
Quantifying epileptogenesis in rats with
spontaneous and responsive brain
state dynamics

Dakota N. Crisp,1 Warwick Cheung,2,3 Stephen V. Gliske,4 Alan Lai,3 Dean R. Freestone,3

David B. Grayden,2,3 Mark J. Cook3 and William C. Stacey1,4

There is a crucial need to identify biomarkers of epileptogenesis that will help predict later development of seizures. This work

identifies two novel electrophysiological biomarkers that quantify epilepsy progression in a rat model of epileptogenesis. The long-

term tetanus toxin rat model was used to show the development and remission of epilepsy over several weeks. We measured the re-

sponse to periodic electrical stimulation and features of spontaneous seizure dynamics over several weeks. Both biomarkers showed

dramatic changes during epileptogenesis. Electrically induced responses began to change several days before seizures began and

continued to change until seizures resolved. These changes were consistent across animals and allowed development of an algo-

rithm that could differentiate which animals would later develop epilepsy. Once seizures began, there was a progression of seizure

dynamics that closely follows recent theoretical predictions, suggesting that the underlying brain state was changing over time.

This research demonstrates that induced electrical responses and seizure onset dynamics are useful biomarkers to quantify dynam-

ical changes in epileptogenesis. These tools hold promise for robust quantification of the underlying epileptogenicity and prediction

of later development of seizures.

1 Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
2 Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
3 Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
4 Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA

Correspondence to: William Stacey, MD PhD

Departments of Neurology and Biomedical Engineering, BioInterfaces Institute, University of Michigan

1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA

E-mail: William.stacey@umich.edu

Keywords: seizures; epileptogenesis; dynamics; biomarker; evoked responses

Abbreviations: AUROC ¼ area under the receiver operating characteristic curve; DC ¼ direct current; ISI ¼ inter-spike interval;

PSA ¼ principal component analysis; SA ¼ spike amplitude; SN ¼ saddle-node; SNIC ¼ saddle-node on the Invariant Cycle; SR ¼
seizure rate; SubH ¼ subcritical Hopf; SupH ¼ supercritical Hopf

Received September 13, 2019. Revised March 6, 2020. Accepted March 27, 2020. Advance Access publication April 22, 2020
VC The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which

permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

BBRAIN COMMUNICATIONSAIN COMMUNICATIONS
doi:10.1093/braincomms/fcaa048 BRAIN COMMUNICATIONS 2020: Page 1 of 18 | 1

http://orcid.org/0000-0002-8359-8057


Introduction
Epileptogenesis is defined as the process by which a nor-

mally functioning brain network develops recurrent, spon-

taneous seizures. This process is incompletely understood,

but likely involves a progression of biochemical, anatom-

ical and physiological changes (Pitkanen et al., 2015).

Understanding epileptogenesis and identifying biomarkers

associated with it are two of the ‘Benchmarks for

Epilepsy Research’ (Long et al., 2016). Current treatment

for patients with epilepsy is to administer antiepileptic

drugs after seizures begin, which may control the seizures

but does not address the underlying pathology (Herman,

2006). This strategy is problematic in patients with post-

injury epilepsy—epilepsy caused by a discrete brain insult

(e.g. injury or infection)—as there is often a latent period

before developing seizures in which it is unclear how to

prevent epilepsy. It is hypothesized that medical interven-

tions applied during the latent period could prevent

epilepsy; however, the selection, timing and duration of

anti-epileptogenic agents is difficult because the mecha-

nisms and timing of epileptogenesis after brain insult are

not well understood (Herman, 2002) and not all brain

injuries result in epilepsy (Pitkanen and Immonen, 2014).

Reliable biomarkers of epileptogenesis may help address

these problems.

One of the foremost challenges in assessing epilepto-

genesis is that the primary outcome (seizures) is not pre-

sent during the latent period. Even after seizures begin,

it is hard to quantify epileptogenesis because seizures

are infrequent. Molecular biomarkers have shown prom-

ise, but are still very difficult to acquire and analyse

(Lukasiuk and Becker, 2014; Luna-Munguia et al.,

2019). Others have used long-term electrophysiological

recordings, showing that epileptic spikes often appear

much earlier than the first seizure (Kadam et al., 2010;

White et al., 2010) and that epileptogenesis is not a

stepwise process; it progresses even after the first seizure
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(Dudek and Staley, 2011). These studies suggest that

better biomarkers of epileptogenesis are required to

characterize the pathology both before and after seizures

begin.

In recent years, there has been great interest in predicting

whether epilepsy will result after a brain insult. Recent

studies using prolonged EEG recordings have shown several

potential biomarkers: sleep stage features in the fluid per-

cussion model (Andrade et al., 2017), spectral power vari-

ability in the ischaemia model (Milikovsky et al., 2017)

and heart rate fluctuations in the malaria model (Bahari

et al., 2018). These biomarkers have shown great promise

for identifying epileptogenesis biomarkers that might predict

if epilepsy will occur. This work takes a different approach:

comparing two different biomarkers based upon the under-

lying brain dynamics. Both of these biomarkers are

designed to assess the dynamics over the course of the en-

tire seizure period. Such research is difficult because the

brain undergoes changes over time, and it is hard to dis-

cern which changes are due to epilepsy versus normal aging

or damage from the experiment. We therefore chose the tet-

anus toxin rat model. This model is unique because the

brain develops epilepsy for several weeks then spontaneous-

ly remits, allowing us to compare the response of two dif-

ferent dynamical biomarkers over the entire course of

epileptogenesis.

