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Abstract

Limb muscles derive from pax3 expressing precursor cells that migrate from the hypaxial

somite into the developing limb bud. Once there they begin to differentiate and express mus-

cle determination genes such as MyoD. This process is regulated by a combination of induc-

tive or inhibitory signals including Fgf18, retinoic acid, HGF, Notch and IGFs. IGFs are well

known to affect late stages of muscle development and to promote both proliferation and dif-

ferentiation. We examined their roles in early stage limb bud myogenesis using chicken

embryos as an experimental model. Grafting beads soaked in purified recombinant IGF-I,

IGF-II or small molecule inhibitors of specific signaling pathways into developing chick

embryo limbs showed that both IGF-I and IGF-II induce expression of the early stage myo-

genic markers pax3 and MyoD as well as myogenin. Their effects on pax3 and MyoD

expression were blocked by inhibitors of both the IGF type I receptor (picropodophyllotoxin,

PPP) and MEK (U0126). The PI3K inhibitor LY294002 blocked IGF-II, but not IGF-I, induc-

tion of pax3 mRNA as well as the IGF-I, but not IGF-II, induction of MyoD mRNA. In addition

SU5402, an FGFR/ VEGFR inhibitor, blocked the induction of MyoD by both IGFs but had

no effect on pax3 induction, suggesting a role for FGF or VEGF signaling in their induction of

MyoD. This was confirmed by in situ hybridization showing that FGF18, a known regulator

of MyoD in limb myoblasts, was induced by IGF-I. In addition to their well-known effects on

later stages of myogenesis via their induction of myogenin expression, both IGF-I and IGF-II

induced pax3 and MyoD expression in developing chick embryos, indicating that they also

regulate early stages of myogenesis. The data suggests that the IGFs may have slightly dif-

ferent effects on IGF1R signal transduction via PI3K and that their stimulatory effects on

MyoD expression may be indirect, possibly via induction of FGF18 expression.
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Introduction

During development the limb muscles are derived from pax3 expressing cells from the hypax-

ial region of somites. These cells delaminate and migrate into the limb buds where they begin

to differentiate and express muscle specific markers such as members of the Myogenic Regula-

tory Factor (MRF) family of transcription factors [1–5]. The migration of these cells is induced

by CXCR4 [6, 7] and HGF [8–10], which also acts to prevent premature differentiation of

these cells. The majority of the migratory cells will contribute to muscle although some will

also become endothelial cells [11]. Once in the limb, the myogenic precursors form the dorsal

and ventral muscle masses and begin to differentiate, a process regulated by the induction the

MRFs; first myoblasts express Myf5, then MyoD, myogenin and finally MRF4 [12].

Numerous signaling molecules regulate the differentiation of the limb myoblasts. Their dif-

ferentiation is inhibited by sonic hedgehog [13] and BMP [14], promoted by FGFs, such as

FGF18 [15, 16], while other molecules can act to either block or induce myogenic genes

depending on the stage of development and concentration, such as retinoic acid [16, 17].

The insulin like growth factors, IGF-I and IGF-II, are well characterized promoters of mus-

cle growth in development [18], including in chicken embryos [19]. They act through the IGF

type 1 receptor in muscle growth and regeneration [20] primarily by promoting the AKT/

mTOR and MAPK signaling pathways [21–23].

During limb development several components of the IGF signaling machinery are

expressed [24] and IGF signaling regulates the formation of the limb skeleton [25]. Retroviral

overexpression of IGF-I in limbs also increases muscle size by promoting myoblast prolifera-

tion, leading to increased numbers of muscle fibres [19], and in ovo injection of IGF-I can

have effects lasting into adulthood [26]. However, as well as promoting proliferation, IGFs can

also induce myogenin expression [27] and it is clear that they have a complex role in developing

muscle.

To try and understand the effects of IGFs during early embryonic myogenesis we used the

chicken embryo limb bud as a model [28, 29] by grafting beads soaked in purified growth fac-

tors or other signaling inhibitory molecules at defined stages of embryogenesis to determine

their effects on myogenesis. Here we show that grafting IGF beads into early developing

chicken embryo limbs induces the expression of pax3, a marker of proliferative muscle precur-

sor cells, while later grafting also induces both MyoD and myogenin, which are associated with

the early and late stages of myogenic differentiation respectively. Using various inhibitors we

show that the effects on both pax3 and MyoD require MEK signaling while MyoD induction is

dependent on secondary signaling through either FGFs or VEGF; in addition we show that

IGF-I can induce FGF18 expression in limb buds. A PI3K inhibitor produced a more complex

picture with different effects depending on whether the limbs were treated with IGF-I or–II.

