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Background. HTRA2 has already been nominated as PARK13 which may cause Parkinson’s disease, though there are still
discrepancies among these results. Recently, Gulsuner et al.’s study found thatHTRA2 p.G399S is responsible for hereditary essential
tremor and homozygotes of this allele develop Parkinson’s disease by examining a six-generation family segregating essential
tremor and essential tremor coexisting with Parkinson’s disease. We performed this study to validate the condition of HTRA2
gene in Chinese familial essential tremor and familial Parkinson’s disease patients, especially essential tremor.Methods. We directly
sequenced all eight exons, exon-intron boundaries, and part of the introns in 101 familial essential tremor patients, 105 familial
Parkinson’s disease patients, and 100 healthy controls. Results. No exonic variant was identified, while one exon-intron boundary
variant (rs2241028) and one intron variant (rs2241027) were detected, both with no clinical significance and uncertain function.
There was no difference in allele, genotype, and haplotype between groups. Conclusions. HTRA2 exonic variant might be rare
among Chinese Parkinson’s disease and essential tremor patients with family history, and HTRA2may not be the cause of familial
Parkinson’s disease and essential tremor in China.

1. Introduction

As two of the most prevalent tremor disorders, essential
tremor (ET) and Parkinson’s disease (PD), which are esti-
mated to constitute 0.9% and 0.3% of worldwide population,
respectively, are considered as distinctively different entities
formerly [1, 2]. Several lines of evidence showed that there are
remarkable overlaps in clinical features, epidemiology, imag-
ing, genetics, and pathology between PD and ET, including
a fourfold increase of risk developing Parkinson’s disease in
essential tremor cases [3, 4].

ET is widely regarded as caused by genetic with no
disease-causing gene ever been focused; Contrarily, though
PD is mainly sporadic, up to now 22 PARK loci have been
identified [5, 6]. To be specific, 50% of ET patients demon-
strate familial aggregation, while less than 15% of PD patients
have affected first-degree relatives [7–9]. Due to the overlap
phenomena between ET and PD, investigations into the
relationship between PD risk variants and ET patients have

been done, involving LINGO1, LINGO2, LRRK2, SLC1A2, and
HTRA2 genes [3, 10–12].

HTRA2 has already been nominated as PARK13 which
may cause Parkinson’s disease, though there are still dis-
crepancies among these results. Recently, a research by
Gulsuner and colleagues examining a six-generation family
segregating ET and ET coexisting with PD revealed that
HTRA2p.G399S is responsible for hereditary essential tremor
and homozygotes for this allele develop Parkinson’s disease
[13]. Replications conducted in Western Norway and Asian
population to address the association between p.G399S and
ET, PD, ET/PD, and tremulous cervical dystonia failed to
reach a consensus [14, 15]. In addition, report from a small
sample (29 FETs) in Germany adopting coding exon Sanger
sequencing did not reconfirm it either [16]. To validate the
condition in Chinese familial essential tremor (FET) and
familial Parkinson’s disease (FPD) patients, we performed a
Sanger sequencing of eight exons and exon-intron bound-
aries of HTRA2 instead of just one variant (p.G399S).
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Table 1: Demographics of participants.

Details FET FPD ET-PD Control
Total 101 105 15 100
Agea (range, 𝑝b value) 61.24 ± 12.62 (28–90, 0.12) 59.28 ± 11.21 (36–84, 0.86) 67.80 ± 8.65 (56–79, NA) 59.06 ± 6.21 (49–74, NA)
Male/female, 𝑝b value 51/50, 0.52 53/52, 0.52 12/3, N/A 46/54, N/A
N/A: not applicable; adata are mean ± SD; bdata are compared with control; FPD: familial PD; FET: familial ET; ET-PD: ET coexisting with PD.

Table 2: Primers of HTRA2.