We utilize two electrophysiological methods to quantify

epileptogenesis. One is to use electrical stimulation, or

‘probing’, to quantify neural excitability. Outside of epi-

lepsy, previous research has shown that induced brain

responses are good prognostic predictors of overall health

condition after brain injury (Narayan et al., 1981; Carter

and Butt, 2005). Within epilepsy, a range of probing

methods (photic, electrical and transcranial magnetic

stimulation) were found to be correlated with impending

seizure onset, sleep-wake cycle, rate of interictal dis-

charges and seizure onset location (Kalitzin et al., 2002;

Kalitzin et al., 2005; Badawy et al., 2009; Freestone

et al., 2011; Luttjohann et al., 2011; Badawy et al.,
2013a, b; Medeiros et al., 2014; Wendling et al., 2016),

but have not been tested through the full development of

epilepsy. Thus, the response to probing stimulation has

significant potential as a biomarker of epileptogenesis.

The second method is to track the brain system by

characterizing seizures over time. While the current stand-

ard for seizure classification is based on clinical charac-

teristics (Fisher et al., 2017), we utilize a scientifically

based seizure classification system based on the first prin-

ciples of dynamics theory (Jirsa et al., 2014; Saggio

et al., 2017; Saggio et al., 2020). In short, this classifica-

tion system characterizes seizures by focusing on the tran-

sition from normal (non-oscillatory state) brain activity to

seizure (oscillatory state) activity. In dynamic systems,

these types of transitions represent a sudden qualitative

or topological change in the system, which is known

mathematically as a bifurcation. The utility of this classi-

fication system lies in its potential ability to track

changes in brain states and make rational predictions

about certain constraints and behaviours likely to occur.

For instance, within dynamic theory if a system produces

a specific type of bifurcation at time point A, and then

produces a different type of bifurcation at a later time

point B, then it suggests the presence of a fundamental

change in the system between time points A and B.

Relating this to epileptogenesis, if we observe changes in

the types of seizure transitions over time, then we can use

that as a way to quantify brain state changes. From a prac-

tical standpoint, dynamical theory predicts that different

bifurcations can be distinguished by analysing the spike

amplitudes (SA), inter-spike intervals (ISI) and presence of

baseline shifts (Jirsa et al., 2014). In addition, it also pre-

dicts that there will be different responses to perturbing

stimuli when the brain is close to seizure threshold (Ranjan

and Abed, 2000; Yaghoobi et al., 2001). In other words,

the theory predicts that seizure dynamics and the response

to probing stimuli are related. We hypothesize that, as the

brain goes through the process of epileptogenesis, it will

have different behaviours that can be measured by either

characterizing the seizure dynamics or analysing the re-

sponse to different probing stimulation.

To test this hypothesis, we performed a continuous,

long-term study of electrically induced brain responses

during epileptogenesis in an animal model. We measure

the response to probing stimuli over the entirety of epi-

leptogenesis, from before seizures began until after they

resolved, a period of several weeks. We quantify the

changes in both seizure onset dynamics and characteris-

tics of interictal, electrically evoked responses throughout

the course of the study. We find that these two measure-

ments are closely linked, suggesting that the underlying

brain state is changing during epileptogenesis, which pro-

duces alterations in seizure characteristics simultaneously

with differences in the response to electrical stimulation.

Most importantly, we find that the response to probing

stimuli can help differentiate which subjects will later de-

velop epilepsy.

Materials and methods

Animal model of epileptogenesis

This study uses the intra-hippocampal tetanus toxin rat

model because it produces frequent, stereotyped, electro-

clinical events that spontaneously remit 6–8 weeks after

one stereotaxic toxin injection (0.1 g/l—30 ng of tetanus

toxin dissolved in 300 nl solution) (Jefferys and Walker,

2006). For sham Control animals, the same procedure

was performed with an injection of phosphate-buffered

saline. The model can be characterized by three phases

(Fig. 1). The Pre-seizure phase is the latency period,

which is defined as the time between tetanus toxin injec-

tion and the first seizure. The Rising-seizure phase is

marked by the emergence of seizures, where daily seizure
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rate (SR) begins small and increases as time progresses.

The final, Falling-seizure phase begins when the SR

reaches its maximum, known as the inflection point, and

lasts until seizures have completely remitted. We postulate

these three epochs of differing epileptic behaviour are

representative of quantifiably different brain states, mak-

ing the tetanus toxin model an ideal candidate for ana-

lysis. The experiments consisted of repeated, longitudinal

measurements of the characteristics of spontaneous seiz-

ures as well as the response to a probing stimulation (see

Fig. 2 for the data process pipeline). The experiments

were approved by the St. Vincent’s Hospital (Melbourne)

Animal Ethics Committee and were conducted in accord-

ance with the ‘Australian Code for the Care and Use of

Animals for Scientific Purposes, 8th Edition’ (2013).

Stimulation paradigm

Five stainless steel epidural screw electrodes (major diam-

eter: 1.524 mm, E363/20/SPC, wire length: 15 mm,

Plastics One Inc., VA, USA), which included one refer-

ence, were implanted in each animal with a configuration

shown in Fig. 3A. Setting the bregma reference point as

the origin (0,0), the electrode locations (Anteroposterior,

Mediolateral) were (in mm): B (�1.2, þ3.0), W (�6.8,

þ3.0), G (�1.2, �3.0), R (�6.8, �3.0) and Ref (�10.6,

�3.0). Note that our pilot animal (Control 1) had differ-

ent anteroposterior coordinates for electrodes W (�5.6),

R (�5.6) and Ref (�10.1), but these coordinates were

changed in subsequent animals as the posterior electrodes

were found to be too close to the anterior electrodes

such that the anterior and posterior electrode pairs could

not cover the length of the hippocampi along the sagittal

planes at 63.0 mm from the midline of the head.

Electrodes B, W, G and R were connected to an off-the-

shelf EEG acquisition system (Grael, Compumedics Ltd.,

VIC, Australia). Electrodes G and R were momentarily

switched to be the stimulation source and sink, respectively,

of electrical current for discharging one biphasic stimulus.

