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A central account of cognitive aging is the dedifferentiation among functions due to

reduced processing resources. Previous reports contrasting trends of aging across

cognitive domains mostly relied on transformed scores of heterogeneous measures.

By quantifying the computational load with information entropy in tasks probing motor

and executive functions, this study uncovered interaction among age, task, and load as

well as associations among the parametric estimates of these factors at the individual

level. Specifically, the linear functions between computational load and performance

time differed significantly between motor and executive tasks in the young group but

not in the elderly group and showed stronger associations for parameters within and

between tasks in the elderly group than in the young group. These findings are in line

with the dedifferentiation hypothesis of cognitive aging and provide a more principled

approach in contrasting trends of cognitive aging across different domains from the

information-theoretic perspective.
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INTRODUCTION

Aging impacts cognitive functions in a variety of manners: while some functions have been found
to deteriorate (e.g., fluid intelligence), others seem to remain relatively stable across years of
later adulthood (e.g., crystallized intelligence; Park and Gutchess, 2002; Salthouse, 2019). As the
population worldwide rapidly grows older, precisely depicting trajectories of aging for different
cognitive functions have great values from various perspectives, including clinical applications,
policymaking, life span education, industrial research, and development, etc. At the group level,
both cross-sectional and longitudinal reports comparing standardized scores of cognitive functions
across life span suggest distinctive progression of aging-related impacts on different cognitive
domains (Park and Gutchess, 2002; Salthouse, 2019). Outlining the landscape of aging across
multiple cognitive domains is not a trivial business, considering the wild variety of the ways that
different cognitive functions within a domain are operationally defined, measured, and compared.
This study aims to examine this landscape by exploring the difference and relationship between two
cognitive domains that are known to be susceptible to the impacts of aging, namely, the executive,
and motor control.

As cognition comprises a vast array of diverse functions and researchers having accumulated
numerous paradigms in studying them, it is almost unavoidable to apply a certain scheme of
standardization when constructing any panoramic view of cognitive aging. For example, in the
most widely applied procedure, z-standardization, the observations are demeaned, and divided
by the sample SD. In the context of cognitive aging, the standardized performance indices of
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different abilities as functions of age are then contrasted for
assessing the trend. As one loses the absolute scale of the
performance measure, the scope of interpretation from the
z-score approach is limited to the comparison of general
trends in the ability of each individual. Further exploration
of the relationships among trends in different abilities can
be misleading, due to the fact that standardization often
distorts the distances between observations and the multivariate
distributions of cross-sectional (Fischer and Milfont, 2010) and
longitudinal data (Moeller, 2015). While alternative ways of
transforming heterogeneous measures have been proposed to
overcome the above problems (Little, 2013), a fundamental
resolution is to design tasks for different domains in ways that
independent variables vary along a commensurable dimension.
Specifically, this is viable by applying the information theory
(Shannon and Weaver, 1949) in quantifying the computational
load involved in various cognitive functions (Fan, 2014).

Although the information theory sits at the core of the
“cognitive revolution” (Neisser, 1976), in practice, it served
mostly as a conceptual metaphor. Seldom do experiments
in cognitive psychology quantitatively relate the amount of
information embedded in stimuli to be processed to mental
operations. With the appropriate experimental design, the
information-theoretic approach offers a simple and clear
measurement of cognitive functions. For example, the executive
function can be assessed with tasks that involve uncertainty
processing, such as the majority function task (MFT; Fan et al.,
2008; Wang et al., 2011; Fan, 2014). In this task, participants are
shown a number of left/right arrows and asked to indicate the
direction in which the majority of the arrows are pointing. By
manipulating the set size and congruency (i.e., the ratio of the
number of left/right arrows) in each trial and with assumptions
of searching strategies (i.e., exhaustive, self-terminating, or
grouping), the per-trial computational load can be quantified
with the entropy estimate, “bit.” Fan et al. (2008) determined
that grouping-search outperformed the other two algorithms in
capturing the linear relationship between the reaction time (RT)
and computational load inMFT [RT= a+ b•log2(s), s indicating
the average number of arrowheads to be scanned in a trial], where
the slope (b) indicates howmuchmore time it takes to process per
bit of load increase (i.e., processing efficiency). In contrast, the
intercept (a) represents the processing time at the lowest possible
load (0 bit), which is the binary choice RT to a single arrowhead.

