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Abstract

OpenSim musculoskeletal models of the head and neck can provide information about mus-

cle activity and the response of the head and neck to a variety of situations. Previous models

report weak flexion strength, which is partially due to lacking moment generating capacity in

the upper cervical spine. Previous models have also lacked realistic hyoid muscles, which

have the capability to improve flexion strength and control in the upper cervical spine. Supra-

hyoid and infrahyoid muscles were incorporated in an OpenSim musculoskeletal model of

the head and neck. This model was based on previous OpenSim models, and now includes

hyoid muscles and passive elements. The moment generating capacity of the model was

tested by simulating physical experiments in the OpenSim environment. The flexor and

extensor muscle strengths were scaled to match static experimental results. Models with

and without hyoid muscles were used to simulate experimentally captured motions, and the

need for reserve actuators was evaluated. The addition of hyoid muscles greatly increased

flexion strength, and the model is the first of its kind to have realistic strength values in all

directions. Less reserve actuator moment was required to simulate real motions with the

addition of hyoid muscles. Several additional ways of improving flexion strength were inves-

tigated. Hyoid muscles add control and strength to OpenSim musculoskeletal models of the

head and neck and improve simulations of head and neck movements.

Introduction

Musculoskeletal modeling is a powerful tool that can be used to study human neck kinematics,

dynamics, injury risk, and strength capabilities. Several models of the human neck and head

have been developed, for various purposes. Dibb and Chancey and colleagues [1, 2] used mod-

els of the neck and head to investigate the effect of active muscles on neck response and injury

tolerances. Models of the head and neck are often used to investigate the injury potential of
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automobile impacts [3–5]. De Bruijn et al. [6] recently published a detailed finite element

model with 48 degrees of freedom and validated the muscle response to investigate head and

neck motion during automotive impacts. A model designed for similar applications among

female subjects was recently created by Östh et al. [7]. Jin et al. [8] used a finite element model

of the head and neck to investigate the effect of active neck muscles during American football

impacts. While these models provide knowledge about injury and failure, models of this kind

are not commonly used to compute the muscle activations necessary to reproduce experimen-

tally obtained motions. OpenSim musculoskeletal models are better suited for this purpose [9].

OpenSim models also offer a reduction of computational time required for analysis as com-

pared to other types of models [10, 11].

While there have been many musculoskeletal models developed for the head and neck,

there is a lack of models that can easily estimate muscles forces during dynamic simulations

[12, 13]. Realistic musculoskeletal models of the head and neck with this function will aid in

understanding the role of neck muscles during movements, with applications in ergonomics,

rehabilitation, analysis of disease, and impact situations.

An OpenSim model of the head and neck was published in 2008 based on work done by

Vasavada et al. [14] to explore moment generating capacities of individual muscles in various

neck positions. However, this model lacks inertia properties necessary for dynamic simulation.

Vasavada et al. also acknowledged that this model was not capable of producing flexion

moments that are as large as have been reported in literature. This was attributed to the possi-

bility of incorrect centers of rotation for the various joints, the lack of infrahyoid muscles, or

perhaps other unknown factors.

Recently, an improved OpenSim head and neck model was published by Cazzola et al. [12]

to study loading on the cervical spine during rugby. This model was verified and validated

according published best practices [15]. Cazzola referred to this model as a Musculoskeletal

model for the Analysis of Spinal Injuries (MASI). This model was based on Vasavada’s model,

and includes inertia properties. For the MASI model, the isometric strength of each muscle in

Vasavada’s model was increased by at least 40% with the aim of matching experimental data

[16]. Even with stronger muscles, Cazzola reports that this model generates a flexion moment

that is one-third of experimental data. The MASI model has been used for dynamic simula-

tions, and is an important addition to musculoskeletal modeling of the head and neck.

A closer investigation of both the Vasavada and the MASI models reveal that the muscles in

each model cannot adequately actuate the upper cervical spine. Both the models include con-

straints that reduce the degrees of freedom in the cervical spine to 6. These degrees of freedom

include flexion/extension, lateral bending, and axial rotation for both the upper (skull-C1) and

lower (C2-T1) cervical spine. The main flexor muscle, the Sternocleidomastoid, causes flexion

in the lower cervical spine while causing extension in the upper cervical spine in these models.

