:10.1371/journal.pone.0016070.g002
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Similar domains have previously been described as Alanine

zippers or Alacoils that form antiparallel coiled coils [40,41,42,

43,44]. A distinguished structural feature are the alanines at either

the ‘d’ position or the ‘a’ position of the helical register, which

allows a very tight oligomeric (usually tetrameric) architecture of

the coils [42,44,45]. Well studied examples are the antiparallel

Figure 3. Coiled coil domains of Arabidopsis group II BBR/BPC proteins are essential for homotypic dimerization. Interaction analyses
with hybrid fusion proteins of AtBPC6 and its fragments by yeast two-hybrid are shown (A). The BPC6-DC fragment containing the coiled-coil domain
interacts with full-length BPC6 and BPC6-DC in a hybrid-fusion dependent manner. Interaction of group II with group I and II proteins in the yeast
two-hybrid system is tested with AtBPC1, AtBPC4 and AtBPC6 hybrid-fusion proteins (B). The coiled-coil domains of group II hybrid proteins BPC4
and BPC6 are essential for homotypic dimer formation. Interaction is tested by growth on adenine-deficient CSM selection media and b-galactosidase
reporter activity. Enzymatic activity of the b-galactosidase reporter is quantified from triple measurements of MUG substrate assays and three
independent transformations [n = 9]. Statistical background for no significant interaction is calculated from combinations with empty AD-clones and
is shown as dotted line. Asterisks mark combinations of hybrid fusion proteins that mediate significantly increased reporter enzyme activities over the
background: (**) indicates strong and highly significant (p#0,0001) interaction; Weak but significant interaction (p#0,01) is indicated by (*).
doi:10.1371/journal.pone.0016070.g003
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homodimeric coiled coils of the Lac repressor, the ROP protein or

of tropomyosin [40,41,42,43,45,46]. So far, only the tetrameric

Alacoil of the HAMP domain in histidine kinases of the two-

component system is known to assemble in parallel coils of four-

helical bundles of homodimers [42,47].

These reports suggested that group II BBR/BPC proteins do

likely interact by the formation of antiparallel coils. In contrast,

database searches revealed higher overall similarities with parallel

pairing Leucine zippers: In Leucine zippers, the heptad spacing of

aliphatic amino acid residues forms a hydrophobic inner core of

the helical bundles, while hydrophilic residues stabilize the zipper

region on the outside [45,48,49]. On the one hand, it has been

reported that the side chain of alanines is too short to support a

hydrophobic inner core of classical Leucine zipper dimers

[49,50,51]. On the other hand, there are also evenly spaced

aliphatic amino acids present in the BBR/BPC-type coils besides

the highly conserved Alanines.

Hence, we were wondering whether the Alanine zipper-like

motif is an unusual type structure that is still capable of forming

parallel Leucine zipper-like coils instead of antiparallel helical

bundles. To address that question, we used several publicly

available prediction algorithms [52,53,54]. All of them predicted a

coiled-coil region that does not form a Leucine zipper-like

interaction domain, because of missing hydrophilic residues in

the correct position of the alpha-helix (Figure 5A). We also tested

the Alanine zipper motifs from other organisms (Figure 5A), but

none of them was predicted to form Leucine zipper-like coils either

(data not shown).

Besides the heptad positioned alanines (presumably at the ‘d’

position of the zipper), we found evenly spaced, negatively charged

residues at the ‘g’-position of the helix accompanied by positively

charged residues at the ‘a’-position (Figure 5A). To gain a better

insight into the three dimensional positioning of the residues, the

amino acids of the Alanine zipper were displayed in an alpha-

helical wheel diagram (Figure 5B). Here, charged amino acids

were directly adjacent to the alanine residues, which formed the

inner core of the coiled-coils; alanines in the center were flanked

by positively or negatively charged residues on either side.

These findings suggested that parallel coiled-coils will most like

be formed and, hence, each of the negatively charged residues of

one alpha-helix faces the positively charged residues of the

neighboring alpha-helix, and vice versa (Figure 5B). On the basis

of our analysis, one can speculate that the opposing charges play

an important role in the formation of the coils [49], which supports

the idea that the Alanine zipper constitutes a novel type of

interaction domain.

Homology model of the Alanine Zipper versus a Leucine
Zipper

To address the possibility whether the Alanine zipper is able to

mediate a stabile dimer conformation that is supported by the

attraction from the opposing charges, we computed a three

dimensional structural model of the AtBPC6 Alanine zipper.