Name Forward Reverse Products
1 GTC TCA CAA CTC GCG TCC G GCC TGA AAT GGA GGG AAA GCA Exon 1 and boundaries
2 TCG AGA TCC TGG ACC GGT AA GGC CAC ATT TTT GCA GCC TAA Exons 2, 3 and intron 2; boundaries
3 GCA GCT ATT GAT GTG CGT CC TGA AGG GAG ACA GCT CTT GTG Exons 4, 5, 6 and introns 4, 5; boundaries
4 ACT CAG CCA ACC TGA TTT CCT AC TTC AGA GCC CAG GAG TCA GT Exons 7, 8 and intron 7; boundaries

2. Methods

2.1. Patients. This study enrolled 221 unrelated Chinese
patients, including 105 PD patients with autosomal dominant
inheritance (2 or more affected relatives in 2 consecutive
generations), 101 ET patients with family history, and 15
patients of ET coexisting with PD. All patients were from
the Movement Disorder Clinic of Department of Neurology
at Ruijin Hospital affiliated to Shanghai Jiao Tong University
School of Medicine. PD and ET patients were diagnosed by
seniormovement disorder specialist on the basis ofMDS clin-
ical diagnostic criteria for Parkinson’s disease and Consensus
Statement on Tremor of the Movement Disorders Society,
respectively [17, 18]. Patients presenting secondary Parkin-
sonism, Parkinson-plus syndrome, or hyperthyroidism were
excluded from the study. We also included 100 healthy
controls without any symptom of movement disorders. The
demographic information of patients is shown in Table 1.
We received approval from the Ethics Committee of Ruijin
Hospital affiliated to Shanghai Jiao Tong University School of
Medicine. Written informed consents were obtained from all
patients and controls participating in the study as well.

2.2. DNA Sequencing and Mutation Analysis. Genomic DNA
was extracted from venous blood applying standardized
phenol/chloroform extraction method from patients and
controls. The 8 coding sequences, exon-intron boundaries,
and part of introns were sequenced by Sanger sequencing in
4 products of PCR (polymerase chain reaction) amplification
using 4 pairs of primers (Table 2). DNASTAR Lasergene
MegAlign (v7.1.0) and Chromas (v2.33) were used to conduct
sequence alignment, and the chromatograms were double
checked to avoidmissing any variants. Variants detected were
searched in NCBI to get access to their clinical significance
and MAF in ExAC and 1000 Genomes Projects database.

2.3. Statistical Analysis. Statistical analysis was performed
with Statistical Analysis System V8 (SAS V8). Difference of
age was assessed applying 𝑡-test or 𝑡-test. Hardy-Weinberg
equilibrium (HWE) was calculated by Chi-square analysis.
Chi-square or Fisher’s exact test was used to test the differ-
ences in genotype and gender between groups. Odds ratios

(ORs) and 95% confidence intervals (95% CI) were evaluated
byMantel-Haenszel Chi-squared test to verify the association
between variants and FPD or FET.The evaluation of the asso-
ciation was also conducted using logistic regression under
different genetic models adjusted for age and gender. Online
SHEsis program was used to conduct haplotype analysis [19].
Two-tailed 𝑝 value < 0.05 was considered significant. The
statistical power was performed using Quanto.

3. Results

The patients and controls in the study are well matched for
mean age (𝑝 = 0.12 for FET and 𝑝 = 0.86 for FPD)
and sex distribution (𝑝 = 0.52 for FET and 𝑝 = 0.52 for
FPD) (Table 1). By sequencing all the four products in all
221 patients (FET, FPD, and ET-PD) and 100 controls, no
exonic variant was identified, while one exon-intron bound-
ary variant (rs2241028) and one intron variant (rs2241027)
were detected. In NCBI SNP database, MAF of rs2241027
and rs2241028 were 0.05/0.10, 0.06/0.07, respectively, from
ExAC/1000 Genomes Project, both with no clinical signifi-
cance.The function of both variants was defined as uncertain
by MyGenostics. The variants distribution was within the
range of Hardy-Weinberg equilibrium in controls (𝑝 = 0.82,
0.71 resp., Table 3). Given the present sample sizes, we have
80% power to detect an odds ratio of 1.83 in both PD and ET
for rs2241027 adopting an additive model and OR of 1.91 in
both PD and ET for rs2241028 adopting an additive model.
What is worth noting is that there are big differences in
MAFs between our control and database in both two variants,
whichmay be caused by ethnical diversity, so we calculate the
power consideringMAFs of 0.28 and 0.21, respectively, in our
control, which is higher than in database; otherwise, it would
require much bigger sample sizes. Additionally, we only have
34% power to detect an OR of 1.44 (the OR in Krüger et al.’s
study) for rs2241028.