To overcome the inability to adequately generate flexion moment in the upper cervical spine,

reserve actuators are necessary for dynamic simulation using the MASI model. Reserve actua-

tors apply moments to actuate the model to follow experimental kinematic data, when muscles

alone cannot generate sufficient moments [11, 15].

Inability to generate realistic moments in all directions is a common problem of models of

the head and neck [6, 12, 14]. De Bruijn et al. [6] note that moment generating capacity of

models of the head and neck are more realistic when the entire cervical spine is required to be

in equilibrium. However, even with this improvement, the extension moment capacity pub-

lished by de Bruijn et al. [6] was nearly 150% of experimental values, suggesting that additional

improvements are necessary.

The Vasavada and MASI models measured flexion capability by comparing the maximum

flexion the muscles could generate in the lower cervical spine with experimental values [12,

An improved musculoskeletal model of the neck with hyoid muscles
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14]. This approach does not require equilibrium at all joints or take into account the lack of

control in the upper cervical spine. These models would benefit from improvements that

increase moment generating capacity and control in the upper cervical spine.

The addition of hyoid muscles to both of these models may address the limitations of weak

flexion strength and adequate control in the upper cervical spine. Hyoid muscles are the group

of muscles that attach to the hyoid bone, and play an important role during mastication [17].

Infrahyoid muscles, which are inferior to the hyoid bone, have been suggested to play a signifi-

cant role in neck flexion [1, 18]. Siegmund et al. [19] found that infrahyoid muscles activate

during flexion. Several previous models of the head and neck have included infrahyoid muscles

with encouraging results [1, 2, 6–8, 20]. While these muscles are relatively small, they have

large moment arms in flexion [1]. Suprahyoid muscles, which are superior to the hyoid bone,

may also have a role in generating neck flexion. The location of the suprahyoid muscles may

provide control for the upper cervical spine, when activated in concert with the infrahyoid and

other muscles that stabilize the jaw.

The purpose of this study was to investigate the effect of hyoid muscles on moment generat-

ing capacity and dynamic simulations in an OpenSim model based on the Vasavada and MASI

models. The moment generating capacity of this new model and the MASI model was com-

puted by simulating methods found in experimental studies with the aim of requiring the

entire cervical spine to be in equilibrium. The models were also evaluated by their ability to

perform dynamic simulations for a variety of head movements defined through experimental

motion capture.

Methods

Three main tasks were accomplished. First a novel model, referred to as the HYOID model

was created by modifying existing models to include hyoid muscles and passive elements that

approximate the passive stiffness of the cervical spine. Next the moment generating capacities

of the HYOID model and the MASI model were tested by simulating an isometric strength

test. The strength of muscles in the HYOID model was scaled to improve moment generating

capacities. The scaled HYOID model and the MASI model were used to simulate several

dynamic movements specified by experimental motion capture. Joint kinematics, muscle acti-

vations, and the need for reserve actuators were compared for these dynamic simulations.

The HYOID model

The starting point for the improved model was to combine the Vasavada and MASI models.

The MASI model includes realistic inertial properties, muscles with scaled strength, a novel

scapula joint, and a complete skeletal model. All joints except for those in the neck were actu-

ated entirely by reserve actuators. As the muscles in the MASI model were scaled non-uni-

formly [12], only the inertial properties and joint definitions from the MASI model were used.

The muscle strengths and other properties from the Vasavada model were used; however an

updated muscle model to enable faster computation was used [21]. Elements based on previ-

ous studies [22, 23] that approximate passive forces through rotational stiffness and damping

between each vertebral joint due to ligaments and other structures were also added (see

Table 1).

Hyoid muscles were added based on several studies [17, 24–26]. The position and muscle

parameter data for the suprahyoid muscles were obtained from Van Eijden [26]. The data for

the infrahyoid muscles was obtained from Van Ee and Chancey [1, 27]. The total number of

muscle actuators added to the original Vasavada model was 20 (see Table 2 and Fig 1), bring-

ing the total number of muscle actuators in the model to 72. To simplify the model, the hyoid
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PLOS ONE | https://doi.org/10.1371/journal.pone.0199912 June 28, 2018 3 / 14

https://doi.org/10.1371/journal.pone.0199912


muscles attachment points were assumed to move with the cervical bones. The infrahyoid

muscles attachment points moved with C3, which has been demonstrated to be effective in the

sagittal plane [28]. The suprahyoid muscles attachment points move with C1 to avoid excessive

changes in muscle length during axial rotation. The hyoid muscle maximum isometric forces

were based on Vasavada’s assumption of multiplying the PCSA by 35 N/cm2.