While MFT demonstrates how information-theoretic
approach can metrically quantify efficiency in the executive
function, similar applications of metrical quantification have also
been documented in the literature of human motor control. The
speed-accuracy trade-off has long been considered a fundamental
property of human motor behavior (Woodworth, 1899). Fitts
(1954) attributed it to the limited capacity of information
transmission in the sensorimotor channel. This central limit
forces the duration of performing a task proportional to the
amount of information (in bits) required for controlling each
targeting movement. The amount of information, coined as
the index of difficulty (ID), has the form of the ratio of the
target distance to its width. Hence the Fitts’ law is expressed as
follows: movement time (MT) = a + b•ID = a + b•log2(A/W

+ 1) (direct analogy with Shannon’s information theorem;
MacKenzie, 1992). The slope (b) indicates how much additional
processing time it requires per bit of ID increase. The meaning
of the intercept (a) has several interpretations, including
unavoidable delay in the psychomotor system (Fitts and
Radford, 1966), extra feedback processing time, uncontrollable
muscle activity at the beginning or end of the movement
task (MacKenzie, 1992), and RT (Fitts and Peterson, 1964).
Alternatively, it has also been proposed that Fitts’ law is just an
approximation of the function of a more general motor circuit
model (Beamish et al., 2006), and the intercept in the Fitts’ law
reflects the consequence of delay processing in the circuit.

The majority function and Fitts’ law represent quantitative
principles of uncertainty processing in executive and motor
functions, respectively. Taking advantages of these two
experimental paradigms affording analyses based on the
information-theoretic measures can be a way to avoid issues
concerning score standardization when carrying out studies
comparing performance in different tasks. Regarding the impacts
of aging on MFT and Fitts’ law, so far no study has documented
the difference between the young and elderly groups in MFT
performance. However, based on the observations of reduced
efficiency in component abilities relevant to MFT, such as
visual search, working memory, and conflict resolution, one
can reasonably expect elevated intercept and slope of MFT for
the elderly group. In contrast, the characteristics of Fitts’ law
in the later stage of life have been inspected quite thoroughly.
It has been quite well-established that, in a variety of Fitts’
tasks, the elderly group showed both steeper slopes (Rey-Robert
et al., 2012; Temprado et al., 2013) and longer MTs (Welford
et al., 1969; York and Biederman, 1990; Teeken et al., 1996;
Ketcham et al., 2002). The less efficient processing of the elderly
group in both paradigms may or may not have common causes,
depending on how well the functional parameters are associated
between paradigms, as compared with the young group.

Sleimen-Malkoun et al. (2013) compared Fitts’ law and Hick–
Hyman’s law in young and elderly groups. In contrast to Fitts’
law, theHick–Hyman’s law describes the choice reaction time as a
linear function of the information entropy of response selection,
namely, the binary logarithm of possible Stimulus-Response
(S–R) associations, while fixing the complexity of the motor
response at the lowest possible level (Hick, 1952; Hyman, 1953;
Hawkins et al., 2012). The authors found that while the slopes
of the two laws were not statistically separable in the elderly
group, the young group showed larger slopes in the Fitts’ law than
the Hick–Hyman’s law. They consider the findings providing
evidence for the dedifferentiation view of cognitive aging: owing
to the reduction in cognitive resources, distinctive processes at
younger age shifted to recruit common resources at an older age,
and thus become more similar to each other (Lindenberger and
Baltes, 1994; Baltes and Lindenberger, 1997). Although this study
demonstrated a novel way of quantitatively contrasting different
cognitive domains without transforming the raw data, there are
some rooms in the methodological aspects to be further explored,
including (1) linear functions were estimated over the group
mean RT, which usually overestimates the explained variance; (2)
the comparison between tasks qualitatively relied on outcomes
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of separate ANOVAs because the levels of the difficulty factor
in the two tasks were not identical (i.e., not fully “crossed”) and
cannot be analytically compared within one single fixed-effect
type of model; and (3) trial-by-trial variation within subjects was
ignored, whichmaymiss information embedded at the individual
level. To deal with these issues, one has to carry out analyses that
can take the trial-by-trial variation at the individual level into
account and can deal with unbalanced design.

This study will compare aging in the domains of motor and
cognitive functions with experimental paradigms manipulating
computational load along the same information metric and
adopt statistical models that can adequately and quantitatively
afford the experimental design. Specifically, the linear functions
of the MFT and Fitts’ law in the elderly and young groups
will be estimated with the generalized linear mixed model
(GLMM) to examine the interaction among age, task, and
computational load. This will reveal differences between tasks
and age groups at the group level (fixed-effect) and at the same
time also allows the exploration of correlations between factors,
which require estimates of the relationship at the individual
level (random-effect). Under the research framework of this
study, the dedifferentiation hypothesis would predict not only
more significantly different performance–load relationship in the
young group than the elderly group but also stronger correlation
between individual parameter estimates in the elderly group than
the young group.