These electrodes were chosen for stimulation as they were

the closest to the tetanus toxin injection site, which is

deemed to be the most representative of epileptic tissue.

Stimulation began 2 days after tetanus toxin injection and

comprised alternating probing-on and probing-off phases.

The probing-on phase consisted of 100 biphasic pulses

(phase-width 0.5 ms, current/phase: 1.2 6 0.024 mA, inter-

phase gap: 20 ms) over a 301 s period, with an inter-pulse

interval of 3.01 s. The electrodes were tested via cyclic vol-

tammetry in saline to ensure our stimulation parameters

did not cause unwanted electrochemical reactions. It was

found that these electrodes could handle up to 5mC before

having any potentially irreversible reaction. Our stimulation

produces 0.6mC per phase. The probing-off phase did not

employ stimulation and was also set to a 301 s period (see

Fig. 3B). Stimulation continued (�5 min on, �5 min off)

without interruption for the entire experiment except for 1-

h daily check-ups. The same procedure was performed on

the Control animals.

Experimental procedure

Nine male Sprague-Dawley rats, obtained from the Animal

Resources Centre (WA, Australia), were used for this ex-

periment. Only male rats were used to avoid any effects

that sex and the oestrous cycle might have on the probing

responses. These rats were split into sham Control (3) and

Experimental (6) groups. For each rat, a single, intra-hippo-

campal injection of tetanus toxin (Experimental) or phos-

phate-buffered saline (Control) was administered on Day

�1 and subjects were transferred to the EEG recording

room on Day 1, upon which recording and electrical prob-

ing protocols were immediately conducted. Data were

recorded continuously in 23-h intervals, allowing a 1-h win-

dow for daily maintenance checks and data backup.

Animals were under investigation for 9–10 weeks. All

recordings were sampled at 2048 Hz with direct current

(DC) coupling using an EEG acquisition system. The DC

coupling assured that lower frequencies such as DC shifts

were observed. Electrical probing was administered via a

stimulator (neuroBi, custom built jointly by the University

of Melbourne and Bionics Institute of Australia, VIC,

Australia). More details about the stimulator have been

published previously (Slater et al., 2015). The dark/light

cycle in the recording room was controlled by a stand-

alone timer with 8-h dark time and 16-h light time. The

temperature inside the room was controlled within the

range 21–26�C. Each rat was housed individually with ad

libitum access to food and water.

Seizure detection

Seizures were marked by a custom-designed seizure detec-

tion algorithm, then verified by manual review. The EEG

signal processing steps were as follows: (i) Every

Tetanus Toxin
Injection

Seizure
Rate

Time

Pre-seizure Rising-seizure Falling-seizure

Figure 1 Progression of epileptogenesis—representation of

an animal’s SR over time in the tetanus toxin model. The Pre-

seizure period refers to the latency between the injection and the

first observed seizure. The Rising-seizure period represents the

emergence of seizures coupled with increasing SR before the

inflection point. The Falling-seizure period starts at the inflection

point and has a decreasing SR moving towards seizure remission.

Dotted vertical lines represent a simple quarterly viewpoint

beginning at the emergence of seizures.
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stimulation artefact was replaced by a line interpolating

two end points of that artefact. This allowed the seizure

detector to be stable, as stimulation artefact would al-

ways trip the detector. Later processing steps ignored the

data from this interpolation, so it had no effect on final

results. (ii) Signals were filtered by a third-order

Butterworth IIR high-pass filter that had �3 dB cut-off

frequency at 1 Hz. (iii) A spectrogram was generated with

the following settings: 4096-point (2 s) Blackman-Harris

window and 50% window length overlap. (iv) The 13–

48 Hz band power was calculated by integrating the

power spectral density between 13 and 48 Hz. Seizure

activities contained higher than usual power across the

whole available bandwidth. However, the frequency band

below 13 Hz was contaminated by residual stimulation

artefact and the 50 Hz frequency band was contaminated

by power line noise. Therefore, the 13–48 Hz frequency

band was chosen for seizure detection. (v) A 5-point

median filter was applied on the 13–48 Hz band power.

(vi) A 5 min (2.5 min before and 2.5 min after the current

time point) moving average of 13–48 Hz band power was

generated.

We used a sensitive algorithm to screen for potential

seizures, then verified each detection manually. In this re-

search, we define a single stand-alone seizure as a seizure

that occurs at least 10 s after another seizure. A potential

seizure event was detected if it fulfilled either of the fol-

lowing criteria: (i) the instantaneous 13–48 Hz band power

was at least three times greater than the 5 min moving

average for at least 9 s or (ii) the instantaneous 13–48 Hz

band power was at least seven times greater than the

5 min moving average for at least 3 s. The event was clas-

sified as a seizure if it was detected on two or more elec-

trodes simultaneously. Throughout this study, the term

‘seizure’ refers to either a clinical or subclinical epilepti-

form activity consistent with electrographic seizures.

Evoked
ResponsesSeizures

Evoked Response FeaturesSeizure Onset Features

-DC Shift
-Deviation Sum

-Deviation Variance
etc...

Dimensionality Reduction
(PCA, Unsupervised)

Dimensionality Reduction
(PCA, Unsupervised)

Significance Testing

Comparison of Temporal
Epochs (Pre-, Rising-, Falling-)

Power Spectral Density Estimates
-Power 0-2.06 Hz

-Power 2.06-4.11 Hz
etc... 

