
COPD (11, 12). RARB is expressed in human lung tissue,
bronchial epithelial cells, and airway smooth muscle cells (10),
and knockout of this gene could lead to premature alveolar
septation in mice (13), suggesting its fundamental function in
lung development, normal physiology, and capacity. In this
study, we observed the positive association between PAH
exposure and hypermethylation in RARB promoter; a putative
effect may exist on decreasing expression of RARB caused by
PAHs. There was also a suggestive association of rs1529672-A
allele with reduced RARB expression. Considering the important
biological roles of RARB in lung development, we speculated
that the decreased expression of RARB may act as the common
target for PAH exposure and rs1529672, suggesting a possible
mechanism underlying the statistical gene–environment
interaction.

Strengths of this study were the prospective design and results
validation by two independent cohorts of populations with a wide
range of PAH exposure. The limitations of this study included not
investigating the SNPs reported after March 2017, along with
variants in genes involved in PAHmetabolism and related biological
pathways. Future longitudinal studies in other ethnic populations
and the well-designed functional studies are warranted to validate
these associations and elucidate putative mechanisms for the
PAH–RARB interaction in lung function impairment.

In conclusion, the GWAS reported RARB rs1529672 may
modify the effect of PAH exposure on annual FEV1/FVC decline.
The results emphasize the urgency of reducing environmental PAH
levels and the importance of lung function monitoring in the routine
physical examination, especially for high-risk populations. n
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Human Fetal Lungs Harbor a Microbiome Signature

To the Editor:

The concept of the “sterile” fetus has been challenged recently
(1–4). We previously reported the existence of an airway
microbiome at birth in neonates (5) and speculated that this airway
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microbiome could have fetal origins. The exact source of the infant
microbiome is unknown. Other investigators and we have shown
that the neonatal microbiome after birth, especially that of the
airway, is similar regardless of whether the neonate was delivered
vaginally or by cesarean section (5), suggesting that the neonatal
microbiome signature could possibly be transplacentally derived
and acquired in utero. No studies to date have examined the
presence of the fetal lung microbiome in humans from an in utero
environment. Therefore, in this study we examined, for the first
time, the presence of human fetal and placental microbiomes early
in gestation, using state-of-the-art molecular approaches.

Methods

Ethics statement and tissue collection. After informed consent was
obtained, deidentified human fetal samples were collected in the
United States with institutional review board approval (USC-HS-
13-0399 and CHLA-14-2211). The only information collected was
regarding gestational age and genetic or structural abnormalities.
All human tissues were collected after dilation and curettage or
dilation and evacuation via well-established sterile surgical

procedures. Lungs and (when available) specimen-matched
placentas were collected and snap-frozen for subsequent
processing.

Sample collection and workflow. A total of 31 deidentified
human fetal tissue samples (18 lungs, 3 intestines, and 10
placentas) from 11 weeks gestation (first trimester) to 20
weeks gestation (second trimester) were collected in the
United States via sterile and standardized clinical procedures.
The initial microbiome analysis was conducted using the whole
genome sequencing (WGS) metagenomic shotgun method.
Because these were low-biomass samples, bacteria were not
detectable in the samples by WGS (undetectable at an average
depth of 13 million reads per sample). Subsequently, we
conducted a targeted 16S analysis of the same samples at two
independent labs (Lee Kong Chian School of Medicine,
Singapore, and the University of Alabama at Birmingham
[UAB]). The two labs used different DNA extraction kits and
different microbiome analysis pipelines. All 31 samples were
analyzed at the UAB, and 26 out of 31 samples (17 lungs, 2
intestines, and 7 placentas) were analyzed in Singapore, owing
to a smaller quantity of samples.
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Figure 1. (A) Microbiome analysis of fetal lung, placenta, and small intestine conducted at Singapore. (B) True taxa versus potential contaminants.
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DNA extraction and sequencing. Blank DNA extractions from
sterile phosphate-buffered saline were performed and served as
negative extraction controls. Whole-genome metagenomic shotgun
sequencing was performed on a HiSeq 2500 (Illumina) according

to previous workflows (6). In parallel, using the same DNA
samples, libraries for targeted amplicon sequencing were
prepared (7) and sequencing was performed on a MiSeq
platform (Illumina).
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Bioinformatic analysis. Metagenomic shotgun sequencing
reads were aligned to the human reference genome (8). Nonhuman
reads were classified using Kraken with default parameters
matched (9). Controls from negative PCR and blank DNA
extractions were sequenced and assessed using the decontam
package to detect potential contaminants (10).

Details regarding the methods used for analyses conducted
at the UAB are available in our previous publication (5). Raw
sequence data have been deposited in the National Center for
Biotechnology Information’s Sequence Read Archive (BioProject
Accession No. PRJNA550234).