This model builds on model validation published by both Vasavada and Cazzola [12, 14].

Further exploration of this model is performed by comparing force generating capabilities

determined through simulating the experiments conducted by Fice [16], and investigating the

required reserve forces during motions defined by experimental motion capture.

Model moment generating capacity

Previous studies have estimated moment generating capacities about a particular joint by sum-

ming the moment generating capacities of individual muscles about that joint [6, 12, 14].

Instead, this study estimates moment generating capacities by simulating an actual experi-

ment. This method avoids the potential source of error from measuring moment capabilities

about different joints experimentally, and the error associated with assuming the upper cervi-

cal spine can remain stable while muscles apply a maximum moment about the lower cervical

spine.

Fice et al. measured moment capabilities of the neck by instructing subjects to contract

maximally while their heads were constrained by a helmet that was attached to a load cell

directly above their head [16]. This experiment can be recreated in OpenSim by applying a

force to the skull, with the location of the force being above the head (Fig 2).

Table 1. Properties of passive elements in HYOID model.

Joint Ext/Flex/Lateral Stiffness (Nm/rad) Axial Stiffness (Nm/rad) Ext/Flex/Lateral Damping (Nm/(rad/s)) Axial Damping (Nm/(rad/s))

T1/C7 27.5 13.75 2.75 1.375

C7/C6 27.5 13.75 2.75 1.375

C6/C5 27.5 13.75 2.75 1.375

C5/C4 23.2 11.6 2.32 1.16

C4/C3 23.2 11.6 2.32 1.16

C3/C2 7.8 3.9 0.78 0.39

C2/C1 7.8 3.9 0.78 0.39

C1/Skull 7.8 3.9 0.78 0.39

https://doi.org/10.1371/journal.pone.0199912.t001

Table 2. Properties of hyoid muscles in HYOID model. The origin of the coordinate system used is the center of the C1-Skull joint. The x-axis points anteriorly, the y-

axis points superiorly, and the z-axis points to the model’s right. Each of these muscles was added bilaterally.

Origin (m) Insertion (m) Max Isometric Force

(N)

Optimal Length

(m)

Slack Length

(m)

Pennation angle at optimal

(rad)Muscle X Y Z X Y Z

Sterno_hyoid 0.019 -0.172 0.020 0.050 -0.072 0.006 20.300 0.074 0.032 0.000

Omo_hyoid 0.012 -0.114 0.038 0.045 -0.063 0.013 26.250 0.046 0.020 0.000

SternoThyroid 0.018 -0.179 0.015 0.033 -0.092 0.013 22.750 0.062 0.027 0.000

digastric_post 0.016 -0.030 0.029 -0.006 0.003 0.048 40.600 0.021 0.034 0.250

digastric_ant 0.030 -0.073 0.006 0.030 -0.064 0.017 40.600 0.014 0.005 0.000

Geniohyoid 0.028 -0.069 0.005 0.069 -0.067 0.002 33.950 0.034 0.005 0.000

Mylohyoid_Post 0.032 -0.071 0.003 0.041 -0.039 0.029 18.550 0.028 0.014 0.000

Mylohoid_Ant 0.054 -0.072 -0.003 0.058 -0.060 0.016 55.650 0.020 0.003 0.000

Stylohyoid_Lat 0.021 -0.065 0.015 0.011 -0.001 0.038 6.820 0.018 0.050 0.082

Stylohyoid_Med 0.020 -0.060 0.016 0.012 -0.002 0.038 6.820 0.018 0.044 0.082

https://doi.org/10.1371/journal.pone.0199912.t002
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OpenSim’s Static Optimization (SO) tool was used to determine the maximum force the

model can generate in any given direction [29]. The SO tool computes muscle activations

required to generate specified motions, while optimizing to minimize the sum of the all activa-

tion levels raised to a user specified value. The objective function used for optimization in the

SO tool is:

J ¼
Pn

m¼1
ðamÞ

p
ð1Þ

Where n is the number of actuators in the model, a is the activation level of muscle m and p is the

power value specified by the user. We chose the default power value of 2, and used the default set-

ting of including the force-length-velocity in the analysis [29]. Reserve actuators are employed

when muscles alone are unable to generate the forces required for the specified motion. This is

ensured by applying only a small load for each unit of activation in the reserve actuators.