Therefore, we acquired the atomic coordinates from a monomeric

crystal structure of the alpha-helical Leucine zipper of C-Jun (PDB

Figure 4. Arabidopsis group II proteins BPC4 and BPC6 form
homotypic dimers in planta. Bi-molecular fluorescence complemen-
tation (BiFC) is used for in planta interaction studies. (A–F) Expression of
indicated BPC1, BPC4 and BPC6 split-YFP hybrid fusion proteins are
examined in transiently transformed Nicotiana benthamiana epidermal
cells. The coiled-coil domain is essential for homotypic dimerization of
BPC4 and BPC6 in the nucleus and the nucleolus.
doi:10.1371/journal.pone.0016070.g004
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Figure 5. The Alanine zipper coiled-coil forms dimers via electrostatic interaction. (A) Alanine zipper regions of AtBPC6 and of other
proteins are compared to the Leucine zipper of the C-Jun oncogene: Physcomitrella: [GenBank: AB292414], Microcystis: [GenBank: AP009552],
Azorhizobium: [GenBank: ABA21837], Aspergillus: [GenBank: XM_750964], Homo: [GenBank: BC146794], Sus: [GenBank: XM_001925969]. Conserved
Alanines at the ‘d’ positions of the Alanine zipper are highlighted with black background color. Conserved positions of positively or negatively
charged residues are indicated in blue or in red colors, respectively. (B) Helical wheel diagram of an Alanine zipper homodimer. The diagram depicts
the clockwise axial rotation of the helices as viewed from their N-termini. The conserved Alanines form a core and are flanked by the positive (blue)
and negative (red) charged residues that oppose each other. The wheel starts with Ala41 and ends with Ala76. Ribbon dimer model of the AtBPC6
Alanine zipper (C) and the C-Jun Leucine zipper regions (D). Monomers are either shown in green or in yellow. Conserved alanines or leucines in the
core of the respective dimer are displayed as ball structures. The Leucines of the C-Jun dimer are involved in binding and form a hydrophobic core,
which cannot be seen in the AtBPC6 Alanine zipper. Enlarged side (E) and top (F) view of the Alanine zipper homology model. Positively (blue) and
negatively (red) charged side chains embrace the alanines (green) and form salt bridges or hydrogen bonds (turquoise). Schematic overview of the
residues that support the stable dimer structure of the homology modeled AtBPC6 Alanine zipper via salt bridges (G) or hydrogen bonds (H). Amino
acids with positive or negative charges are given in blue or red, respectively. Schematic drawing of the BBR/BPC group II monomers and dimers (I).
The so far characterized domains imply a functional model, in which the proteins form homotypic dimers within group II in a parallel manner. As a
consequence, their two DNA-binding domains make contact to neighboring GAGA-motifs on the same side of the strand.
doi:10.1371/journal.pone.0016070.g005
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ID: 1T2K) [55]. The positions of the conserved AtBPC6 Alanine

zipper were homology modeled by superimposition and fitted onto

the corresponding register of the conserved leucines in the C-Jun

oncogene’s zipper domain (Figure 5C and Supporting Figure S6).

Besides the C-Jun and AtBPC6 zippers, we also modeled two

mutant domain versions that provided us with more insight on the

function of the alanines inside the zipper: In C-Jun-ALA the

leucines that contribute to the zipper were exchanged for alanines,

while in BPC6-LEU the conserved alanines inside the homology

modeled AtBPC6 domain were replaced by leucines. Additionally,

two domains were modeled in a shifted register of the helices

(Supporting Figure S8): In BPC6-1 the conserved alanines of the

native BPC6 domain sequence were fitted onto the ‘c’-position and

in BPC6-3 onto the ‘a’-position of the C-Jun sequence.

The sidechains of the monomeric models were minimized for

200 steps and, subsequently, homodimeric models were obtained

by structural alignments of the different monomers onto the crystal

structure of the C-Jun-homodimer (PDB ID: 1JNM), followed by

additional minimization steps.

A comparison of the homology model of the AtBPC6 Alanine

zipper and the original C-Jun Leucine zipper (Figure 5D) already

discloses differences between the opposing amino acid residues of

the dimers and the distances within their helical backbones. In the

C-Jun zipper domain the leucines are in close contact and form

the hydrophobic core around which the two monomers are coiled

and which is fully consistent with reports in literature

[49,50,52,55]. Inside the two facing AtBPC6 dimerization domain

models, the conserved alanines are proximal to each other

(Figures 5E & F), however, they appear not directly to be involved

in the stabilization of the dimers and they do not form an obvious

knobs-into-holes structure. Hence, the possible function of the

conserved alanines of AtBPC6 dimerization domain might be the

reduction of sterical hindrance due to the tiny methyl group side

chain and, thus, to make way for the neighboring positively and

negatively charged residues. Supportive of this assumption is the

presence of proteins encoded in bacteria genomes with related

domain structures, but with a glycine instead of alanines in the

coiled-coil region (Supporting Figure S5), which indicates that only

tiny amino acids are permissive at this position in the zipper.

As one consequence of small amino acids, the model of the

group II BPC coiled-coils will likely have strands closer to each

other and smaller in diameter when compared with the Leucine

zipper homodimer structure of C-Jun (Supporting Figure S7).

Likewise, the diameter of the modeled C-Jun-ALA zipper

mutant version appeared to be smaller, while it was larger for

BPC6-LEU. Moreover, the leucines of the BPC6-LEU dimer form

a hydrophobic core homologous to the knob-in-hole signature of

the C-Jun Leucine zipper dimer [45,49,55].