Results
In this targeted analysis, we were able to detect bacterial DNA in all
fetal samples at both labs. In the first 16S analysis conducted at
Singapore, the lung samples were found to contain 48 unique taxa,
whereas in the placenta samples only 11 unique taxa were identified,
and 24 taxa were shared (Figure 1A). All data were adjusted for
blank sequences, and decontam modules were used to rule out any
possible contamination (Figure 1B). In a pairwise lung and placenta
analysis, some overlap between lung and placenta microbiome
profiles was seen and b-diversity plots suggested some distinct lung
and placental microbiome profiles. Although some separation of
the microbiome profiles was evident from a principal coordinates
analysis (PCoA), the differences in b diversity between the placenta
and lung samples did not reach statistical significance (permutational
multivariate ANOVA [PERMANOVA], P=0.053; Figure 2).

The 16S analysis conducted at the UAB on the same samples
(total n= 31; 18 lungs, 3 intestines, and 10 placentas) also identified
microbiome DNA signature in all samples with the PCoA plot
analysis of the human fetal lung and placental microbiomes
showing overlap, and no statistical differences (P. 0.1,
PERMANOVA). A PCoA plot analysis of the human fetal
lung microbiomes split into two separate groups (11–15 wk
gestation [n= 3] and 16–20 wk gestation [n= 11]) demonstrated
increasing b diversity (P, 0.01, PERMANOVA). Analysis of
the distance and clustering (with closer clustering signifying a
shared larger proportion of the phylogenetic tree) indicated a
significant difference in microbiome diversity between the two
gestational age groups. Overall, at both sites, analysis of the
bacterial taxa distribution and diversity showed some overlap
in the microbiome signatures of fetal lungs and matched placentas.

Discussion
Recent studies have confirmed the presence of a diverse microbiome
in humans, including neonates, but the fetal presence of the lung
microbiome remains questionable. Herein, we present the first
microbiome study conducted on human fetal tissues, in which we
demonstrate the presence of microbial DNA in human fetal lungs
and placentas as early as 11 weeks gestation.

In summary, our major novel finding is the confirmation of the
presence of a human fetal microbiome DNA signature, as early
as the first trimester. Although it was not detected by WGS
metagenomic analysis owing to low biomass, we were able to detect a
microbiome DNA signature on a targeted 16S analysis in two
independent analyses. In addition, we identified temporal changes in
fetal lung microbiome diversity during development, suggesting
maturational changes with advancing gestational age. Although the
reason for these maturational changes is unknown, it is possible that

they could be related to maternal or intrauterine factors. Our
analysis also confirms the existence of a placental microbiome
that shows some overlap with the corresponding human fetal
lung microbiome, based on the overall microbiome analysis, as
well as a and b diversities. We speculate that materno–fetal
transfer of microbial DNA (and perhaps of other microbial
products and whole live or dead bacteria) is a realistic possibility
and may serve to “prime” the developing innate immune system of
the fetus and help to establish a normal host–commensal
relationship. n
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et al. Fetal exposure to the maternal microbiota in humans and mice.
JCI Insight 2019;4:127806.

4. de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al.
Human placenta has no microbiome but can contain potential
pathogens. Nature 2019;572:329–334.

5. Lal CV, Travers C, Aghai ZH, Eipers P, Jilling T, Halloran B, et al. The
airway microbiome at birth. Sci Rep 2016;6:31023.

6. Junqueira ACM, Ratan A, Acerbi E, Drautz-Moses DI, Premkrishnan
BNV, Costea PI, et al. The microbiomes of blowflies and houseflies
as bacterial transmission reservoirs. Sci Rep 2017;7:16324.

7. Illumina. 16s metagenomic sequencing library preparation: preparing
16S ribosomal RNA gene amplicons for the Illumina MiSeq system;
2013 [accessed 2019 Jun]. Available from: https://support.illumina.com/
documents/documentation/chemistry_documentation/16s/16s-
metagenomic-library-prep-guide-15044223-b.pdf.

8. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009;25:1754–1760.

CORRESPONDENCE

Correspondence 1005

http://www.atsjournals.org/doi/suppl/10.1164/rccm.201911-2127LE/suppl_file/disclosures.pdf
http://www.atsjournals.org
http://orcid.org/0000-0003-0417-7607
http://orcid.org/0000-0001-9071-4047
mailto:clal@peds.uab.edu
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf
https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf


9. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol 2014;15:R46.

10. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ.
Simple statistical identification and removal of contaminant
sequences in marker-gene and metagenomics data. Microbiome
2018;6:226.

Copyright © 2020 by the American Thoracic Society

Hospital-Level Availability of Prone Positioning in
Massachusetts ICUs

To the Editor:

Prone positioning (PP), a cost-effective therapy (1) with a mortality
benefit in moderate–severe acute respiratory distress syndrome
(ARDS) (2), is strongly recommended in guidelines for severe
ARDS (3) but has been poorly adopted (4–6). Although clinician-
level barriers to implementation of PP have been explored (4),
institutional barriers may supersede physicians’ beliefs regarding
the effectiveness of PP. We sought to evaluate the institutional
availability of PP.