Materials and methods

Growing and staging of experimental animals

Fertilized white leghorn chicken (Gallus gallus) eggs were purchased from Henry Stewart Lim-

ited (Norwich, UK). Eggs were incubated at 15˚C for up to 5 days until the day of use then

transferred to 38˚C (Forma scientific CO2 water incubator) until they reached the required

stages of development. Embryos were staged according to Hamburger and Hamilton [30].

IGF and pharmacological inhibitor beads

Heparin beads (Sigma H-5263) were soaked in recombinant human IGF-I or IGF-II (Pepro-

tech) at 1mg/ml in phosphate buffered saline (PBS) with 0.1% Bovine Serum Albumin (BSA).

IGFs and early chick myogenesis
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AG 1-X2 beads (BioRad) were incubated in Picropodophyllotoxin (PPP, Tocris Bioscience),

U0126 (Cell Signaling), LY 294002 (Calbiochem) or SU5402 (Calbiochem), all reconstituted in

DMSO at 10mM. Beads were incubated for at least one hour in the dark before being washed

briefly in 2% phenol red and rinsed in PBS before grafting. Beads were grafted into limb buds

with a sharpened tungsten needle, resealed with sellotape and reincubated for 18-48h as

described previously [31].

In situ hybridization

In situ hybridization was performed as described previously [12]. Embryos were collected,

staged [30], fixed in 4% paraformaldehyde (PFA) at 4˚C overnight, washed in 50% methanol/

PBS with 0.1% Tween (PBSTw) then dehydrated by washing twice in 100% methanol.

Embryos were then stored at -20˚C.

Embryos were rehydrated in a series of 75%, 50% and 25% methanol/PBSTw then washed

twice in PBSTw. Embryos older than HH stage 20 were treated with proteinase K in PBSTw

at 10 μg/mL for 25 min, rinsed twice in PBSTw then post-fixed in 4% PFA/0.1% glutaralde-

hyde for 20 min at room temperature followed by two washes in PBSTw. Embryos were then

washed in 1: 1 PBSTw:hyb solution (50% formamide, 1.3xSSC pH 5, 5 mM EDTA, 50 μg/mL

yeast RNA, 0.2% Tween-20, 0.5% CHAPS, 100 μg/mL heparin), washed with hyb solution

for 10 min, then incubated in fresh hyb solution at 65˚C for at least 2 h. Probes were added

in pre-warmed hyb solution at 65˚C were added and incubated overnight at 65˚C. Embryos

were rinsed twice in hyb solution at 65˚C, washed for 10 min in hyb solution at 65˚C, then

washed twice for 30 min in washing buffer (50% formamide, 1xSSC pH 5, 0.1% Tween-20)

at 65˚C. Embryos were washed for 10 min at 65˚C in 1:1 washing buffer:MABT (100 mM

maleic acid, 150 mM NaCl, 0.1% Tween-20, pH 7.5), rinsed three times in MABT, and

washed twice for 30 min in MABT. They were then blocked in 2% Roche blocking reagent

(cat no. 11096176001) in MABT for 1 h. Anti-Dig-AP Fab fragments (Roche, cat no.

11093274910) were diluted 1:2000 in 2% Roche blocking reagent in MABT and incubated

overnight at 4˚C. Embryos were washed three times for 1 h in MABT and then twice for 10

min in NTMT (100 mM NaCl, 100 mM Tris pH 9.5, 50 mM MgCl2, 1% Tween-20). Colour

was developed with 9μg NBT (4-nitro blue tetrazolium chloride at 75 mg/ml in 70%

dimethylformamide) and 7μl BCIP (5-bromo-4-chloro-3-indolyl-phosphate, 4-toluidine salt

at 50 mg/ml in dimethylformamide) per ml of NTMT. After the staining reaction, embryos

were de-stained in high detergent mix, 5xTBST (for 100 mL of a 5xsolution: 4 g NaCl, 12.5

mL 1 M Tris-HCl pH 7.5, 0.1 g KCl, 5 mL Tween-20) to reduce background and, if required,

re-stained. Stained embryos were stored in 4% PFA with 0.05% sodium azide prior to imag-

ing. Fixed embryos were imaged using a Leica DFC320 camera on a Leica MZ10F stereomi-

croscope with Leica Acquisition Suite software. MRF and Fgf18 probes were made as

described previously [16] as was the pax3 probe [32].