These findings can be supported by RMSD of the backbone

atoms of the dimeric homology models during a 19.5 ns

production run, in which the structural stability of the models is

compared with the actual C-Jun dimer structure.

As expected, the RMSD for AtBPC6 and C-Jun-ALA deviate

more from the backbone coordinates than that of BPC6-LEU or

the C-Jun during the first 10 ns (Supporting Figure S9). The

register shifted version BPC6-3 was of comparable stability as the

native AtBPC6 model. In contrast, the BPC6-1 model did not

form any stabile conformation (Supporting Figure S9 and S10).

The dimeric structure of BPC6-1 starts to disintegrate from the N-

Terminus during equilibration. The distance between the C-alpha

atoms of the N-TerminalGLU increases from 25.0 Angstroem(t0)

to 34.6 Angstroem within 2.3ns of MD. After 2.3ns the distance

between monomers varies but the monomers form nevers dimers

again. The dimers are only connected via hydrogen bonds at the

C-terminal moiety during the whole simulation. (Supporting

Figure S10).

Alanine Zippers form stable Dimers via Electrostatic
Interaction

Besides the described observations, our approach allowed us to

count the number of intermolecular salt bridges and hydrogen

bonds that were formed between the two monomers and to assess,

which of the residues were involved in those interactions.

The models disclosed that there are almost three times as many

hydrogen bonds and almost six times as many salt bridges in the

Alanine zipper dimer of AtBPC6 compared to the Leucine zipper

dimers of C-Jun (Figures 5 G & H and Supporting Table S1). The

register shifted BPC6-3 formed a stabile dimer with many

hydrogen bonds and a comparable number of salt bridges as in

the native BPC6 model (Supporting Table S1). This is interesting,

as the known Alacoil zippers are characterized by conserved

alanines in either ‘a’- or ‘d’-positions. As the BPC6 models in both

of the registers form stable dimers, we can not make a definite

decision on the register conformation.

Compared with AtBPC6 dimers, the in silico mutation of the

conserved alanines to leucines in BPC6-LEU decreased the number

of both hydrogen bonds and salt bridges (Supplementary Table S1).

In contrast, the replacement of leucine residues with alanines in

the C-Jun-ALA monomers led to a loss of the known zipper

structure and the polar hydrophobic residues that used to stabilize

the hydrophobic core from the outside were turned to the inside of

the coiled-coil (Supplementary Table S1) [49]. As a consequence,

the known zipper structure was lost. This on the one hand

increased the number of hydrogen bonds and salt bridges that

were detected compared to the native C-Jun structure.

To gain further insight into the nature of the homodimeric

interaction of the zippers, we used 5 ns of our 19.5 ns production

run, where the structure of the protein backbone were relative

stable, to approximate the binding free energies between our

modeled structures (Supporting Figure S11). This should allow us

to rank the binding affinities between the different coiled-coil

structures by their binding free energies.

On the basis of its homodimeric crystal structure the computed

DGBinding for the C-Jun homodimers was 222.24 kcal mol21

(Supplementary Table S2).

The binding free energy for the homology modeled AtBPC6

dimer was nearly twice as big compared with C-Jun (DGBinding =

244.62 kcal mol21) and, hence, can explain the stable dimer

formation of the two Alanine zipper monomers in vivo. Compa-

rable values were found for the register shifted BPC6-3 dimer

(DGBinding = 239.82 kcal mol21) and, therefore, no definite con-

clusion on the ‘a’ or ‘d’ register of the Alanines can be drawn.

For the mutated BPC6-LEU dimer a DGBinding of

246.85 kcal mol21 was calculated; a value equivalent to that of

the wildtype AtBPC6 Alanine zipper. This finding suggests that a

chimera of an Alanine and Leucine zipper by introducing a

hydrophobic core into the Alanine zipper’s electrostatic backbone

structure would not necessarily increase the strength of binding

(Supplementary Table S2).

The C-Jun-ALA zipper was more unstable and the computed

DGBinding was 5.02 kcal mol21. This had been expected, as the

hydrophobic core between the monomers was removed with the

mutation of the leucines.

Group II BBR/BPC proteins form parallel Dimers in planta
On the basis of our initial assumption that BBR/BPC type

Alanine zippers share similarities to Leucine zippers, we postulated

parallel dimer formation of AtBPC6 (Figure 5 I), which was
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supported by our homology models. To validate our previous

findings, we applied the powerful technique of fluorescence

resonance energy transfer (FRET) combined with two-chromo-

phore fluorescence lifetime imaging microscopy (FLIM) [56,57].

Our custom made FLIM system consisted of a confocal sample

scanning microscope (CSSM), a spectral integrating detector for

measuring fluorescence intensities and a time-correlated single-

photon counting board for recording fluorescence lifetime decay

[58,59]. GFP- and RFP-AtBPC6 fusion proteins serve as

excitation energy donor (GFP) or acceptor (RFP) and were

transiently co-expressed in Nicotiana benthamiana epidermis cells.