METHODS

Participants
Thirty-three elderly and 40 young participants were tested in
this study after given informed consent. The elderly participants
(mean age: 69.9 years, 95% CI = [67.1; 72.6]; mean education:
11.7 years, 95% CI = [10.5; 12.9]) were community dwellers in
the close proximity of National Central University (NCU). The
young participants (mean age: 22.7 years, 95% CI = [22.0; 23.3];
mean education duration: 16.3 years, 95% CI= [16.1; 16.5]) were
undergraduate students of NCU. The young participants were
paid 120 NTD (∼4 USD)/h, whereas the elderly participants were
given gifts (with a value equivalent to 120 NTD) for participation.

Apparatus and Tasks
Participants were tested in a dim room without being interfered,
where they were seated in an adjustable height chair next to a
table. They performed an RT task (i.e., the MFT) and a discrete
rapid-aiming task (i.e., Fitts’ task). Based on the experience
from the pilot study, the elderly participants generally feel more
difficult to perform the Fitts’ task and can take quite a long time
to complete it. Therefore, the MFT always precedes the Fitts’ task
to allow participants to get familiar with the general experimental
settings before being challenged with the more difficult task.

The MFT

In this study, in each trial, one, three, or five arrowheads were
presented on some of the eight predefined locations on the
invisible circular perimeter of a 3◦ radius. These arrowheads
either point uniformly to the right or left or had a direction

pointed to by the majority of them (e.g., two left and one right
among three arrowheads; one right and four left among five
arrowheads). The participant was instructed to determine the
“majority direction” and press one of the two mouse buttons to
indicate that direction, and the RT was defined as the duration
between stimuli onset and the response. Participants practiced for
a block of 16 trials before proceeding to the formal experimental
trials. Fan et al. (2008) demonstrated that the RT increased as
a linear function of the uncertainty that can be quantified by
Shannon’s entropy and was determined by the composition of
the arrowhead directions in a “grouping search” manner. In other
words, to solve a trial efficiently, one adopts a strategy to group
and sample arrows with a majority size (i.e., more than half of
the number of arrowheads in a trial) based on their directions.
Accordingly, by defining the majority group size (1, 2, and 3
for set sizes of 1, 3, and 5, respectively) as the information
unit and assuming that each sampled group is equivalent to
one unit of information, the computational load, namely, the
“level of uncertainty,” under the grouping search strategy can be
quantified as logg(s), where g is the majority group size, i.e., a
minimal number of arrows pointing in the same direction to be
treated as the “majority,” and s is the total number of arrowheads
to be scanned. To convert this quantity to bits, it is multiplied
by log2(g), i.e., the computation load is log2(g)•logg(s), which is
equivalent to log2(s), where s is defined as the average number
of arrowheads to be scanned in each condition. By manipulating
the number of arrowheads and the composition of their binary
pointing direction (3:0, 4:1, and 3:2), we adopted three different
levels of computational load [1, 2.91, and 4.91 bits, respectively;
see Fan et al. (2008) for how different compositions of pointing
directions can be converted into the bit unit]. There were 54 trials
for each load, which amounts to 162 trials in total.

The Fitts’ Task

In each trial of the Fitts’ task, participants moved the mouse
pointer on the monitor from the starting location to a target
disk as accurately and rapidly as possible. The MT in the Fitts’
task was defined as the duration between the time points t0 and
t1 after the target disk was presented on the screen, in which
t0 indicates the time point when the cursor just moved outside
the perimeter of the fixation disk (i.e., 10 pixels from its center),
whereas t1 indicates the time point when the cursor just reached
a position of which distance to the center of the target disk
shorter than the target radius. The radius and center position
of the target disk varied from trial to trial, which resulted in
distinct ID, ID = log2(A/D + 1) (Fitts, 1954; later revised by
MacKenzie, 1992), where A indicates the distance between the
starting location and the center of the target and D indicates
the target diameter. The different target disks appeared 5, 10, or
20 pixels in radius, and the distance between starting position
and the target center ranged 160, 320, or 480 pixels. The ID
here is conceptually equivalent to the load in MFT, and both are
quantified in Shannon’s entropy, bit. To consistently apply the
nomenclature of the concept in MFT and Fitts’ task, we hereby
also call ID as load. Seven different combinations ofA andDwere
adopted in this experiment, which resulted in seven distinct levels
of load (2.32, 3.17, 3.7, 4.09, 4.64, 5.04, and 5.61 bits by taking
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TABLE 1 | Accuracies and performance time (DV) of Fitts’ task and MFT in each combination of age, task, and load.