First 3 principal components              First 2 principal components

Henze-Penrose Divergence                   Henze-Penrose Divergence
Statistic                                                  Statistic 

Tetanus toxin or sham injection

EEG recording / 
Electrical stimulation

Significance Testing

Dimensionality Reduction
(LDA, Supervised)

Significance Testing

Classification of Epileptic versus
Control subjects

First 3 LDA features

Classification

Support vector machine

-Cross-validation accuracy
-AUROC

Figure 2 Data pipeline diagram. All animals received an injection of either tetanus toxin or saline, then began EEG recording with the

intermittent stimulation. EEG recordings from each animal contained data both from seizures (in the Experimental group) and from evoked

responses (in both groups), which were analysed separately. Independent features are computed on seizures and evoked responses. For

investigating changes within animals, dimensionality reduction is performed using unsupervised learning that maximizes the variance. We used

divergence measures to test how separable the different groups were (e.g. Pre-seizure versus Rising-seizure versus Falling-seizure phases, early

versus late seizures). For investigating changes between Experimental and Control evoked responses, supervised learning was used for

dimensionality reduction. Classification accuracy was measured using both cross-validation and AUROC metrics. AUROC ¼ area under the

ROC curve; LDA ¼ linear discriminant analysis; PCA ¼ principal component analysis.
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In essence, the seizure detection algorithm is a sliding

window calculated at every second, with a baseline com-

prised of the average data from 2.5 min before and after.

The average seizure length was 42 s, though some lasted

up to 173 s. Thus, the ‘baselines’ typically included data

from during a seizure, but averaged with the data before

or after the seizure as well. This has the effect of increas-

ing the ‘baseline’ power, which means a detected event

has a higher threshold to cross (i.e. after tuning the de-

tector, a seizure detection had to be much higher than

the true interictal data, since the calculated baseline

includes seizure data). The output of the algorithm was

then validated by a human reviewer assuring that every

detected event (>7000) had epileptiform activity, al-

though the precise time of seizure onset was not normal-

ized across every file and a minority (<5%) had

ambiguous onset times. Thus, it is possible that some of

the onset/offset times were inaccurate. However, onset/

offset times are notoriously inconsistent between experts

as well. To account for this uncertainty, we analysed seiz-

ure onsets using an 8 s window centred on the estimated

onset time (see Data Processing—Seizure Onsets). It

should be noted that no seizures were observed in the

Control group.

Data processing for evoked
responses and seizure onsets

Only data from a single electrode were used to maintain

reproducibility, reduce bias and ensure consistency be-

tween both evoked response and seizure onset analyses.

Electrode-R (Fig. 3A) was chosen because seizure onsets

were nearly identical across electrodes at any given time

and it tended to have the most prominent seizure onsets

(i.e. DC shift).

Evoked response

Responses from all 100 pulses were averaged for each

pulse train to provide representative system responses at

equal time points across the experiment. This analysis uti-

lized the full 2048 Hz sampled data. To extract each indi-

vidual evoked response within the pulse train, we

examined the first 1000 data points (�488 ms) starting at

the second peak of each stimulus. The stimulation arte-

facts were simple to identify with a threshold detector, as

they were much higher in amplitude than the rest of the

recording and occurred at known intervals. The first four

data points were primarily transients from the stimulation

artefact and were redacted. The remaining evoked re-

sponse data contained stimulation transient in addition to

higher-frequency physiological responses. We controlled

for the transient effect by comparing results within the

same subject across time. Any averaged evoked responses

that overlapped with seizures were removed from the

analysis (range of 7–14% responses removed per animal

with 10% average). The averaged evoked response ampli-

tudes were then scaled between 0 and 1 to minimize the

effect of changing electrode quality over the course of the

study, thus emphasizing changes in frequency content.

This analysis did not investigate any features of the prob-

ing-off period.

Electrode-G

Injection Hole

Electrode-R

Electrode-B

Electrode-W

Electrode-Ref

A B One Pulse
   3.01 s

Probing-on Duration
(100 pulses, 301 s)                          (301 s)

     Probing-off    Probing-On

C

0 mA

0.5 ms

-1.2 +/- 0.024 mA

Inter-phase Gap: 20 μs

Inter-pulse Duration: 3.01 s

Phase Width: 0.5 ms

Current per Phase: 
1.2 +/- 0.024 mA

Figure 3 Electrode placement and stimulation pattern—(A) Example rat skull diagram showing the tetanus toxin injection site and

electrode placements. Electrodes G and R are also the stimulating electrodes. (B) Example of the pulse trains and timing of stimulation, which

occurred every 3.01 s for a total Probing-on duration of 301 s. Each vertical line represents a single pulse waveform. (C) Waveform used for the

stimulation.
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Seizure onset

Seizure onset data were captured using an 8 s window

centred on the estimated seizure onset time obtained from

the custom detector. In other words, each sample wave-

form included roughly 4 s of baseline and the first 4 s of

seizure data. Seizure onsets that were uninterpretable due

to stimulation artefacts were removed from the analysis

(range of 6–12% seizures per animal removed with �9%

average). Because the differences in seizure onset dynam-

ics that we measured occur at frequencies <100 Hz (Jirsa

et al., 2014), all onset samples were decimated to

204.8 Hz for easier data storage and administration.

Feature analysis of evoked
responses and seizure onsets

Features from evoked responses and from seizure onset

were independently extracted, normalized by subtracting

the mean and dividing by standard deviation, and their

dimensionalities reduced using standard principal compo-

nent analysis (PCA).