The fluorescent proteins were fused to either the N- or the C-

terminus of AtBPC6 and analyzed for GFP- or RFP-emission

under GFP-excitation light. GFP-fluorescence intensities of cells

transformed with GFP-BPC6 alone or co-transformed with

mCherry-NLS served as references. The presence of the fusion

proteins in the nucleus was verified by conventional confocal laser

scanning microscopy (Figure 6 A–C).

While strong GFP-fluorescence was recorded for all trans-

formed cells (Figure 6 D), under GFP-excitation light RFP-FRET-

Figure 6. AtBPC6 forms parallel dimers in planta. (A–C) Confocal laser scanning microscopy analysis of GFP-/RFP-fusion proteins and mCherry-
NLS in transiently co-transformed Nicotiana benthamiana epidermis cells. All proteins localize to the nucleus. GFP fluorescence intensities (D) and
RFP-FRET fluorescence intensities (E) under GFP-excitation light. (F) In vivo GFP fluorescence life time measurements of all four possible GFP/RFP
protein combinations fused to either the N- or the C-terminus of AtBPC6. BPC6-GFP and BPC6-GFP/mCherry-NLS combinations serve as controls.
Pictographs (right hand side) display the only possible zipper orientations that are in accordance with the GFP fluorescence life time measurements.
doi:10.1371/journal.pone.0016070.g006
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fluorescence could only be measured for BPC6-GFP/BPC6-RFP

(Figure 6 E) or GFP-BPC6/RFP-BPC6 co-transformed cells (data

not shown). These findings are already a strong indication that

parallel AtBPC6 dimers are formed in planta.

An antiparallel orientation of the zipper would arrange the

chromoproteins for BPC6-GFP/BPC6-RFP (both fusions at the C-

terminus) further apart than those for GFP-BPC6/RFP-BPC6

(both fusions at the N-erminus). We, therefore, analyzed the

lifetime of GFP-fluorescence, which provides information about

the physical and chemical environment of the chromoprotein. The

closer RFP (FRET-acceptor) localized to GFP, the more decrease

of the GFP-lifetime will be seen. The measurements revealed

significant differences (p,0.01) for all co-transformed cells

compared to the control transformations (Figure 6 F). The

combinations BPC6-GFP/BPC6-RFP and GFP-BPC6/RFP-

BPC6 displayed strongest decrease in GFP-lifetime. The values

for the two co-transformations did not differ significantly between

the two samples. Hence, this data can only be explained by a

parallel orientation of the helices.

Consistently, the combinations BPC6-GFP/RFP-BPC6 and

GFP-BPC6/BPC6-RFP exhibited a much lower affect on the

GFP-lifetime (Figure 6 F). We expected the strongest GFP-lifetime

decrease for these later combinations for antiparallel topology of

the AtBPC6 Alanine zipper.

Taken together, the in planta data validates our homology models.

These findings have a crucial implication for AtBPC6 function: The

helices are oriented in parallel towards each other, which proposes a

model in which the DNA-binding domains of the dimers make

contact to neighboring GAGA-motifs on the same side of the DNA-

helix. This is in accordance with earlier analyses on the distribution

of BBR/BPC binding sites in the core-promoter sequences, where

GA- and TC-rich repeats are found in close proximity to each other

at the transcriptional start sites of the genes [60,61].

Concluding remarks
Since the initial identification and characterization of GAGA-

binding proteins in plants, only little progress has been made

towards a functional elucidation of these proteins. It was shown

that the BBR/BPC proteins are capable of DNA-bending in vitro

and it has been assumed they might harbor an orthologous

function to Drosophila Trl or Psq in planta [13,18].

A prerequisite for GAGA-binding factor action in animals is the

formation of multimers and higher order complexes, which affect

DNA-condensation. In this work, we demonstrate that BBR/BPC

proteins are forming stabile dimers in the plant nucleus and nucleolus,

which is required for a possible functional orthology to Trl and Psq.

Moreover, we demonstrate that group II BBR/BPC dimeriza-

tion is encompassed by a novel Alanine zipper protein-protein

interaction domain, which mediates binding of parallel oriented

helical bundles via electrostatic interaction.

We suggest a model in which the two major groups of BBR/

BPC proteins act in a supposedly competitive manner through

binding to the same DNA-motifs inside the transcriptional units of

genes, but fulfilling distinct functions. Most likely, the BBR/BPC

proteins form dimers or multimers to influence the transcriptional

activation by DNA-bending, similar to what has been reported for

their Drosophila counterparts Trl or Psq.