Age Task Load Accuracy [CI 95%] DV [CI 95%]*

Old (N = 33) Fitts 2.32 0.96 [0.94, 0.97] 1,268 [1,183, 1,353]

3.17 0.93 [0.91, 0.94] 1,494 [1,408, 1,579]

5.04 0.92 [0.90, 0.95] 2,240 [2,039, 2,440]

MFT 1.00 0.96 [0.94, 0.98] 746 [621, 870]

2.91 0.98 [0.97, 0.98] 1,365 [1,240, 1,490]

4.91 0.79 [0.77, 0.82] 1,834 [1,712, 1,956]

You (N = 38) Fitts 2.32 0.89 [0.86, 0.91] 570 [536, 603]

3.17 0.88 [0.86, 0.91] 706 [673, 739]

5.04 0.88 [0.85, 0.91] 1081 [1,037, 1,124]

MFT 1.00 0.97 [0.95, 0.99] 537 [514, 559]

2.91 0.99 [0.97, 1.00] 1040 [997, 1,083]

4.91 0.90 [0.87, 0.93] 1476 [1,402, 1,549]

Values in each cell indicate the mean performance time (*DV indicates movement time in the Fitts’ task and reaction time in MFT). Values in the square bracket indicate the upper and

lower bounds of the 95% CI for each cell.

binary logarithm on each level of load). Sixteen replications
were presented for each load, except for 3.17 and 4.09 bits that
had 32 trials. Participants experienced the balanced number of
presentations of different combinations between distance and
target size, totaled 144 trials presented in pseudorandom order.
Two pairs of different combinations of target distance and
diameters happened to render identical IDs, which doubled the
number of trials. Before proceeding to the formal experimental
trials, participants practiced a block of 16 trials to familiarize
themselves with the task. To make the number of load levels
comparable between Fitts’ task and MFT, only the load levels
of 2.32, 3.17, and 5.04 bits were taken into these analyses. It is
noted that, in this study, the effective ID [IDe = log2(A/We + 1),
where We = 4.133 × SD; SD indicates the standard deviation of
the distribution of the endpoint coordinates] was not computed
because, given the definition of MT, the recorded end positions
will always be inside the target disk. Therefore, the SD will never
exceed the width of the target disk (W). The IDe in this study,
unlike other studies adopting velocity thresholds to determine
the end position coordinates, is forced to be equivalent to the
designed ID.

Data Analysis

The main dependent variable (DV) in the data analysis is
the performance time, namely, RT in MFT and MT in Fitts’
task. DV was trimmed adaptively via a principled approach
that performs trimming in cycles: it first temporarily removes
the slowest RT from the distribution and then calculates the
mean of the sample. The cutoff value is calculated using a
certain number of SD around the mean, with the value for SD
being determined by the current sample size. In this procedure,
required SD decreases with increased sample size (justification).
The temporarily removed RT is then returned to the sample, and
the fastest and slowest RTs are then compared with the cutoff
and removed if they fall outside. This process is then repeated
until no outliers remain, or until the sample size drops below
four. The SD used for the cutoff is thus dynamically altered based
on the sample size of each cycle of the procedure (Van Selst and

Jolicoeur, 1994; Grange, 2015). All trimmed and error trials were
excluded. Considering the representativeness of data included in
the statistical analysis, participants with any condition that has
fewer than 60% of trials remaining in a condition were excluded
from further analysis. This resulted in the removal of 13 (9 elderly
and 4 young) out of 84 participants from the subsequent analyses.
The mean response accuracies of the remaining 71 participants
are listed in Table 1.

The data were analyzed in the free statistical software
environment R (version 3.6.3; R Core Team, 2021) using package
lme4 (version 1.1.23; Bates et al., 2015) for the model fitting
procedure. The analysis was carried out with GLMMs on the
trial level to optimally accommodate the non-Gaussian nature
of the dependent measures and the continuous within-subject
predictor (i.e., load) in the experimental design (Hox et al., 2017;
Brauer and Curtin, 2018). Fixed-effects included task (i.e., MFT
and Fitts), load (2.32, 3.17, and 5.04 bits for Fitts’ task; 1, 2.91, and
4.91 bits for MFT), age group (i.e., elderly and young groups),
and the interactions among the three factors. Additionally, age
(in years), education (in years), and sex (male/female) was treated
as nuisance variables where years of age and education were
demeaned with respect to age group of each individual to amend
the collinearity issue (formula = DV ∼ 1 + age × task ×

load + ageyear + educationyear + sex). We coded task and
age effects as +0.5/−0.5 contrasts (i.e., Fitts—MFT, elderly—
young) to facilitate interpretations of results and centered load
around mean of each participant (i.e., cluster-mean centering;
Raudenbush and Bryk, 2002; Brauer and Curtin, 2018) to avoid
the confounding between within-subject and between-subject
associations (Enders and Tofighi, 2007).