Evoked response features

A frequency analysis was performed on each of the aver-

aged evoked responses acquired for each stimulation

period. A separate analysis was performed for every

Probing-on epoch, and evaluated the averaged response

of all 100 stimuli in that epoch. The analysis consisted of

estimating the spectral power distribution over every

�2 Hz increment from 0 to 1024 Hz. This was computed

using the power spectrum density estimate (Welch’s

power spectral density estimate, 996 sample window

length, zero overlap, 996 digital Fourier transform points,

2048 Hz sampling frequency). Therefore, each evoked re-

sponse had 499 features, where feature #1 is the power

of the evoked response from 0 to 2.0562 Hz, feature #2

is the power of the evoked response from 2.0562 to

4.1124 Hz, etc.

Seizure onset features

A dynamical model based upon the first principles of dy-

namics (Jirsa et al., 2014) predicted that the brain’s tran-

sition from normal to seizure state (seizure onset) can be

described using bifurcation theory and that there are four

basic onset bifurcations: Saddle-node (SN), Saddle-node

on an invariant cycle (SNIC), Supercritical Hopf (SupH)

and Subcritical Hopf (SubH). These different bifurcations

each have unique pairs of ISI and SA scaling laws that

can be used to distinguish them (Jirsa et al., 2014;

Saggio et al., 2017). SNIC bifurcations are characterized

by non-zero SA scaling and a decreasing ISI trend (fol-

lowing, i.e. ‘scaled to’, a square root function). SubH

bifurcations have no specific scaling laws for either ISI or

SA. SN also has no specific scaling laws but can be

accompanied by a DC shift. Finally, SupH bifurcations

have no ISI scaling while the SA scales from zero as a

square root function. True biological data are noisy and

can be difficult to characterize exactly, so the primary

goal of our analysis was not to ‘fit’ seizure onsets to any

particular type of bifurcation. Instead, the analysis was a

data-driven approach using the values of these basic fea-

tures as a framework to quantify the seizures: analysing

the presence of a DC shift and the scaling behaviour of

the SA and ISI. Based upon this framework, we devel-

oped a set of features that focus on the key dynamical

features. Each of the eight features is listed below in de-

tail. As a reminder, the 8 s waveform of seizure onset

data consists of 4 s of pre-onset baseline and 4 s of seiz-

ure data.

DC shift. We calculated the normalized area under the

post-onset signal, as this feature estimates the relative

prominence of the DC shift. This was performed by tak-

ing the following steps: (i) smooth the data with a 1-D,

third-order median filter, (ii) subtract the median of the

first 4 s of baseline from the entire signal, (iii) divide the

entire signal by the maximum value of the signal and (iv)

sum the result.

Deviation sum. This feature was developed to capture gen-

eral trends post-onset. (i) Smooth the data with a 1-D,

third-order median filter, (ii) truncate the initial 4 s of

baseline, (iii) subtract the median of the remaining signal

and (iv) sum the absolute value of the result.

Deviation variance. As with ‘Deviation Sum’, except Step 4

is replaced with taking the variance of the result.

Signal power. We quantified the power spectrum density

estimate (Welch’s power spectral density estimate, 821

sample window length, zero overlap, 821 digital Fourier

transform points, 204.8 Hz sampling frequency) of the

seizure onset (i.e. the last 4 s of the data). The resulting

power output corresponding to frequencies �2 Hz were

summed.

Gamma band power. Like ‘Signal Power’, but only power

corresponding to frequencies �32 Hz were summed.

Variance. To account for changes in electrode quality, we

scaled the signal to be between 0 and 1. This was accom-

plished by first subtracting the minimum amplitude of the

signal and then dividing by the new maximum amplitude.

Finally, the variance of the scaled signal was taken.

Linear amplitude trend. Two linear models were fit to the

data. First, a linear model was fit to the first 3.2 s of pre-

onset baseline. Then, another linear model was fit to the

last 3.2 s of seizure data. The slopes from both models

were extracted and the baseline slope was subtracted

from the seizure slope. This provided the relative linear

amplitude trend of the seizure onset waveform with re-

spect to baseline.

Burst count. This feature was designed to differentiate seiz-

ures that consisted of bursts from those that consisted

primarily of spikes. We first performed high-degree, non-

linear smoothing on the waveform (Savitsky-Golay filter,

11th order, 201 frame length). The resulting data were
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normalized between 0 and 1 by first subtracting the min-

imum amplitude then dividing by the new maximum

amplitude. Finally, we found the peaks (‘findpeaks’ in

MATLAB, Version 9.4.0.813654 R2018a, 0.3 minimum

peak prominence) and counted them.

Statistical analysis

Definition of brain states for data labelling

As mentioned before, the tetanus toxin model consists of

three epochs of epilepsy: (i) Pre-seizure, (ii) Rising-seizure

and (iii) Falling-seizure. We analysed the evoked response

and seizure onset characteristics independently across

these epochs and then compared these results.

Recording started 2 days after injection (Day 1), which

was prior to development of seizures in any animals, and

continued every day until seizures had appeared and

resolved, lasting several weeks. We defined the Pre-seizure

epoch as all recordings done on days prior to the day of

the first seizure. The Rising-seizure phase begins at the

time of the first seizure and ends at the inflection point

when the rate of seizures begins an overall decreasing

trend. However, the SR was not necessarily unimodal

and had considerable variability from day to day; thus,

determination of a precise inflection point was ambigu-

ous. Therefore, as an estimation, we determined the total

number of seizures (N) that occurred in each animal and

defined the Rising-seizure phase as the first N/2 seizures,

and the Falling-seizure phase as the second N/2. This

scheme assured that the two groups have similar size. We

compared this method with results using the manually

determined absolute maximum rate and there were no

appreciable differences in any of the results. Analysis of

the evoked responses included data from all three epochs.

Obviously, seizure onset dynamics were only evaluated

during the Rising-seizure and Falling-seizure epochs.

Using divergence to assess distinguishability

A major goal of this work is to characterize the brain

states and determine if there are measurable differences

between states. We used a data-science approach for this

analysis, quantifying features of the data using algorithms

and comparing the statistical distributions of those fea-

tures. When feature distributions from different states can

be distinguished completely, we refer to the distributions

as fully ‘separable’, which in this case suggests that the

different states produce fundamentally different brain ac-

tivity. In practice, distributions typically have some over-

lap that reduces separability. If they are not separable,

then either the brain states are not functionally distinct,

or the chosen features are incapable of identifying any

difference.