Methods
We conducted a survey of all ICUs at acute-care hospitals in
Massachusetts, April–July 2019. We e-mailed surveys to ICU
nurse and physician leadership; if the surveys remained incomplete
after four follow-ups, we completed the survey by phone. For
hospitals that provided more than one response, one survey was
randomly selected from hospitals with duplicate responses (n=6) or
the survey with the more complete responses (n= 3) was selected.
The survey asked, “Does your ICU have the ability to prone
patients”? (“yes,” “no,” or “case-by-case”). Hospitals that responded
“yes” were termed “prone-ready.” Follow-up questions inquired
about institutional protocols/guidelines describing indications/
instructions for PP, nurse training in PP, and reasons for not using
PP. Respondents were also presented with a list of adjunctive
treatments for ARDS and asked to select treatments used at their
institution. We collected descriptive data for each hospital (number
of ICU and total hospital beds, profit status, teaching status, case mix
index (7), and Centers for Medicare and Medicaid Services star
rating [8]) using publicly available information (7–9).

Using the chi-square test and ANOVA, we compared hospital
characteristics on the basis of the hospitals’ ability to perform PP.
Statistical testing was two-tailed, with a= 0.05 using SAS 9.4 (SAS
Institute). The Beth Israel Deaconess Medical Center Institutional
Review Board deemed the study exempt from review.

Results
Among 60 acute-care hospitals in Massachusetts with ICUs, 54
responded to the survey (90% response rate; six nonresponders were
nonacademic hospitals, five of which had,250 total beds). Twenty-
four respondents (44.4%) were “prone-ready”; 15 (27.8%) could
provide PP on a case-by-case basis, and 15 (27.8%) could not
provide PP. Prone-ready hospitals accounted for 358 ICU beds out
of a total of 600 ICU beds in the state (59.7%); case-by-case
hospitals and PP-unavailable hospitals accounted for 71 (11.8%)
and 122 ICU beds (20.3%), respectively. Prone-ready hospitals were
more likely to be larger teaching hospitals with a more severe case
mix index (Table 1). Twenty-seven hospitals (37.0%) had a PP
protocol/guideline [20 (83.3%) prone-ready, 6 (40.0%) case-by-
case, and 1 (6.7%) PP-unavailable]. Thirty-four hospitals (63.0%)
reported that some or all nurses had received training in PP
[24 (100%) prone-ready, 9 (60.0%) case-by-case, and 1 (6.7%)
PP-unavailable].

Twenty-three respondents (42.6%) indicated they did not use
PP in the past year, accounting for 119 (19.8%) of ICU beds in the
state. Common reasons for not using PP were physician or nurse
discomfort (n= 14), lack of nurse training (n= 13), and/or lack of
proper equipment (n= 9; in seven free-text comments, lack of “a
rotating bed” was noted).

Forty-two respondents (77.8%) indicated they had transferred
patients with ARDS to another facility in the past year; however,
hospital transfer was not associated with PP availability (43% of
transferring hospitals were prone-ready; P= 0.49). Use of adjunctive
treatments for ARDS before transfer was common, regardless of PP
availability (Figure 1).

Discussion
Although guidelines recommend PP for patients with severe ARDS,
prior studies have shown underuse of PP. We found that most
hospitals in Massachusetts were either unable, or not completely
able, to routinely offer PP. Reasons identified by ICU leadership for
hospital-level lack of PP availability included multiple modifiable
factors, such as lack of training and misconceptions about
equipment requirements. Our results suggest that institutional-level
barriers to implementation of PP are a promising initial target to
improve implementation.

Our findings also provide context to prior studies of PP adoption
that focused on rates in ICUs participating in trial networks (3, 5)
and/or within teaching centers (6). For example, Duan and
colleagues evaluated only ICUs that offered PP, and reported that
10% of the appropriate patients received PP (6). Our finding of low
real-world availability of PP suggests that the prevalence of PP use
among eligible patients is likely even lower than previous estimates.

We found that other adjunctive treatments for ARDS were
often used at centers where PP was unavailable. Notably, some
adjunctive interventions are based on weaker evidence, are more
expensive, or require levels of monitoring similar to those required
for PP, suggesting that resource limitations or staffing constraints
alone do not explain the lack of PP adoption at the institutional level.
Some respondents reported a common misconception that “lack of
equipment” was a barrier to instituting PP. However, PP does not
require specialized equipment beyond basic cushioning to support
the face, chest, and pelvis (10, 11).

Our study has limitations. First, we surveyed hospitals in one
state, and Massachusetts is notable for having many geographically
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