First we specified the motion to be a neutral static posture. Next we applied a force to the

skull in a similar position (20 cm above the C1-Skull joint) and direction as a load cell would

in experiments. We also added reserve actuators in the same location and direction as the

applied forces with a specification of only 1 N or 0.1Nm for every unit of activation. The SO

tool then allows for computation of the force neck muscles can generate at the location of the

load cell by subtracting the computed reserve actuator forces from the applied forces. Using

SO instead of forward simulations provides a convenient method to replicate an isometric

experimental test. Fig 2 depicts such a simulation, including which muscle are active. Fice et al.

measured the distance from the load cell to the C7-T1 interface, and multiplied it by the mea-

sured forces to obtain moment generating capabilities. The same approach was taken in simu-

lations using OpenSim by multiplying the computed force from neck muscles by the vertical

distance between the applied force and the C7-T1 joint in the models (32 cm). In this way, the

moment generating capabilities of the MASI and HYOID models were computed and com-

pared to experimental data obtained from both Fice et al. and Vasadava et al. [16, 30].

Fig 1. Model before addition of hyoid muscles (A), added hyoid muscles (B), all muscles in HYOID model (C).

https://doi.org/10.1371/journal.pone.0199912.g001
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The suprahyoid muscle strength was also examined. Iida et al. [31] reported that the jaw

opening force in healthy adults is about 95 N. Using OpenSim’s force reporter analysis, it is

possible to determine the suprahyoid muscle’s ability to generate moment at the jaw joint.

This is done by performing a forward simulation with all joints locked and the suprahyoid

muscles activated to maximum. The force reporter analysis in OpenSim can then be used to

determine the moment generated at the jaw joint. This moment is used to calculate the jaw

opening force generated by the suprahyoid muscles.

Fig 2. Simulation of experimental setup to compute neck moment generating capacity. Red muscles indicate active

muscles. The applied force is 20 cm above the C1-Skull joint. 150 N, 200 N, 150N, and 20 Nm were applied to compute

respectively the flexion, extension, lateral bending, and axial rotation moment generating capacities.

https://doi.org/10.1371/journal.pone.0199912.g002
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PLOS ONE | https://doi.org/10.1371/journal.pone.0199912 June 28, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0199912.g002
https://doi.org/10.1371/journal.pone.0199912


The scaled model

Even with careful muscle modeling based on anatomical studies, scaling the strength of mus-

cles is often required to overcome limitations in musculoskeletal models [32, 33]. This is in

part due to the difficulty of choosing a realistic PCSA multiplier to find maximum isometric

strength. PCSA multipliers have ranged from 35 to 137 N/cm2 [33]. Buchanan et al. [33] sug-

gest that elbow flexors and extensors may have different scaling factors, which suggests that

flexor and extensor muscles in the neck may also require different scaling factors. Cazzola

made this assumption for the MASI model [12]. After the strength measurements were per-

formed on the HYOID model, scaling factors for the flexion and extension muscles were cho-

sen to increase the strength of the model to match experimental values in all directions. After

the HYOID model was scaled, its moment generating capacities were measured again.

Dynamic simulation

Using a motion capture system, kinematic data were collected for one subject doing a variety

of head and neck motions. Informed written consent was obtained from this subject. Proce-

dures for obtaining written consent and all other procedures in this study were approved by

the University of Utah Institutional Review Board (IRB#00094138). The subject was a 27-year-

old male, that was 5’ 11” tall and weighed 175 lbs. Nine OptiTrack Flex 3 cameras captured the

motions at 100 Hz using OptiTrack’s Motive Body Software (Naturalpoint, Inc. Corvallis, OR).

The subject was seated with his torso restrained in a high back chair during motion capture.