Materials and Methods

Cloning and sequence analysis of AtBPC6 orthologs
Arabidopsis thaliana Columbia-0 sequence of AtBPC6 [NCBI:

ABL67949] was used for all analyses. Genomic DNA of Olimar-

abidopsis pumila and Cardamine pratensis was extracted using a modified

Edwards buffer [62]. Gradient TAIL-PCR was performed using

Arabidopsis specific primers (BPC6-ATG-S1: ATGGATGATG-

GTGGGCATCG; BPC6-woSTOP-A1: TTTAATCGTAATG-

TAGCGG) in combinations with random nonamers. Amplicons

were cloned into pCR-Topo (Invitrogen) and sent for sequencing at

4baseLab (Reutlingen). Searches with Blast [63] against the EST

database identified the introns and coding exons. Sequences have

been submitted to GenBank [NCBI: ABC25623 and NCBI:

ABG57062].

Conceptual translation of the ORFs into amino acid sequence

was done to compute a multiple alignment with ClustalW [64].

Transient transformation of tobacco leaf cells
Nicotiana benthamiana plants were cultivated in the greenhouse

(temperature: day 25uC/night 19uC, humidity 60%, photoperiod:

14 h).

Agrobacterium tumefaciens GV3101 pMP90 was infiltrated into the

adaxial side of leaves from 5 week old tobacco plants as has been

described [65]. Co-expression of p19 protein from tomato bushy

stunt virus was used for suppression of transgene silencing [66,67].

Transformation of several expression vectors was performed as

described [68]. Transformed leaf areas were analyzed one to two

days post infiltration.

GFP/RFP fluorescence analysis and flow cytometry
All clones were constructed in GatewayTM (Invitrogen) compatible

vectors. Clones containing the ORF of full-length or partial AtBPC6

sequences were established in pENTR-D-Topo (Invitrogen). For

localization analysis of fusion proteins, the coding sequences were

subsequently LR recombined to appropriate pUGT-DEST vectors.

After recombination of the cDNA, the binary pUGT-DEST vectors

express fusion proteins with either GFP or RFP at their N- or their C-

terminus under the control of the Arabidopsis Ubiquitin10-promoter.

GFP fluorescence was analyzed in transiently transformed

Nicotiana benthamiana epidermis cells using Confocal Laser Scanning

Microscopy (CLSM).

For quantitative fluorescence analysis of plant nuclei by flow

cytometry, leaf samples were incubated in glass Petri dishes and

covered with extraction buffer (15 mM Tris, pH 7,5; 2 mM

EDTA; 0,5 mM Spermine; 80 mM KCl; 20 mM NaCl; 15 mM

ß-Mercaptoethanol; 0,1% Triton). Tissue was cut in small pieces

and filtered through 40 mm sieve. Propidium iodide to a final

concentration of 50 mg/ml was added to the nuclei suspension and

incubated 5 min prior the analysis.

Flow cytometric analysis was performed with a MoFlo (Beck-

man-Coulter). PI and GFP were excited with an argon laser

488 nm (50 mW) and fluorescing nuclei were identified as the PI

bound fraction in the PI Fluorescence (613/618) vs. GFP

Fluorescence (530/540) plot.

Bimolecular fluorescence complementation (BiFC) assay
BiFC was performed in transiently transformed Nicotiana

benthamiana leaf epidermis cells [65]. For in vivo interaction analysis,

the coding sequence inserts in pENTR-D-Topo (Invitrogen)

vectors were LR recombined to either pSpyNe-GW or pSpyCe-

GW binary destination vectors, which express fusion proteins with

YFP-fragments at their N-termini [65].

Presence of YFP fluorescence was scored one to two days post

infiltration using Confocal Laser Scanning Microscopy (CLSM).

Yeast-two-hybrid analysis
MatchmakerTM (Clontech) compatible pGBKT7-DEST and

pGADT7-DEST vectors were LR recombined with corresponding
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Entry clones and transformed to PJ69-4A yeast strain [66].

Complementation of auxotrophy was score by growth on selective

media (CSM-L-,W-, Ade-). Enzymatic activity of the b-galactosi-

dase reporter has been quantified by triple measurements of MUG

substrate assays of three independent transformations [n = 9] and

normalized to total protein amount [69]. Statistical background

for no significant interaction has been calculated from enzymatic

activity of empty AD-clone combinations.

Optical and spectroscopic measurements
The FRET-FLIM measurements were performed with a

custom-built CSSM (confocal stage scanning microscope), based

on a Zeiss Axiovert 135 TV, and equipped with a pulsed

supercontinuum laser–source (SuperKTM, NKT Photonics) as

excitation light source operating at 471 nm and a repetition rate of

40 MHz. A microscope objective with high numerical aperture

(Plan-Neofluar, 1006/1.30 oil, Zeiss) was used to focus the

excitation light as well as to collect the fluorescence emission. The

setup was equipped with a 500 nm dichroic mirror (FF500-Di01-

25636, Semrock) to block back-scattered excitation light and with

a 527 nm bandpass filter (Semrock BrightLine BL527/20) to

detect GFP-fluorescence. An avalanche photo diode (PDM series,

MicroPhotonDevices (MPD), Italy) served as a spectrally integrat-

ing detector to record fluorescence intensity. Lifetime decays were

recorded using a time-correlated single photon counting board

(PicoHarp 300, Picoquant, Software: SymPhoTime, Picoquant)

for data acquisition and the MPD as a detector. The intensity

decay curves were fitted by a monoexponential decay function,

which was convolved from the instrument response function (IRF)

measured without the long pass filter to record back-reflected

excitation light.