Initially, we specified the random effects of the model in
a “maximal manner” (Barr, 2013), where the intercept and all
possible slopes are estimated in the random effect structure of
the model. The subject was the random factor varying in mean
DVs. We also assumed that subjects vary reliably in load and
task effects (formula = ∼1 + load × task|subject). The GLMM
assumes that the mean DVs, load effects, and task effects of
subjects distributed as inverse Gaussian functions around the
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respective fixed effects (i.e., the grand mean DV, the mean slope
of load, and the mean difference between RT in MFT and MT
in Fitts’ task). This specification yields six variance/covariance
component parameters for subjects. By comparing the Akaike’s
Information Criterion (AIC) fit statistics across GLMM with
the identity, inverse, and log links, the inverse link turned
out to offer the superior performance to the other links (see
Supplementary Table 1, cf. Lo and Andrews, 2015).

This maximal model was subject to a stepwise procedure
of model selection implemented in package buildmer (version
1.7.1). We set up the procedure to use the maximal likelihood
and the Nelder–Mead optimizer to find the largest possible
GLMM that still converges and then optionally performs
stepwise elimination based on the change in log-likelihood as
recommended by Matuschek et al. (2017). Summary statistics
of the final model were also calculated based on Wald z-scores
(Table 1).

Both fixed-effect and random-effect estimates of the GLMM
are of theoretical interest in this study. As the population-
level fixed-effect estimates inform about the effects of the
independent variable over the whole group, the relationship
among random-effect estimates provides a window for inspecting
how different cognitive domains or processing mechanisms
interact with each other. It is of theoretical interest to examine
the strength of association between the estimates within and
between tasks and compare the strength between different
age groups: While stronger between-task association suggests
more sharing of processing resources across cognitive domains,
more vigorous within-task association indicate more interaction
between general processing speed and processing efficiency
specific to tasks.

RESULTS

The stepwise selection procedure settled on the maximal GLMM
with all fixed effects and random effects remained. The total
explanatory power of the model, which pitted both the fixed-
effect and random-effect variance against the total variance, is
substantial (conditional R2 = 0.948). Moreover, the part related
to the fixed effects alone (marginal R2 = 0.907) is also very high.
Thus, the rest of the “Results” section will describe the fixed- and
random-effects and related statistics of the maximal model.

Fixed Effect
All fixed-effect estimates were significant (see Table 2). The
highest order (three-way) interaction among age, load, and
task was significant and is hereby dissected in detail with post
hoc z tests implemented in the R package emmeans. Figure 1
clearly illustrates that linear functions between DV and load have
distinct “slopes” among the combinations of age and task, which
is equivalent to say at certain load level(s), performance times
differ depending on the particular combination of age and task.
Instead of going through each load level, we estimated the slopes
of load that serve as linear contrasts at each level of the other
two factors. This way, the two-way interaction of age and task
on load slopes is effectively the three-way interaction among age,
task, and load levels.

With that, in the young group, MFT has a steeper slope
(295 ms/bit, 95% CI = [281, 309]) than the Fitts’ task (201
ms/bit, 95% CI = [190, 212]; z = 9.751, p < 0.001); whereas
in the elderly group, the two tasks did not differ in slopes
(MFT: 326 ms/bit, 95% CI = [309, 342]; Fitts: 352 ms/bit,
95% CI = [327, 377]; z = −1.680, p = 0.334). As for the
comparison of the same task between age groups, both tasks
showed significant differences (both p< 0.001; see Table 3). Post-
hoc comparisons on the two-way interactions can be found in the
Supplementary Information and will not be further explained
here as they all depend on the significant higher-order interaction
explored above.

Correlations Among Random-Effect
Estimates
From the random-effect variance–covariance matrix of the
GLMM (Table 2), it can be observed that the variance of all
random-effect estimates (i.e., the three τ 11 parameters) was
quite substantial, suggesting unignorable individual differences
in the way task and load modulate performance. Furthermore,
there are sizable correlation coefficients between intercept (τ 00)
and slope of task and the interaction between task and load
(τ 11). Together these correlations justify closer inspection on
how the random-effect parameters associate with one another in
different age groups. The GLMMmodel did not estimate how age
modulated the random effects of task and load because it only
has two levels and thus not sufficient for fitting as a grouping
random-effect. The marginal trend of the load was not computed
by the lme4 package and has to be estimated. Therefore, for
each age group, we computed the marginal estimates of slopes
and intercepts of the load predictor in both Fitts’ task and
MFT and then calculated the pairwise correlation coefficients
among estimates (Figure 2). The elderly group showed a stronger
pairwise correlation than the young group in all estimates, and
almost all correlation coefficients reached significance (except
for between the slopes of both tasks and between the Fitts’
intercept and MFT slope). In contrast, for the young group,
only the correlation between slopes and intercepts from the same
task had a significant correlation. Moreover, the slope–intercept
correlation in the Fitts’ task is much weaker in the young group
than the elderly group (z = 4.06, p < 0.001). Thus, the pattern
of correlation among individual slopes and intercept within and
between tasks suggests that elderly and young groups have a
distinct relationship between different cognitive domains and
processing mechanisms.