Paraffin embedding and sectioning of chick embryos

Embryos were washed twice in 1X PBS at RT and in sterile distilled water then Dehydrated

through an ethanol series of 25%, 50%, 70%, 90% and 100% ethanol. Embryos were cleared in

xylene then transferred into hot paraffin wax at 65˚C for 2 hours. Embryos were orientated in

paraffin wax solution and cooled for 2 hours at 4˚C. Sections were cut at 7 μm thickness on a

HM 355 microtome, placed onto glass microscope slides then mounted in Omnimount (His-

tological Mounting Medium HS-110). Slides were photographed on an Olympus BH-2

microscope.

IGFs and early chick myogenesis
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Results

To determine their effects on limb bud myogenesis, heparin beads soaked in either IGF-I or

IGF-II were grafted into developing limb buds in ovo at HH stage 17 and incubated for 24

hours until they had reached HH stage 21/22. In situ hybridization showed a clear upregula-

tion of pax3 mRNA in grafted limbs by both IGF-I (28/34 embryos, Fi g1 a,b) and IGF-II (22/

30 embryos, Fig 1e and 1f). In these embryos MyoD was only rarely upregulated by either

IGF-I (2/11 embryos, Fig 1c and 1d) or IGF-II (4/12 embryos, Fig 1g and 1h) after 24 hours.

Control beads soaked in BSA had no effect on either pax3 (8/8 embryos, Fig 1I and 1j) or

MyoD (6/6 embryos, Fig 1k and 1l) expression.

To see if these genes were induced by IGFs at later stages of development heparin beads

soaked in either IGF-I or IGF-II were grafted into developing limb buds at HH stage 19 and

incubated for 18 hours until they had reached HH stage 23. In these embryos IGF-I induced

both pax3 (6/13 embryos, Fig 2a and 2b) and MyoD (19/25 embryos, Fig 2c and 2d) expression.

Similarly, IGF-II also induced both pax3 (9/14 embryos, Fig 2e and 2f) and MyoD (24/35

embryos, Fig 2g and 2h), whereas BSA control beads had no effect on either pax3 (7/7

embryos, Fig 2i and 2j) or MyoD (9/9 embryos, Fig 2k and 2l) expression.

To confirm that the induced expression of both pax3 and MyoD was in myogenic progeni-

tors we cut transverse sections of manipulated embryos. These showed that upregulation of

pax3 and MyoD mRNA was observed in the dorsal and ventral muscle masses (Fig 3a and 3b),

the regions of the limb buds where myogenic differentiation normally occurs. In contrast the

non-manipulated limbs and other expression domains, such as the dorsal neural tube and

Fig 1. Grafting IGF beads at HH stage 17 induces pax3 but not MyoD expression. Contralateral pairs of

forelimbs grafted with IGF-I (a,b,c,d), IGF-II (e,f,g,h) or BSA (i,j,k,l), incubated for 24h and then harvested for

in situ hybridization with pax3 or MyoD probes. Asterisks show positions of grafted beads. Black arrows

indicate normal expression domains in non-grafted limbs while red arrows show induced expression.

Numbers in brackets indicate the numbers of similar embryos out of the total number analysed.

https://doi.org/10.1371/journal.pone.0185775.g001
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dorso-medial lip of the somite, which express pax3, and the myotome, which expresses MyoD,

remained unaffected (Fig 3c and 3d).

To see if IGFs could also induce expression of later myogenic markers we incubated

embryos following bead grafts to HH stage 24, the point at which myogenic cells begin to

express markers of terminal differentiation such as myogenin. IGF-I beads grafted at HH stage

19 and incubated for 24h to reach HH stage 24 induced MyoD expression (8/18 embryos, Fig

4a and 4b), while beads grafted at HH stage 21/22 and incubated for 18h to reach HH stage 24

induced myogenin (7/9 embryos, Fig 4c and 4d). Similar effects were seen with IGF-II beads

which induced both MyoD (10/19 embryos, Fig 4e and 4f) and myogenin (12/21 embryos, Fig

4g and 4h) at HH stage 24. In contrast BSA beads had no effect on either MyoD (6/6 embryos,

Fig 4i and 4j) or myogenin (9/9 embryos, Fig 4k and 4l) expression.