Markers were placed according to OptiTrack’s Biomech 57 marker set [34]. Seven markers

were used: four on the skull, one at the sternum jugular notch, and one at each acromioclavicu-

lar joint. Motions included functional movements: moving the head back and forth through

flexion and extension, lateral bending, and axial rotation. Motions of bringing the head around

in a circle, and three motions in which the subject was instructed to move his head randomly

were also captured. This procedure was meant to capture a reasonable range of motion that

the human neck can achieve during volitional movement.

The MASI and scaled HYOID models were scaled to match the subject’s size. Next, the

kinematic data were used to perform inverse kinematics in the OpenSim platform for both

models. The inverse kinematics tool in OpenSim seeks to minimize the distance between

experimental and model markers in each frame of collected data by adjusting the 6 degrees of

freedom in each model. A muscle control algorithm in OpenSim (CMC) was then used to

determine muscle activations to reproduce the motions determined by inverse kinematics

[11]. CMC requires reserve actuators at each degree of freedom to ensure that a solution can

be found for any captured motion. The reserve actuators are used whenever the model’s mus-

cles are incapable of producing the necessary moments to reproduce kinematics. In CMC, a

cost function is used to optimize muscle activations [29]. The sum of actuator activation

squared is the cost function used for CMC and is very similar to Eq (1). By setting the moment

generated by reserve actuators to a value of 0.1 Nm for an activation of 1, CMC only activates

reserve actuators when muscles in the model are incapable of generating the necessary

moments. The reserve actuator moments for the MASI and scaled HYOID models were com-

pared to investigate the effect of hyoid muscles during dynamic simulations.

Results

Model moment generating capacity

Simulating an actual experiment through the use of the SO tool resulted in smaller moment

generating capacities for the MASI model than in forward simulations previously reported in

An improved musculoskeletal model of the neck with hyoid muscles
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the literature [12]. The moment generating capacity as determined through this method was

especially small in flexion (see Table 3). It was also evident that the MASI model generates an

extension moment that is comparable to values reported in the literature.

The HYOID model was weak in all directions, but was able to generate larger moments than

the MASI model in every direction except extension (Table 3). This is important, because the

MASI model’s muscles are all at least 1.4 times stronger than the HYOID model. By scaling the

strength of the HYOID model’s extension muscles by 1.4 and the flexion muscles by 2.7, moment

generating capacities were comparable to the literature in every direction. While the lateral bend-

ing moment generating capacity was high, it is just beyond one standard deviation of the data

reported by Fice and within one standard deviation of the data reported by Vasavada [30, 31].

The jaw opening forces for the HYOID model were within one standard deviation of values

reported in the literature, but the jaw opening forces for the scaled Hyoid model were unrealis-

tically high.

Dynamic simulation

The scaled HYOID model had a large reduction of reserve actuator moments in most direc-

tions compared to the MASI model (see Fig 3). A reduction in the necessary reserve actuator

moments for the flexion/extension motion in the scaled HYOID model was particularly appar-

ent (see Fig 3). Reserve actuator moments increased for axial rotations in three of the motions

when using the scaled HYOID model. This trend was especially true for motions that required

axial rotation of the upper cervical spine.

Discussion

Effect of adding hyoid muscles

The addition of hyoid muscles resulted in improvements over past models. The inability of the

MASI model to generate more than 3 Nm of flexion moment when recreating physical experi-

ments may be due to the lack of hyoid muscles. With the addition of hyoid muscles, and with

every other muscle being weaker than in the MASI model, the HYOID model was able to gen-

erate more than four times the amount of flexion than the MASI model. This increase in flex-

ion strength occurs for at least two reasons. First, the suprahyoid muscles stabilize the upper

cervical spine. The sternocleidomastoid muscle causes flexion in the lower cervical spine, but

also causes extension in the upper cervical spine. Without suprahyoid muscles, the model has

very limited flexion moment in the upper cervical spine to resist the extension moment caused

by the sternocleidomastoid. Second, the infrahyoid muscles add a significant amount of flexion

moment due to their large moment arms. Even though infrahyoid muscles are comparatively

small, they can contribute meaningful flexion moment simply because of their location [1].

Table 3. Comparison of moment generating capacity resolved at the C7-T1 interface of the neck as reported in literature and as simulated by the MASI, HYOID,

and Scaled HYOID models.