DISCUSSION

This study set out to examine how linear functions between
processing time and computational load differ between cognitive
domains and age groups. The results showed that at the
group level, increment in the computational load resulted in
statistically identical rates of MT and RT increment in the
elderly group. In contrast, the young group showed a greater
slope for RT of MFT than for MT of Fitts’ law. Moreover,
there are stronger associations among individual estimates of
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TABLE 2 | Summary table of the final GLMM.

Predictors Inverse Gaussian/inverse link

Estimates Standard error CI Statistic

(Intercept) −1.090*** 0.010 −1.109∼1.071 −110.551

Age 0.475*** 0.016 0.442∼0.507 28.855

Age:Load_cm −0.108*** 0.005 −0.119∼−0.098 −19.933

Age:Task 0.370*** 0.029 0.313∼0.427 12.657

Age:Task:Load_cm −0.053*** 0.012 −0.076∼−0.029 −4.299

Age_year.dm 0.002 0.001 −0.000∼0.004 1.902

Education.dm −0.002 0.002 −0.007∼0.003 −0.817

F Reference

M 0.015 0.012 −0.008∼0.039 1.267

Load_cm 0.226*** 0.003 0.220∼0.231 83.098

Task −0.141*** 0.015 −0.170∼−0.113 −9.678

Task:Load_cm −0.004 0.006 −0.016∼0.008 −0.599

Random effects

σ
2 0.01

τ00 subject 0.00

τ11 subject.Task 0.01

τ11 subject.Load_cm 0.0 0

τ11 subject.Task : Load_cm 0.00

ρ01 0.26

−0.95

−0.25

ICC 0.44

Nsubject 71

Observations 14,844

Marginal R2/conditional R2 0.907/0.948

AIC 209348.393

Log-likelihood −104652.196

The fixed-effect estimates are listed in the upper part of the table, with the factor names indicated by the names in the rows. Age, age groups; Load_cm, load centered at the mean

of each individual (weighted by the number of trials in each level); Task, MFT or Fitts’ tasks; Age_year.dm, the actual age demeaned with respect to the mean age of each age group;

Education_year.dm, the number of years in education demeaned with respect to the mean years of education within each age group; F or M, gender. Row names with factor names

separated by colons indicate interaction effects. The middle part of the table lists the random effect parameters. Within-group (residual) variance: σ
2; between-group-variance: τ00

(variation between individual intercepts and average intercept); random-slope-variance: τ11 (variation between individual slopes and average slope); random-intercept-slope-covariance:

τ01; random-intercept-slope-correlation: ρ01. ***p < 0.001; ICC, intra-class correlation. See Lüdecke (2021) for detailed explanations of the meaning of each symbol.

slopes and intercepts for the linear functions in the elderly
group than the young group, both within the same task and
between tasks.

With unified metrics for quantifying different cognitive
functions and principled approaches in statistical analyses, the
current findings added to the evidence of dedifferentiation
of cognitive aging. It is plausible to assume that slopes of
performance time as a function of processing loads indicate the
information processing efficiency, and that correlation between
slopes in different cognitive domains indicates the extent to how
different cognitive domains share processing resources, adopting
similar processing strategies, or modulated by some common
internal factors (Sleimen-Malkoun et al., 2013). Thus, in the
elderly people, the less distinction and the stronger correlation
among the functional parameters of processing characteristics
in the elderly group suggest a higher extent of commonality in
processing resources/strategies between the domains of motor
and executive functions.