As for allele and genotype distribution of both variants,
we failed to detect any significant differences either in FET
versus controls or in FPD versus controls (Tables 3 and
4). No significant difference was observed in the logistic
regression either (data not shown). Moreover, haplotypes of
two variants showed hardly any association with the risk
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Table 4: Statistics of genotype.

Participants Genotype (rs2241027/rs2241028) 𝑝a value
GG GA AA rs2241027 rs2241028

FET 44/75 48/23 9/3 0.50 0.29
FPD 53/73 43/31 9/1 0.77 0.14
ET-PD 8/9 4/5 3/1 N/A N/A
Control 51/64 43/30 6/6 N/A N/A
a𝑝 value compared with controls.

Table 5: Haplotype analysis.

Haplotype FET (%) FPD (%) Control (%) 𝜒2 valuea/b Fisher’s 𝑝a/b Pearson’s 𝑝a/b OR (95% CI)a/b

A-A 0 0 0 — — — —
A-G 33 29 28 1.28/0.12 0.26/0.73 0.26/0.73 1.28 (0.83–1.96)/1.08 (0.70–1.66)
G-A 14 16 21 3.05/1.92 0.08/0.17 0.08/0.17 0.63 (0.38–1.06)/0.70 (0.42–1.16)
G-G 53 55 52 0.09/0.58 0.77/0.45 0.77/0.45 1.06 (0.72–1.57)/1.16 (0.79–1.71)
a/bvalue for FET versus controls/FPD versus controls.

of FET or FPD (Table 5). Regarding ET-PD, in which we
attempted to investigate the situation ofHTRA2 in case there
were some dramatic mutations, owing to the limitation of
sample size, we quitted further statistical analysis.

4. Discussion

The high temperature requirement A2 (HTRA2), known
as a mitochondria protein, plays distinct different roles in
mitochondria homeostasis and cellular apoptosis regulation
[20]. As one study indicated, deficiency of HTRA2 can cause
damage and mutation of mitochondria DNA [21]. Another
study revealed that HTRA2 was regulated by PINK1, which
might contribute to early-onset PD, in the proteolytic activity
[22].

Many researches concerning the association of PD with
HTRA2 variants have been done. The earliest mutation
screening of HTRA2 in PD patients was done in a German
population after the finding that targeted disruption of
HTRA2 can cause neurodegeneration and a Parkinsonian
phenotype in mice, which resulted in the identification
of two mutations (G399S and A141S) related to the risk
of PD [23, 24]. Later on, replications with contradictory
consequences have been conducted [25–31], and one large
scale genetic association study is worth noting, which showed
no evidence for an overall association of common variants
in HTRA2 with PD [32], while Gulsuner et al.’s study of
a six-generation family provides further evidence for the
probability of HTRA2 acting as a cause for PD and ET,
especially those with family history [13]. So the aim of our
study is to investigate the situation of HTRA2 by Sanger
sequencing of the whole coding sequence in FET, FPD, and
ET-PD in Chinese population, especially FET and ET-PD.

Our study detected two variants (rs2241028, rs2241027).
Variant rs2241028 has been reported in several studies with
similar negative results except for Krüger et al.’s study, in
which rs2241028 was considered as a susceptible factor for
PD in the Scandinavian population and their descent from

USA [32], while there is no report of this variant in studies
about ET. Since rs2241028 is near the splicing region, it may
affect the transcript efficiency of HTRA2 to some extent or
influence the expression of HTRA2 in some other way, so it
would be promising to do some research into the function of
this variant and the relationship with PD. Variant rs2241027
has never been mentioned in the previous study no matter
about PD or ET. Our study showed that neither of two
variants was related to the risk of developing ET or PD,
and two variants were defined as no clinical significance in
database.Meanwhile, we have not detectedmutations (G399S
and A141S) mentioned in other studies. So we provided no
evidence of association of HTRA2 with FET and FPD. As for
ET-PD, the result of our study was not so convincing due to
the sample size though we found nothing significant as well.
Admittedly, there are some limitations in our study. On the
one hand, the sample sizeswere only able to detect amoderate
correlationwith enough power and not for a relatively weaker
correlation, which may cause false negative error. On the
other hand, it would be more persuasive if the promoter of
HTRA2 gene has been sequenced as well.

In conclusion,HTRA2might not be a cause of familial ET
or PD in China. Studies with larger sample size are needed to
investigate thoroughly the role of HTRA2 in ET and ET-PD
in China and other places in the world.
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