To investigate the downstream signaling pathways mediating IGF induction of pax3 and

MyoD we co-grafted IGF beads with beads soaked in small molecule signaling inhibitors. We

tested these signal transduction inhibitor effects on pax3 induction following IGF beads

grafted at HH stage 17 (Fig 5a, 5b, 5c and 5d) and MyoD induction after grafting at HH stage

19 (Fig 5e, 5f, 5g and 5h). Results are shown in Fig 5 and summarized in Table 1.

To confirm that the IGFs were acting through the IGF type 1 receptor we co-grafted IGFs

with picropodophyllotoxin (PPP), a specific inhibitor of IGF1R autophosphorylation. PPP

beads blocked IGF-I induction of both pax3 (12/18 embryos, Fig 5i and 5j) and MyoD (7/9

Fig 2. Grafting IGF beads at HH stage 19 induces pax3 and MyoD expression. Contralateral pairs of

forelimbs grafted with IGF-I (a,b,c,d), IGF-II (e,f,g,h) or BSA (i,j,k,l), incubated for 18h and then harvested for

in situ hybridization with pax3 or MyoD probes. Asterisks show positions of grafted beads. Black arrows

indicate normal expression domains in non-grafted limbs while red arrows show induced expression.

Numbers in brackets indicate the numbers of similar embryos out of the total number analysed.

https://doi.org/10.1371/journal.pone.0185775.g002
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embryos, Fig 5m and 5n) as well as IGF-II induction of pax3 (8/11 embryos, Fig 5k and 5l) and

MyoD (8/11 embryos, Fig 5o and 5p).

We then tested U0126, a MEK inhibitor, in the same assay. U0126 beads effectively blocked

IGF-I induction of pax3 (9/10 embryos, Fig 5q and 5r) and MyoD (7/8 embryos, Fig 5u and

5v) as well as IGF-II induction of pax3 (6/7 embryos, Fig 5s and 5t) and MyoD (8/12 embryos,

Fig 5w and 5x).

IGF beads were also co-grafted with beads soaked in LY294002, a PI3K inhibitor. In this

case IGF-II induction of pax3 was blocked (14/21 embryos, Fig 5a’ and 5b’) but IGF-I induced

pax3 expression was not affected (5/6 embryos, Fig 5y and 5z). In contrast, IGF-I induction of

MyoD was blocked by LY29004 beads (15/19 embryos, Fig 5c’ and 5d’) but there was no effect

of LY294002 beads on IGF-II induction of MyoD (9/14 embryos, Fig 5e’ and 5f’).

Initially as a control we also tested an inhibitor of the FGFRs and VEGFR, SU54502. As

expected this has no effect on IGF-I (17/25 embryos, Fig 5g’ and 5h’) or IGF-II (6/8 embryos,

Fig 5i’ and 5j’) induction of pax3 but, unexpectedly, it inhibited MyoD induction by both

IGF-I (20/30 embryos, Fig 5k’ and 5l’) and IGF-II (12/16 embryos, m’,n’).

As another control we also tested beads soaked in DMSO, the solvent used for these inhibi-

tors. DMSO had no effect on pax3 or MyoD induction by either IGF-I or IGF-II (Fig 5o’, 5p’,

5q’, 5r’, 5s’, 5t’, 5u’ and 5v’).

The ability of SU5402, an FGFR and VEGFR inhibitor, to block MyoD induction by IGFs

was unexpected. One possible explanation was that this was an indirect effect caused by IGF

induced upregulation of FGF. To test this we grafted IGF-I beads at HH stage 17, incubated

Fig 3. IGF-I induced expression of pax3 (a) and MyoD (b) is confined to dorsal and ventral muscle masses.

BSA beads (c,d) do not affect normal expression of these genes. dml: dorso-medial lip, dmm: dorsal muscle mass,

vmm, ventral muscle mass, nt: neural tube, nc, notochord, m: myotome, AER: apical ectodermal ridge. Red arrows

show regions of increased mRNA expression in grafted limbs, black arrows the regions of endogenous gene

expression in the contralateral limbs.

https://doi.org/10.1371/journal.pone.0185775.g003
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embryos for 24h to HH stage 22 and then measured their effect on Fgf18 mRNA, which is

known to induce MyoD expression in limb bud myogenic precursors. In 9/19 embryos we saw

increased levels of Fgf18 in grafted limb buds (Fig 6).

Discussion

The specification and differentiation of muscle cells provides an excellent paradigm to exam-

ine inductive events during development. As pax3 expressing precursor cells migrate into limb

buds they begin to differentiate by expressing MyoD and, subsequently, myogenin in response

to a range of signals [12, 33].