Structural modeling
On the basis of the crystal structures of the coiled-coil

dimerization domain of the bZIP transcription factor C-Jun

(PDBID: 1T2K and 1JNM) structural models of the dimerization

domain of BPC6 were created for the monomers and dimers.

Using PyMOL (http://www.pymol.org), the protein sequence

from residue 37 to 81 was fitted onto the structure of the C-Jun

dimerization domain (residue 278 to 322). Thereby the alanine

residues of BPC6 were superposed onto the corresponding leucine

residues at the ‘d’ positions of the alpha-helical zipper domain of

C-Jun. The models of the register shifted BPC6-1 and BPC6-3

were constructed using PyMOL. The protein sequence of BPC6

was modeled onto the residues 268–308 (BPC6-1) and 266–306

(BPC6-3) of the c-Jun crystal structure. The dimeric models were

minimized for 2000 steps to remove structural clashes using the

conjugate gradient algorithm. Force field parameters for the

protein were taken from the AMBER all-atom protein force field

ff03 [70].

Molecular Dynamics (MD) simulation
The molecular dynamics simulations were performed with the

SANDER and PMEMD module of AMBER 9. Every dimeric

structure of BPC6, C-Jun, BPC6-LEU, C-Jun-ALA, BPC6-1 and

BPC6-3 was placed in a rectangular water box composed of

TIP3P water molecules [71] with a buffering distance of 12 Å

around the protein, using Leap (AmberTools 1.4). Periodic

boundary conditions in all dimensions were used for the simulation

of the systems. The dimensions of the periodic boxes (X;Y;Z) were

55.366Å ;51.067 Å ;97.698 Å for BPC6, 55.366 Å; 51.067 Å;

98.258 Å for BPC6-LEU, 49.439 Å; 50.192 Å; 90.441 Å for

BPC6-1, 54.288 Å;47.888 Å; 92.658 Å for BPC6-3, 56.742 Å;

55.386 Å; 99.174 Å for C-Jun and C-Jun-ALA. Counterions were

added to maintain the electroneutrality. The four different systems

consist out of 21’439 atoms (BPC6), 24’521 atoms (C-Jun), 21’631

atoms (BPC6-LEU), 24’461 atoms (C-Jun-ALA), 20’515 atoms

(BPC6-1) and 21’901 atoms (BPC6-3). Long-range electrostatic

interactions were estimated using the particle mesh Ewald method

[72]. Bonds involving protons were constrained with the SHAKE

algorithm [73] using the default tolerance (1.061025Å) and time

steps of 2fs. Non-bonded interactions were truncated at 12Å and

the non-bonded list was updated every 25 steps. Each system was

minimized for 500 steps using the steepest descent algorithm

followed by 500 steps with the conjugate gradient algorithm. The

systems were gradually heated from 0.1 to 300K by 50-ps constant

volume dynamics (NVT ensemble). The Langevin dynamics with

a collision frequency of 2.0 ps21 was applied to control the

temperature of the system. The density of the system was adjusted

to 1 g/cm3 by 50ps by constant pressure (1atm) and temperature

dynamics (NPT ensemble). A pressure relaxation time of 2.0ps was

used. During the minimization, heating and equilibration all

atoms of the complex were restrained to their initial positions by a

weak force constant of 2 kcal mol21 * Å22. A subsequent

unconstraint 19.5ns production run was performed at constant

pressure (1atm) and constant temperature (300K). Coordinates for

analysis were saved every 1ps. The trajectory was analyzed with

the ptraj module from AMBER. Root-mean-square deviations

(RMSD) of the backbone atoms from the different protein

structures were computed from the MD trajectory relative to the

initial structures to estimate the stabilization of the systems

(Supporting Figures S8 and S9).

Estimation of binding energies
Binding free energies between the dimers were estimated using

the single molecular dynamics trajectory method and the MM-

PBSA [74] and normal mode analysis. For the calculation of the

enthalpic contribution, multiple snapshots of the ligand, receptor

and the ligand-receptor complex were extracted every 10 ps from

a 5ns period of the MD trajectories were the backbone RMSD was

relatively stable (Supporting Figure S9). Since estimation of

entropic contribution is more time consuming, snapshots for this

calculation were extracted every 100ps from the same time

windows. All water and counter ions were stripped. To calculate

the binding free energies of 500 snapshots, which were averaged

afterwards, the following formula was used:

DGbind~SGcomplexT�(SGproteinTzSGligandT)

The free energy terms include the contributions from gas phase,

solvation and entropic effects and were calculated by using the

formula below:

G~EgaszGsolvation{TS

Egas~EintzEvdWzEele

Gsol~GPBzGsa

where Egas is the sum of the internal energies (bond, angle and

torsion) and the van der Waals and electrostatic energies.