The method for distinguishing different groups is very

important, especially for large datasets. With large num-

bers, simply finding the ‘statistical significance’ (often a

P-value of a comparison test such as Student’s t-test) is

not necessarily useful, as the populations may be

‘significantly different’ due to the large sample size but

essentially indistinguishable in any meaningful way. A

more robust method of distinguishing large groups is to

use a test of divergence, which not only assesses signifi-

cance but also separability. In this study, we utilized a

measure related to the Henze–Penrose divergence (specif-

ically using the quantity in Equation (5) in Berisha et al.

(2016), which ranges between 1 (for completely separable

distributions) to 0 (for completely indistinguishable distri-

butions)). We denote this measure the Henze–Penrose

statistic.

Comparing biomarker features across time

The primary measurements in this work are to assess

whether the two electrical biomarkers (seizure dynamics

and evoked responses) change over time, which we

assessed by determining if the features changed signifi-

cantly across different temporal epochs. This analysis was

performed using unsupervised dimensionality reduction

followed by a divergence measurement and bootstrapping

(permutation test) to assess significance.

For seizure dynamics, we first reduced the dimensional-

ity of the features by computing the first three principal

components. Outliers whose principal component values

exceeded 2 SD were removed from the analysis (removed

data percentage ranged from 4.6% to 13.8%, avg. 9%),

creating a more conservative measurement. We analysed

these outliers and found that all were due to either in-

accurate seizure onset time or motion artefact. For the

features of seizure onset dynamics, there were only two

groups to compare: the Rising-seizure and Falling-seizure

epochs. We computed the Henze–Penrose statistic be-

tween the two distributions, providing a measure of their

separability. To estimate the statistical significance of the

separability, we performed a permutation test in which

we randomly scrambled the labels of the original data

groups and recomputed our divergence measurement.

This permutation test was repeated 10 000 times for

robustness.

For the evoked response data, the same analysis was

performed with three exceptions. First, because the

evoked response data encompassed all three epochs, we

determined the separability between Pre- and Rising-seiz-

ure phases in addition to the Rising- and Falling-seizure

phases. Second, only the first two principal components

were used for the evoked response data, as these were

sufficient for nearly full separability. Third, no principal

component values were removed by thresholding from

the analysis, as the evoked response data were not as

noisy. In addition to testing differences in Experimental

animals over time, we also investigated the change in the

Control animals. Because Control animals had no pre-

defined phases, we looked at the differences in evoked

responses takes from the first 10 days (Days 1–10) and

the final 10 days (Days 58–67).
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Classification of Pre-seizure state using evoked

responses

The evoked response experiment also allowed an analysis

to determine if the Pre-seizure state could be detected, i.e.

if it was possible to differentiate which animals would

develop seizures. This independent analysis utilized the

same features, but with a supervised classifier and cross-

validation to determine how accurately these biomarkers

can distinguish between the Control and Experimental

animals even before seizures begin.

With the nine total animals, we developed a leave-one-

out cross-validation in which eight animals are used for

training and the classifier is tested on the held-out sub-

ject, repeated for each animal. For each of the nine itera-

tions, we normalized the training data of each feature by

subtracting the training group’s mean and dividing by the

group’s standard deviation. The same mean and standard

deviation were used to process the features within the

test data as well. Focusing on the power band 0–

203.57 Hz (i.e. the first 100 features), we implemented

greedy linear discriminant analysis as a type of supervised

learning for dimensionality reduction on the training data

(eight subjects), then used the same transformation matrix

to reduce dimensions on the test data. Only 100 features

were used to limit over-fitting during the supervised

learning process. We selected the top three linear discrim-

inant analysis features that maximize linear separation be-

tween the Experimental and Control groups in the

training data. These three linear discriminant analysis fea-

tures were renormalized using their mean and standard

deviation from the training data and then applied to the

test data. The normalized linear discriminant analysis fea-

tures from the training set were used to train a support

vector machine classifier (Linear kernel function, scale

factor of 1, MATLAB R2018a) to distinguish between

the corresponding labels (i.e. Control or Experimental)

for each individual evoked response (i.e. each 5 min data

excerpt). We then tested the held-out data (i.e. all 5 min

data excerpts from the current test animal) with the

resulting classifier in each iteration of the cross-valid-

ation. The robustness of the cross-validation was assessed

using two different metrics. First, we compared the total

accuracy of the classifier to the theoretical accuracy of a

random classifier. This is important metric, as it will de-

termine if the classifier outperforms random guesses. To

calculate the expected accuracy of a random classifier

(i.e. the minimal success rate using only information

about the distribution of class labels), we take the sum of

the squares of the probability of each label occurrence.

Only the first 10 days of evoked response Control data

were used to mirror the general window of time the Pre-

seizure phase occurred in the Experimental animals

(mean: 6 days, range: 4–9 days). This first 10 days created

a total sample size of 3977 samples across all three

Control animals, which was comparable to 3915 samples

across all Experimental animals, leading to a base rate

probability of 50.00%. The second method to estimate

robustness is to calculate the AUROC (area under the re-

ceiver operating characteristic curve) of the classifier. This

metric is even more important as we seek to determine

that the false-positive and true-positive classification rates

are significantly above random chance. The AUROC

ranges from 1 (perfect classification) to 0 (exactly wrong

classification), with 0.5 being the outcome of a random

classifier. Both cases provide an objective measure of the

improvement over random guessing (i.e. the magnitude

>50% accuracy or 0.5 AUROC).

Data availability

All data and associated scripts/tests can be found at the

University of Michigan’s Deep Blue Library, as well as

suggestions for alternate data processing parameters in

future work (Crisp et al., 2019).