Although IGFs are well known to regulate muscle formation in embryos and muscle growth

in adult animals [34–36] there remain many unanswered questions about their roles; for exam-

ple how they are able to promote both proliferation and differentiation of myoblasts, behav-

iours that should be mutually exclusive. Here we use the chicken embryo model to examine

some of the signaling events that underlie these activities by grafting beads soaked in IGF-I or

IGF–II along with specific signaling inhibitors.

In early limb buds (HH stage 17) both IGFs were able to induce upregulation of pax3
mRNA but not MyoD, while in slightly later limbs (HH stage 19) both pax3 and MyoD mRNA

were induced. We have previously shown that these early myogenic progenitors are resistant

to signals that promote differentiation and that this is mediated by retinoic acid [16]. The data

we present here is consistent with the idea that signals in the early limb prevent premature dif-

ferentiation of muscle cells, presumably to ensure that there are sufficient precursors produced

to contribute to the muscles.

Fig 4. IGF-1 and–II induce MyoD and myogenin in HH stage 24 limbs. Contralateral pairs of forelimbs

grafted with IGF-I (a,b,c,d), IGF-II (e,f,g,h) or BSA (i,j,k,l), incubated for 24h and then harvested for in situ

hybridization with MyoD or myogenin probes. Asterisks show positions of grafted beads. Black arrows

indicate normal expression domains in non-grafted limbs while red arrows show induced expression.

Numbers in brackets indicate the numbers of similar embryos out of the total number analysed.

https://doi.org/10.1371/journal.pone.0185775.g004
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Fig 5. Effects of small molecule inhibitors on pax3 and MyoD induction by IGFs. Contralateral pairs of

forelimbs grafted with IGF-I or IGF-II beads along with small molecule inhibitors, incubated for 24 or 18h and

then harvested for in situ hybridization using pax3 or MyoD probes. Black asterisks show positions if IGF

beads, red asterisks inhibitor beads. Black arrows show normal expression domains in non-grafted limbs, red

arrows induced expression by IGF. Numbers in brackets indicate the number of similar embryos out of total

IGFs and early chick myogenesis
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The ability of IGFs in older embryos to induce pax3 expression, a marker of proliferative

precursors, and MyoD and myogenin, markers of early and late stages of differentiation, is less

easy to explain although this is a commonly observed feature of these molecules [34]. There

are several models that could explain this apparent paradox.

The increase in pax3 expression could be due to (i) increased proliferation of the migratory

precursors, (ii) higher numbers of cells migrating from the hypaxial somite into the limbs or

(iii) recruitment of additional cells from within the limb to the myogenic lineage. As limb bud

mesenchyme cells do not contribute to muscle [37, 38] or express pax3 [39, 40] it is unlikely

that these cells are being respecified and therefore the recruitment (iii) model is unlikely. It is

also possible, given that in situ hybridization does not provide single cell resolution, that the

increase in pax3 levels indicates higher transcription of pax3 mRNA within the same number

of cells. It is also important to bear in mind that we cannot exclude indirect effects on pax3
expression; for example IGFs could be inducing expression of other signaling molecules, such

as HGF, that are known to enhance myoblast proliferation [8–10].

The induction of MyoD and myogenin are harder to explain in the context of increased

pax3 expression. It is possible that this is a stochastic effect because there are more progenitors

in the limb; increased MyoD and myogenin levels are observed simply because there are more

myogenic cells differentiating. An alternative explanation is that IGF signaling has different

effects at different stages of development and differentiation. This is consistent with the differ-

ences seen at HH stages 17 and 19. At earlier stages myogenic precursors are not competent to

induce MyoD, either because of their epigenetic state or because of high levels of inhibitors in

the proximal limb, such as retinoic acid [16]. In later embryos RA levels have declined and the

cells will also have moved further along the differentiation process, potentially making them

able to respond to IGFs in a different way. One other possible explanation is that the IGFs will

also affect the surrounding limb bud mesenchyme, changing the signaling environment of the

cells. Support for this model comes from the surprising observation that MyoD induction by

IGFs is blocked by an inhibitor of the FGF and VEGF receptors. In this model IGFs act indi-

rectly by the induction of pro-myogenic signals, such as FGF18, in the surrounding tissues. We

number of grafts. A summary diagram of which molecules inhibited IGF-I and/or IGF-II induction of pax3 and

MyoD mRNA is also included.

https://doi.org/10.1371/journal.pone.0185775.g005

Table 1. Summary of effects of small molecule signaling inhibitors on IGF-I and IGF-II induction of pax3 and MyoD expression in developing limb

of chick embryos.