Flexion (Nm) Extension (Nm) Lateral (Nm) Axial (Nm) Jaw Force (N)

Experimental Fice [16] 30 (6) 51 (11) 32 (9) 13 (5) —

Experimental Vasavada [30] 30 (5) 52 (11) 36 (8) 15 (4) —

Experimental Iiada [31] — — — — 95.06 (27.44)

MASI Cazzola [12] 2.37 52.87 15.04 3.06 —

HYOID 11.25 36.05 19.32 7.38 111.03

Scaled_HYOID 30.24 51.45 41.06 14.73 308.60

mean (sd)

https://doi.org/10.1371/journal.pone.0199912.t003
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The addition of hyoid muscles allows for more realistic simulations of the head and neck.

Scaling the HYOID model’s muscle parameters allows for a large spectrum of realistic move-

ments without the need for large reserve actuator moments. This provides a better understand-

ing of muscle and joint reaction forces during movements of the head.

Moment generating capacity methods

Using the SO tool as opposed to forward simulations for determining a model’s moment gen-

erating capacity has many benefits. The SO tool only allows muscle activations that result in an

anteriorly directed force from the skull by minimizing an objective function (See Eq (1)). Min-

imizing different objective functions may result in different muscle activation patterns but can-

not result in a net effect of extension of either the upper or lower cervical spine. SO ensures

that the effect of active muscles on each body in the model is taken into account and can result

in minimal muscle activation. Forward simulations require determining muscle activations

prior to simulation. Fully activating all the flexor muscles in the MASI model results in flexion

of the lower cervical spine, but extension in the upper cervical spine. The limited flexion capac-

ity of the MASI model determined through the use of the SO tool is a result of the sternocleido-

mastoid muscles being inactive. SO results in these muscles being inactive to prevent excessive

extension moment in the upper cervical spine. The results of this study highlight the inability

of the MASI model to generate flexion in the upper cervical spine. It should be noted that the

MASI model has much higher flexion moment generating capacity in scenarios that do not

require flexion moment generation in the upper cervical spine[12].

Investigating methods to improve flexion strength

In the scaled HYOID model, flexors and extensors were scaled differently (2.7 and 1.4 respec-

tively), but scaling the flexion muscle’s strength by nearly twice as much as the extensor

Fig 3. Kinematic, muscle activation, and reserve actuator data for dynamic simulations of the scaled HYOID and MASI models. All thicker lines represent the

scaled HYOID model and all thinner lines represent the MASI model. “L” denotes the lower cervical spine, and “U” denotes the upper cervical spine for both the degrees

of freedom and their associated reserve actuators. A negative value for flexion indicates flexion motion or moment, a positive value for lateral indicates right lateral

bending, and a positive value in axial indicates left axial rotation.

https://doi.org/10.1371/journal.pone.0199912.g003
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muscles is not biologically realistic. Unfortunately, scaling the flexion muscles by such a large

factor also raises jaw opening forces to unrealistic levels. This indicates that scaling factors may

not be the reason for the model being unable to produce sufficient force in flexion. Even

though flexion muscles could have a different scaling factor than extensor muscles, there are

several other possible reasons why the HYOID model was still weak in flexion.

Shifting the center of rotation (COR) of each vertebra in the model can have a dramatic

effect in the moment generating capacities of the model. By shifting the COR for each vertebra

and following the same methods as described above (see Model Moment Generating Capacity)

for evaluating moment generating capacity, the effect of shifting the CORs was investigated.

Shifting the COR posteriorly by 5.5 mm makes it possible to scale the strength of all muscles by

the same factor, 1.8, and get realistic moment generating capacities in every direction as deter-

mined through the use of the SO tool. Doing so results in motions of the head that appear simi-

lar to motions without shifted CORs. Configuring the model into full extension with shifted

CORs results in motion capture markers on the head being only 9.4 mm away from where they

would be without shifted CORs. A 9.4 mm difference in head marker location for full extension

may seem insignificant, but shifting the COR by 5.5 mm is not anatomically reasonable.

The COR used for the original Vasavada model were obtained from Amevo [35]. More

recently, Anderst [36] showed instantaneous COR through more sophisticated and accurate

techniques. Taking the average location of the COR for each vertebra from Anderst’s study

results in almost the exact same results as given by Amevo. Furthermore, the 95% confidence

interval of Anderst’s average COR only allows for a maximum adjustment of 1.1 mm or less.