Results

Seizure onsets

All six Experimental animals developed seizures after the

tetanus toxin procedure. Seizures began after 6 6 2 days

and tended to increase in frequency for several days be-

fore reaching peak frequency (Fig. 4, column 1). Each

animal also spontaneously remitted from seizures after

several weeks. This time course is well-suited for epilepto-

genesis research as it includes a known trigger, a latent

period, then a progressive course of seizures. We

observed that there were clear differences in the seizures

over this time course. We found that the seizure onset

dynamics in a given animal changed over this period

(Fig. 5). The first seizures to appear tended to have a DC

shift (deflections that always occurred in the positive

orientation) with fast spiking (Fig. 5, column 1). Over

many days, the seizure features changed: the seizures

began to have short clonic bursts with DC shifts (Fig. 5,

column 2), then later they had bursts without DC shifts

(Fig. 5, column 3). This transition represents a continuum

from seizures that have features consistent with a SN

onset (Jirsa et al., 2014) during the first seizures (DC

shift, constant amplitude and frequency), transitioning to

features from a SNIC or SubH onset (Saggio et al.,

2017) during the last seizures (no DC shift, constant

amplitude and increasing/arbitrary frequency). During the

end of the recordings, there were two other patterns

intermittently seen in some subjects. One was an onset

with no DC shift, rising amplitude, and constant fre-

quency (in 4/6 animals, Fig. 5, column 5), which was

similar to a SupH onset. The other was an abrupt onset

of discrete spike wave discharges, which is similar to a

different type of SNIC/SubH bifurcation (in a different

4/6 animals, Fig. 5, column 4). Note that these different

onset patterns were intermittent and variable: during the

course of epileptogenesis a given animal alternated
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Figure 4 Seizure occurrences and divergence measurements—(Column 1) seizure occurrence over time for each animal. The x-axis

time is based on the days since recording start (2 days after the tetanus toxin injection). The red star indicates the estimated inflection point,

separating the Rising- and Falling-seizure phases. (Column 2) Cumulative seizure count over time for each animal. The red vertical line indicates

the estimated inflection point (identical in meaning to the red star in Column 1). (Column 3) The corresponding principal components of the

seizure onset features used for the divergence measurements between the Rising- and Falling-seizure phases. Green ‘þ’ indicates seizure found

in the Rising-seizure phase, while blue ‘O’ indicates seizure from the Falling-seizure phase. While the distributions in all six animals are not

completely separable, there are clear differences between the two phases, which are manifest as high divergence measurements.
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between these different types, but the overall collection of

seizure dynamics was clearly altered from the beginning

to the end of the experiment as illustrated in Fig. 5.

Although assigning specific bifurcations would be pos-

sible at the extremes, there were many seizures during

the course that would be difficult to assign to a single

classification, as there are features from different types

mixed together (e.g. some DC shift with increasing fre-

quency). For this reason, we did not attempt to fit each

seizure to specific classifications; rather, we used the fea-

tures that distinguish the bifurcations as the input for the

divergence analysis. Using the seizure features described

in the Materials and Methods section, we calculated the

first three principal components (Fig. 4, column 3) and

used them to calculate the Henze–Penrose statistic be-

tween data from the two epochs (Rising-seizure and

Falling-seizure). Note that a value of ‘1’ indicates com-

plete separability, and ‘0’ means they are indistinguish-

able. The average Henze–Penrose statistic measurement

over all six animals were 0.6157 6 0.1983, all signifi-

cantly larger than values computed for all 10 000 ran-

dom permutations of the labels (P< 0.0001, permutation

test). This demonstrates that the seizure onset features are

not only significantly different, they also easily distinguish

the two phases.

To further validate the changes occurring in the seizure

onset data, we separated both the Rising- and Falling-

seizure phases into halves (early and late), creating a total

of four epochs (Fig. 1, see dotted vertical lines). We then

computed the Henze–Penrose statistic between each

neighbouring pair of the four smaller epochs. We found

that seizure onset features from all six animals changed

significantly between all compared phases (all P< 0.0001,

permutation tests). Thus, about every 10 days the seizure

onset patterns had changed significantly in each animal.

Evoked responses

Independent of the noticeable differences in seizure onset

dynamics, we also found important differences in the re-

sponse to provoking stimulation during interictal periods.

We used a similar data-driven analysis to characterize

these effects, though in this case we were also able to

quantify the Pre-seizure phase.

There is a great clinical need for a biomarker that can

inform clinicians about the state of the Pre-seizure phase,

as there is potential for early treatment to avoid, diminish

or prolong seizure development. However, this success is

only available if clinicians can differentiate between a

healthy brain and a brain progressing along the track of

epileptogenesis without the obvious standard biomarker

(seizures). Our analysis seeks to train a classifier to deter-

mine if incoming evoked responses come from a normal,
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Figure 5 Progression of seizure dynamics—examples of seizure onset dynamics over time in all six Experimental animals. Each row

(labelled S1–S6) represents seizures in the indicated subject. The days shown mark the day since recording started on which each example

seizure occurred. Hundreds of additional seizures were also present and are not shown. Over the course of epileptogenesis there was variation

in seizure type, but the most common dynamic features at each time point changed. This figure demonstrates example seizures that have the

most common morphology at different time points in the first three columns. In addition, the final two columns show intermittent morphologies

that arose late in epileptogenesis in certain subjects. In each case, these different morphologies were not the dominant seizure type but are

included here for comparison. Each waveform was downsampled to 204.8 Hz and lowpass filtered (Chebyshev Type 1 filter, normalized cut-off

frequency of 0.08, passband ripple of 0.05 dB). Red stars indicate the seizure onset marked by a trained epileptologist.
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healthy brain, or from a brain progressing along the

track of epileptogenesis.

The stimulation continued at regular intervals for the

entire weeks-long recording session. It spanned all behav-

ioural states on every day, but the responses showed no

clear dependence on time of day or behavioural state.