Graft at HH 17, incubate for 24h pax3 induction Graft at HH 19, incubate for 18h MyoD induction

IGF-I 28/34 82% IGF-I 19/25 76%

IGF-I + PPP 6/18 33% IGF-I + PPP 2/9 22%

IGF-I + U0126 1/10 10% IGF-I + U0126 1/8 12.5%

IGF-I + LY294002 5/6 83% IGF-I + LY294002 4/19 21%

IGF-I + SU5402 17/25 68% IGF-I + SU5402 10/30 33%

IGF-I + DMSO 8/10 80% IGF-I + DMSO 11/16 69%

Graft at HH 17, incubate for 24h pax3 induction Graft at HH 19, incubate for 18h MyoD induction

IGF-II 22/30 73% IGF-II 24/35 69%

IGF-II + PPP 3/11 27% IGF-II + PPP 3/11 27%

IGF-II + U0126 1/7 14% IGF-II + U0126 4/12 33%

IGF-II + LY294002 7/21 33% IGF-II + LY294002 9/14 64%

IGF-II + SU5402 6/8 75% IGF-II + SU5402 4/16 25%

IGF-II + DMSO 6/6 100& IGF-II + DMSO 12/19 63%

https://doi.org/10.1371/journal.pone.0185775.t001

IGFs and early chick myogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0185775 October 3, 2017 9 / 13

https://doi.org/10.1371/journal.pone.0185775.g005
https://doi.org/10.1371/journal.pone.0185775.t001
https://doi.org/10.1371/journal.pone.0185775


have shown previously that beads soaked in FGF18 can induce MyoD, but not pax3, expression

in developing limbs at these stages of development [16] and the induction of Fgf18 mRNA by

IGF-I, as well as the ability of SU5402 to block IGF induced MyoD expression, is consistent

with this model. However, as this inhibitor also blocks signaling though VEGFR2, which is

known to affect myogenesis, it is also possible that IGFs induce members of the VEGF family

and these could also contribute to induction of MyoD.

Further complexity in the responses of limb bud myoblasts to IGFs is apparent when they

are exposed to a variety of signal transduction inhibitors. pax3 and MyoD induction in

response to IGF-I and–II were both blocked by PPP, an IGF1R inhibitor, and U0126, which

blocks MEK activity and so prevents ERK phosphorylation. Surprisingly, given the very well

characterized links between IGFs and PI3K/AKT/mTOR signaling, the PI3K inhibitor

LY294002 specifically blocked IGF-I induced MyoD expression and IGF-II induced pax3
expression. This could be because, in these embryos, the IGF-I and -II are interacting with

other receptors, for example the insulin receptor to trigger this pathway [41]. However, this is

hard to reconcile with the data showing that PPP can block all these responses.

In summary our data show limb bud muscle precursors at HH stage 17 respond to IGF sig-

naling by upregulating pax3, a marker of early proliferating muscle precursor cells and that

later, at HH stage 19, they also upregulate later markers of differentiation, MyoD and myo-
genin. All these events are controlled by the IGF1R receptor, which is expressed throughout

the limb buds at these stages [24], involving signaling through the ERK MAPK pathway. IGF-I

and–II appear to have differential effects through PI3K signaling at HH stages 17 and 19 while

the induction of MyoD is, at least in part, dependent on FGF receptors, possibly through

induction of FGF18 in the limb bud mesenchyme.

Ethical approval

All experiments were completed before 14 days of incubation, two thirds of the way through

chicken embryo development. Therefore embryos used in this project does are not regulated

Fig 6. Increased Fgf18 expression following IGF-I bead grafts. a) non-grafted limb showing normal

expression domain of Fgf18 at HH stage 22. b) increased Fgf18 following IGF-I bead grafting. Asterisk shows

position of bead. Red arrow shows region of increased Fgf18 mRNA. Numbers in brackets indicate the

number of similar embryos out of total number of grafts.

https://doi.org/10.1371/journal.pone.0185775.g006
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under the UK Animals (Scientific Procedures) Act of 1986. All procedures were discussed and

agreed with the University of Nottingham ethics officer. Fertilised eggs were purchased from

reputable commercial suppliers (Henry Stewart) who specialise in providing eggs for research.

Their farms are registered under DEFRA’s Poultry Health Scheme which ensures disease con-

trol programmes that are up to the latest EU standards. They also comply with RSPCA’s Free-

dom Food Code of Practice promoting the ‘Five Freedoms’ for best practice welfare.
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