In terms of potential mechanisms underlying the
dedifferentiation, central slowing can be one of the candidates.
For both MFT and Fitts’ task, the elderly group has much
steeper slopes and larger intercepts than the young group,
indicating that the per-unit increase in processing load
requires much more processing time and that even at
the lowest possible processing load, the estimate of the
processing time of elderly group is still much higher than
the young group. It remains to be investigated that whether
the longer processing time reflects genuine slowing or a
more conservative strategy when facing cognitive challenges.
Regardless of the cause, the slowing seems to mask the functional
distinctions the cognitive system could have and lead to
similar parameters in tasks measuring these functions. In
contrast, the young cognitive system is not constrained by
factors slowing down various processing streams and thus
demonstrates higher efficiencies that preserve the idiosyncratic
nature of different cognitive domains, as reflected in the
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FIGURE 1 | Efficiency functions for movement time in Fitts’ task and reaction

time in MFT. The data of young participants and GLMM estimates are

presented in the left panel, while those for the elderly participants in the right

panel. Data and estimates for MFT are indicated with dots, pink color, and

solid lines, whereas those for Fitts’ task were indicated with triangle, dashed

lines, and cyan color. The shaded area indicates the 95% CI of the GLMM

estimation. Transparent background symbols indicate the mean data of each

individual participants, and the black foreground symbols indicate the mean of

each group at the load level included in the analysis.

distinctive slopes between tasks and weaker associations among
functional parameters.

Hülür et al. (2015) suggested that the literature on the
dedifferentiation hypothesis has reported mixed evidence, which
seems to depend on research designs (longitudinal vs. cross-
sectional) and nature of the sample (life span cohorts including
young and middle-aged participants, or exclusively elderly).
While both factors are plausible, in this study, we would like
to suggest a third possibility, that is, the way in which different
cognitive functions are measured and analyzed can also affect the
outcomes and interpretations regarding the differential trends
of aging. La Fleur et al. (2018) demonstrated how the inclusion
of a test for speed of processing in the correlation with other
abilities impacted the tendency of linear dedifferentiation among
cognitive domains. As virtually all studies investigating the
dedifferentiation hypothesis have relied on distinct ways of
quantifying various cognitive domains, inevitably the analyses
and interpretations were based on transformed scores. Taking the
current results (and also Sleimen-Malkoun et al., 2013) together
with previous reports, it is likely that a certain degree of variation
in the inconsistencies among reports may be traced back to the
distortion of measurements due to transformation and averaging
of the performance index.

Although a previous study adopting a similar paradigm
(Sleimen-Malkoun et al., 2013) also reached the same conclusion
by contrasting the linear function between performance and

load in Fitts’ law and Hick–Hyman’s law, this study extends
the comparison across cognitive domains in two important
aspects: first, the MFT prompts cognitive processing with
an approach different from the multi-alternative S–R conflict
resolution in the Hick–Hyman’s law, providing convergent
evidence to the dedifferentiation hypothesis. Second, in addition
to demonstrating the difference between functions, with the aid
of GLMM, and this study estimates individual variation in the
linear functions and computes the correlations among them.
The outcomes of stronger cross-domain and cross-mechanism
correlations further support the dedifferentiation hypothesis.
This research paradigm allowed more direct cross-domain
comparisons than otherwise. Had different cognitive abilities
been assessed with tasks that do not share the same scale in
computational load, one would have to carry out the comparison
based on summarized and transformed results, which may be
statistically less powerful and only allows indirect comparison
based on certain forms of ranking. This may constrain inferences
that can be made with respect to life span trajectories in different
cognitive domains.

A few caveats are worthy of note regarding this study: first,
although this study aims at contrasting motor and executive
functions, the performance in the Fitts’ task may additionally
involve visuomotor transformation as the participants actually
controlled a computer mouse cursor to tap on the targets
on the monitor. This experimental setting involved integrating
visuospatial, proprioceptive, and motor information from the
visual display and the hand holding the computer mouse,
which posed a higher challenge than direct tapping. This may
explain the much higher intercepts and slopes in this study.
Second, the selection of three difficulty levels in processing load
may not be optimal for estimating the functional relationship
between processing loads and performance time. Although
the comparison of the linear functions estimated from all
loads higher than 3-bits in the Fitts’ task from the current
experiment led to similar outcomes and will not change the
current conclusion (see Supplementary Material), future study
may still consider more levels of loads for more robust estimation
of the functional relationship. Third, in the Fitts’ task, the
MT in this study was determined based on geometrical (i.e.,
the distance to the center of the fixation disk or the target
disk) rather than kinematic (e.g., velocity thresholds) landmarks.
This makes the estimation of the movement amplitudes and
endpoints of movements not entirely based on the ballistic part
of the tapping movement and can involve the fine adjustment
part in the final “homing-in” phase. Unfortunately, the mouse
trajectories were not recorded during the experiment, and
thus it is not possible to recover these more purely motor
components of the measurements. The recorded endpoints may
have underestimated spatial variations as they were confined
within the target radius, and the potential inclusion of the
homing-in phase may have inflated the MT.