The polar component of the solvation free energy (GPB) was

calculated by using the PBSA program in AMBER9.0. The

dielectric constant for the solute (inside the solute) was set to 1 and

80 in the solvent in this work. The non-polar component (Gsa) was
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determined with

GSA~c�SASAzb

in which SASA (solvent accessible surface area) was calculated

with molsurf. The values for c and b were set to 0.0072 kcal -

mol21 Å22 and 0 kcal mol21 , respectively. The contribution of

entropy (TS) to binding free energies, which arises from changes of

the translational, rotational and vibrational degrees of freedom,

was calculated by normal mode analysis with the nmode module

of AMBER 9.

Image capture and analysis
CLSM was performed using a Leica TCS SP2 confocal

microscope (Leica Microsystems GMBH). CLSM image capture

and analysis was described previously [66].

Sequence analysis
Sequences acquired from GenBank accessions: AtBPC1 [NCBI:

AAM15473], AtBPC4 [NCBI: AAM15408], AtBPC6 [NCBI:

ABL67949], rice Os06g0130600 [NCBI: AAX59046], Physcomi-

trella [NCBI: BJ586982], Solanum [NCBI: BT013886] Medicago

[NCBI: ABL10372].

Multiple sequence alignments were computed with ClustalW

[75].

Secondary structure prediction was performed with SOPMA

(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_

sopma.html) on the basis of multiple sequence alignments [76].

Analysis of the coiled-coil domain was performed with the

following programs: COILS (http://www.ch.embnet.org/software/

COILS_form.html) [52], Paircoil2 [53] and MultiCoil [77].

Supporting Information

Figure S1 Secondary structure prediction of AtBPC6. Pre-

diction of AtBPC6 protein secondary structure using SOPMA (http://

npsa-pbil. ibcp.fr/cgi-bin/npsa_automat.pl?page = npsa_sopma.html).

For orientation, schematic positions of the coiled-coil domain (checked-

grey), nuclear localization signal (dark grey) and zinc-finger like DNA-

binding domain (black) are shown. Raw probability scores for helix,

sheet, turn or coil secondary structures in a sliding window of 17 amino

acids.

(TIF)

Figure S2 Relative signal intensities of DAPI- and GFP-
fluorescence in the nucleus and nucleolus. Relative signal

intensities of DAPI- and GFP-fluorescence in nuclei are measured

from laser confocal microscopy images of BPC6-GFP, BPC6-NLS-

GFP and mGFP expressed in Nicotiana benthamiana epidermis cells

(Figure 1D). Fluorescence intensities (y-axis) of BPC6-GFP and

BPC6-NLS-GFP overlap with DAPI in the nucleoplasm, but are

highest at the periphery of the nucleoli.

(TIF)

Figure S3 Subcellular localization of GFP-fusion pro-
teins of AtBPC6 fragments. Laser confocal microscopy

analysis of GFP fusion proteins and free mGFP in transiently

transformed Nicotiana benthamiana epidermis cells. All hybrid fusion

proteins of AtBPC6 fragments containing the entire 31 amino-acid

long NLS localize to the nucleus and the nucleolus.

(TIF)

Figure S4 Prediction of the coiled-coil region present in
group II BPC proteins. Prediction of a coiled coil containing

domain at the N-terminus of AtBPC6 has been performed with 5

programs independently (Coils; Paircoil; Paircoil2; Multicoil; 2ZIP).

All programs predict an extended a-helical coiled-coil region, which

does not resemble topological features characteristic for Leucine

zipper-like coils. The output of the program Coils (http://www.ch.

embnet.org/software/COILS_form.html) is displayed, accompa-

nied by a schematic overview of AtBPC6 domains and the primary

sequence forming the coiled coil, respectively. alanines with an

evenly spacing of 7 amino acids are highlighted in red.

(TIF)

Figure S5 Presence of BPC-like coiled-coil regions
outside the BPC-family. BPC-like coiled-coil regions from

green plants, brown algae, cyanobacteria, bacteria, fungi and

animals are aligned. alanines with an evenly spacing of 7 amino

acids are highlighted by black background color. Not perfectly

matching alanines that still contribute to a possible zipper

structure are given in bold face. All sequences displayed are

predicted to form coiled-coils (p$0.8) without Leucine zipper-like

topology. Sequences were retrieved from GenBank: Ostreococcus

lucimarinus CCE9901 predicted protein (OSTLU_18871) [Gen-

Bank: XM_001422391], Desmarestia viridis cytochrome oxidase

subunit II [GenBank: AAS79051], Physcomitrella patens CHUP1A

mRNA for chloroplast unusual positioning 1A [GenBank:

AB292414], Microcystis aeruginosa NIES-843 [GenBank:

AP009552], Anabaena variabilis [GenBank: ABA21837], Burkholderia

pseudomallei strain K96243 [GenBank: BX571965], Azorhizobium

caulinodans [GenBank: ABA21837], Coprinopsis cinerea hypothe-

tical protein (CC1G_08107) [GenBank: XM_001836670],

Magnaporthe oryzae hypothetical protein (MGG_04186) [GenBank:

XM_361712], Phaeosphaeria nodorum [GenBank: XM_001801867],

Saccharomyces cerevisiae RPL7B [GenBank: NM_001184012], Asper-

gillus fumigatus NACHT domain protein [GenBank: XM_750964],

Homo sapiens DLG5 [GenBank: BC146794], Sus scrofa similar to

microtubule-associated protein 1A [GenBank: XM_001925969],

Mus musculus SMC1A [GenBank: AK017948], Homo sapiens

SMC1A [GenBank: BC080185]; Sequences with aberrant Alanine

zipper signatures are Homo sapiens LUZP4 [GenBank: BC080185],

Burkholderia cenocepacia hypothetical protein [GenBank:

YP_002232335]. Grey background indicates variation in position-

ing of the positively or negatively charged residues within the

aberrant Alanine zipper signatures.

(TIF)

Figure S6 Homology model of alternating amino acids
in the AtBPC6 Alanine zipper. The homology model of the

coiled-coil structure of AtBPC6 was computed by using the

backbone coordinates of the C-Jun Leucine zipper. For better

visualization of the alternating amino acid residues inside the

Alanine zipper region were color coded: blue -positive charged;

red - negative charged; yellow – conserved alanines; green – all

other amino acids. (A) and (B) illustrate the identical model from

angles as indicated. The molecules were fitted and displayed by

using PyMOL (http://www.pymol.org).

(TIF)

Figure S7 Homology models of monomeric and homo-
dimeric coiled-coil structures. The homology models of

the monomeric and homodimeric coiled-coil regions of BPC6, C-

Jun, C-Jun-Ala and BPC6-Leu were computed by using the

backbone coordinates of the C-Jun Leucine-zipper. Conserved

alanine and leucine residues (both at ’d’ position of the register) in

BPC6 and C-Jun or mutated alanines and leucins in BPC6-Leu or

C-Jun-Ala were highlighted in yellow. The figure illustrates the
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identical models from two angles as monomers or homodimers.

The monomeric molecules were fitted by using PyMOL (http://

www.pymol.org), the dimers were subsequently computed and

displayed using AMBER (http://ambermd.org/).

(TIF)

Figure S8 Alignment of the native AtBPC6 and the
register shifted BPC versions with C-Jun. The register

of the C-Jun alpha-helix is shown on top of each alignment.

Conserved alanine or leucine residues are highlighted in red and

yellow background. The native sequences are aligned to fit the

conserved amino acids at ‘d’-position of the register. In BPC6-1

the register is shifted by one position, in BPC6-3 it is shifted by

three positions, respectively. Thus, the conserved alanines are now

at positions ‘c’ (BPC6-1) or ‘a’ (BPC6-3).

(TIF)

Figure S9 RMSD of the backbone atoms of the dimeric
models during the production run (19.5ns). The 19.5ns

production run was performed at constant pressure and constant

temperature. Coordinates for analysis were saved every 1 ps.

Root-mean-square deviations (RMSD) of the backbone atoms of

the six indicated protein structures were computed from the MD

trajectory relative to the initial structures.

(TIF)

Figure S10 Homology model of the register shifted
BPC6-1. The homology model of the coiled-coil structure of

AtBPC6 was computed by using the backbone coordinates of the

C-Jun Leucine-zipper, but shifted by 21 register. The conserved

alanine residues in BPC6 at ‘d’-position are not at ‘c’-position.

Note that within the short period of 2.3ns the two helices departed.

(A) start position; (B) 2.3ns of equilibration.

(TIF)

Figure S11 RMSD of the backbone atoms of the dimeric
models during the time period that was used for the
calculation of the binding free energies. Schematic

overview of the 5 nanosecond periods from the RMSD of the

backbone atoms that were taken for the calculation of DGBinding:

BPC6 - 15.5ns to 19.5ns (black line); C-Jun - 11.0ns to 16.0ns (red

line); BPC6-LEU - 15.5ns to 19.5ns (green line); c-Jun-ALA -

11.0ns tp 16.0ns (violett line); BPC6-3 - 15.5ns to 19.5ns (cyan).

(TIF)

Table S1 Hydrogen bonds and salt bridges that were
formed between the two monomers during the 19.5ns
production run. The table gives the pairs of amino acids and

their positions within the zipper domains. Only those amino acids

of one monomer are listed that have formed either hydrogen

bonds or salt bridges with the respective pairing residue of the

other monomer.

(XLS)

Table S2 Binding free energy components of the
dimmers. The calculated binding free energies are listed.

Values have been inferred from 5 ns of 19.5ns production run and

are given in kcal mol21.

(XLS)
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