Unless the COR shifts while the spine is under load, it is unreasonable to shift the COR for

these models far enough to address the flexion strength problems.

Adjusting the strength of each muscle according to more accurate data than was available

to Vasavada also cannot completely account for the lack of flexion strength. The effect of

changing the strength of individual muscles according to two more recent studies was also

investigated. Using PCSA values from [24, 27] does not make the flexion/extension ratio reach

experimental values. Using the literature to obtain updated PCSA values alone does not correct

the flexion strength problem that exist in the models either.

Slight changes in posture effect the flexion and extension capabilities of the model. It is pos-

sible that the studies that measured neck strength had subjects that did not have perfectly neu-

tral posture. The effect of posture on simulated moment generating capacity was investigated

using the unscaled Hyoid model. By allowing the head to rotate 15 degrees forward, the flexion

strength increases by 15% and the extension strength decreases by 5%. However, allowing for a

posture change of this magnitude does not completely account for the weakness in flexion.

There are several other possible aspects of the model that could be altered to improve flex-

ion strength. Wide muscles may need to be modeled using more actuators than exist currently

in the models. Attachment points and muscle parameters such as pennation angle, optimal

length, and tendon slack length may need to be updated from studies with improved methods.

Modeling muscles to wrap around each other and act along a curved path may also change the

flexion/extension strength ratio [37]. Yet another possibility is that raising the shoulders dur-

ing exertion affects moment generating capacity of the neck. Further improvements of muscu-

loskeletal models of the neck may require a combination of methods to improve flexion

strength, and should be the focus of future studies.

Model limitations

In addition to the limitation of flexion strength that exists in the HYOID model without dis-

proportionate scaling of muscle strength, constraining the hyoid bone to move with cervical
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bones affects this model. Axial rotations require large reserve actuator forces for the HYOID

model, because several of the suprahyoid muscles must be stretched significantly to allow the

motion. Changing the muscle parameters to allow such stretching without supplying a resistive

force would limit the need for reserve actuators, but is unrealistic. A more realistic solution

would be to define the movement of the hyoid bone in three dimensions. We are unaware of

any study that defines how the hyoid bone moves in three dimensions, and this should be a

focus of future work to improve the HYOID model.

As stated above, this model has several limitations that may influence moment generating

capability. Physiological muscles wrap around each other and interact with one another. These

interactions are not modeled in the HYOID model. The upper and lower cervical bones each

move as functions of the total movement of the upper and lower cervical spine, and assume a

fixed COR. Allowing for independent motion of the cervical bones and moving CORs may

improve results.

Despite these limitations, the HYOID model is a meaningful step forward in musculoskele-

tal modeling of the neck. It represents a significant improvement over previous models and is

able to simulate realistic moment generation in every direction. This ability will be useful in

studies that require more realistic estimates of neck strength. It has been shown that predicting

strength in the principal directions accurately is a strong measure of being able to predict

strength accurately in all directions [16]. The HYOID model may be useful in forward simula-

tions of impacts to the head or torso that are likely to cause injury. These scenarios are difficult

to study experimentally, so the effect of active muscles cannot be investigated without a model

that can generate realistic moments without additional reserve actuators. The HYOID model

should also predict accurate muscle activation patterns during motions in the sagittal plane. It

is possible that scaling the extensor and flexor muscles asymmetrically could skew muscle acti-

vation patterns for axial rotation and lateral movements to favor the flexor muscles. Caution

should be used in interpreting muscle activation patterns for these movements. Future studies

aimed at improving flexion moment generating capacity without disproportionate muscle

scaling should involve careful EMG measurements to further improve this model.

Conclusion

Hyoid muscles improve the moment generation and movement capabilities of OpenSim mus-

culoskeletal models of the neck. We have shown that hyoid muscles have the capability to sta-

bilize the upper cervical spine and provide increased moment generation compared to

previously published models. The HYOID model presented here simulates more realistic

moment generating capacities in every direction enabling future studies in ergonomics, reha-

bilitation, analysis of disease, and impact situations. These studies include simulating poten-

tially injurious events that cannot be measured experimentally, such as head impacts that

occur in sports or due to slips and falls. Future studies aimed at improving the HYOID model

should include experimentally measured motion of the hyoid bone in three dimensions.
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