It is a bit ironic to see the core information metric largely
missing from experiments in cognitive psychology, a discipline
claims to be founded on information processing. However,
assessing all kinds of cognitive abilities under information-
entropy-based manipulation may require a major overhaul of
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FIGURE 2 | Pairwise correlations among parameters of efficiency functions within each age group. The scatter plots among the slopes and intercepts of MFT and

Fitts’ task within each age group are displayed in the off-diagonal cells. For the lower half of the matrix, the column and row titles indicate the parameters represented

by the X- and Y-axes of each cell, respectively. For example, the scatter plot at the bottom left corner has column title “Slope/MFT” and row title “Intercept/Fitts,”

which indicate dots in this cell represent the relationship between these two parameters in each task. In each cell, black line and dark dots indicate the young group,

while gray line and light dots indicate the elderly group. The straight lines and shaded area indicate the simple linear regression lines between the X- and Y-parameters

in a cell. Correlation coefficients in the upper-half cells indicate the correlation coefficients of the labeled group in the mirroring cell across the diagonal in the lower-half

cells. The asterisks and dots suffixing the coefficients indicate their significance (p = 0.10, *p = 0.05, **p = 0.01, and ***p = 0.001). As there are 12 coefficients of

interest (i.e., six pairwise combinations for the four parameters out of each age group), after correcting for family-wise error, only those with three asterisks should be

considered significant. The diagonal cells show the boxplots of the young and elderly groups for the slopes and intercepts of each task.

TABLE 3 | Post-hoc comparisons of the fixed-effect three-way interaction.

Young/MFT Elderly/MFT Young/Fitts Elderly/Fitts

Young/MFT 295

Elderly/MFT −31* 326

Young/Fitts 94*** 125*** 201

Elderly/Fitts −57*** −26 −151*** 352

Row and column labels indicate <Age>/<Task>. Diagonal cells: estimates of the load effect (i.e., slope) in the condition indicated by the row and column titles; lower triangle: estimates

of differences between the conditions indicated by the row and column labels. Asterisks indicate the significance of the difference (same indication as those in Figure 2). For example,

the cell with the row title “elderly/MFT” and column title “young/MFT” has the value of −31, indicating the “column – row” difference in slope between the two age groups for the MFT

task [smaller for the column (young) group].

the tasks originally designed based on operational definitions
that have been widely adopted. Fan (2014) proposed several
cases of conceptualizing existing tasks for cognitive control under
the information-theoretic framework. For example, the conflict

effects originated from an interfering dimension, involving word-
meaning in the color-word Stroop, flankers in the flanker task,
or a global/local feature in a global/local selective attention task,
can be treated as uncertainty difference between conflict and
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non-conflict conditions. In addition, one can also quantify the
uncertainty with the surprise and entropy equations in paradigms
investigating the oddball effect, Go/No-Go performance, or task
switching, which all involve comparison between responses to
high vs. low probability events. It remains a challenge to do
likewise in other cognitive domains such as long-term memory
and language processing.

CONCLUSION AND APPLICATIONS

This study demonstrates an application of the information-
theoretic approach in profiling motor and executive functions.
Unlike numerous aging studies that compared different
functions or established the relationship between functions
via contrasting transformed scores or correlating divergent
behavioral markers, the findings, in this study, provide supports
for the dedifferentiation hypothesis of cognitive aging under
the combinations of common efficiency metrics (i.e., bits) and
principled statistical framework (i.e., GLMM) and show the
group-level interaction among age, task, and computational
load as well as the individual-level pattern of association among
estimates of the relationship between computational load and
performance time. This approach has both theoretical and
practical values.

From the theoretical perspective, it may help to resolve
inconsistencies in uncovering the changes in the structure
of cognitive functions as one ages: as the same processing
parameters (i.e., slopes and intercepts) were adopted to assess
dedifferentiation of executive and motor domains, it avoids
confounding stemming from biases in score transformation
and standardization and allows to formulate more accurate
assessment on the extent of dedifferentiation (see also Sleimen-
Malkoun et al., 2013). This approach may also be applied
to other domains that can be quantified with the same
scheme. For example, the efficiencies of speech perception
and production (e.g., Coupé et al., 2019) or sensory and
perceptual processing (e.g., Plumbley and Abdallah, 2006) are
both very well-quantifiable under the information-theoretic
framework. By designing an appropriate experimental paradigm,
the relationship among efficiency functions of various domains
can be quantified and contrasted under unified information
metrics and statistical models.

With respect to the practical perspective, depicting
longitudinal trajectories across cognitive domains in a
variety of developmental or clinical populations under this

research framework may result in more accurate behavioral
markers for identifying coherence between brain activations
or rhythms underlying the interaction or dissociation between
cognitive functions. The parameters of efficiency functions
from different domains can form meaningful features for
predicting the progression of cognitive aging or prognosis of
neurological diseases.
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