We first used spectral features to quantify the dynamical

effects as epileptogenesis progressed. We measured the

features over the entire time course and found that the

evoked responses were distinct during each phase of epi-

leptogenesis (Fig. 6). The most visually obvious change

was a consistent trend in amplitude (Fig. 6A); however,

this effect was also noted in the Control animals, suggest-

ing it was due to the experimental procedure. We found

that the frequency response was more specific to the epi-

leptic animals. We therefore normalized the amplitudes

to focus the analysis on the frequency response to the

stimulus, which primarily occurred in the first few milli-

seconds of the response (Fig. 6B and C). The

Experimental animals began to have changes in the

evoked responses immediately after the tetanus toxin in-

jection. The changing nature persisted, and in each stage

of epileptogenesis it was easy to distinguish the

responses. Because there were so many measurements

each day, we were able to quantify these responses and

show how the distribution of the features changes over

time, i.e. how ‘separable’ the distributions are. The full

analysis combined many features, but to illustrate the

strong separability in just one of the features, we high-

light the temporal band power changes by normalizing

via standard deviation each frequency component over

time (Fig. 7, column 1). For five out of six animals, we

see that changes in power bands separate into three dis-

tinct bands. Frequency ranges were similar enough for

these animals to estimate by visual inspection: 0–169,

170–769 and 770–1024 Hz. The 0–169 and 770–1024

bands were similar in their power distribution across

epochs. These bands started with minimal power in the

Pre-seizure phase and gained power over time with

increases in power correlating with transitions between

each epileptogenic phase. The final frequency band, 170–

769 Hz, displayed the opposite trend. Specifically, we see

a high proportion of power during the Pre-seizure phase

that decreases over time. One noticeable difference in this

band compared to the others is that the trends in power

distribution are highly subject-specific. One subject was

distinct from the others (S3) and had a different time

course, but also showed clear differences over the course

of epileptogenesis.

To quantify these effects similar to our analysis of seiz-

ure onset dynamics, we computed the principal compo-

nents (Fig. 7, column 2) and then investigated how well

the evoked response features of the Experimental animals

can be distinguished between the different phases of epi-

leptogenesis. All phases were clearly distinguishable in all

six animals (P< 0.0001, permutation test). Of particular

interest is that in each of the six subjects, most of the

change in principal components occurred within the first

10 days, suggesting that there is significant evolution in

frequency response even before seizures begin.

We also assessed the effect of stimulation on a healthy

brain by performing the same analysis to compare data

Frequency (Hz)

PS
D

 (
dB

/H
z)

Day 15

Day 30

Day 50

Day 3

A
m

pl
itu

de
 (

Vo
lts

)

Time (s)

N
or

m
al

iz
ed

 A
m

pl
itu

de

Time (s)
0 400 8000 0.004 0.008-0.2 0 0.2 0.4

A B C

0.9

0.5

0.1

0.2

0.0

0.1

-45

-65

-85

Figure 6 Evoked response visualization—each figure contains the evoked response from the first stimulation epoch occurring on Days 3,

15, 30 and 50 to show the temporal evolution (Electrode-R only). Data shown are from Experimental S1; similar results were present in all

Experimental animals. (A) The average of 100 evoked responses from a single 5 min train of pulses. Note that on this long time scale the largest

difference is the amplitude after stimulation. After normalization, the largest difference occurred in the first 0.01 s after stimulation (star, small

bar), which are expanded in ‘B’. (B) Stimulation artefact is removed from the analysis. The average waveform is normalized between 0 and 1

(subtracting the minimum and dividing by the new maximum for each averaged tracing). This is done to minimize amplitude changes due to

electrode variability over time. (C) The power spectrum density is computed for each averaged waveform. Temporal changes in the power

spectrum density were highly consistent across time in the epileptic animals. Each Control was processed in the same way and there were some

measurable differences over time, but they were not consistent with each other nor with the epileptic animals (see Fig. 8).
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Figure 7 Probing analysis—(Column 1) Power spectral density for each averaged electrically evoked response, plotted for each Experimental

animal (S1–S6) and Control animals (Control 1–3) over the course of the study. The power bands were individually normalized by subtracting

the mean and dividing by the standard deviation to highlight changes in a single frequency band over time. In each Experimental animal’s plot,

there are three vertical lines. The first line corresponds to the day that seizures first commenced. The second indicates the point of inflection
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from the initial and final days of the Control animals

(Days 1–10 and 58–67). The beginning and ending days

were clearly distinguishable (Fig. 7) in all three Control

animals (P< 0.0001, permutation test). This is not sur-

prising, as the healthy brain received repeated electrical

stimulation for the entirety of the experiment, and it is

possible that implantation alone or even natural aging

could produce changes over the course of the 2 month

experiment. However, we hypothesized that changes in

the brains of Experimental animals would be more sub-

stantial than changes in Control animals, given the added

effects of epileptogenesis. In Fig. 7, column 1, the evoked

responses of the Experimental animals have a high correl-

ation with time and have very similar profiles. This is in

great contrast to the Control animals, where each of the

evoked responses had unique profiles and exhibited com-

paratively static features. However, to compare results

across all animals we had to plot them in the same PCA

space. The six Experimental animals were grouped and

normalized (mean subtracted, divided by the standard de-

viation), and the dimensionality of their features were

reduced using PCA. The same mean, standard deviation

and PCA coefficients were used to project the features

from the Control animals into the same PCA space. We

first plotted these in PCA space for visualization. Each

data point represents a single 5 min stimulation response.

We noted differences between the Experimental and

Control groups even in the first few days before seizures

began (Fig. 8A). Evaluating the progression over the

whole experiment, we noted that the Experimental ani-

mals tended to have a distinct shape to their PCA data,

which was not present in the Controls (Fig. 8B). To

quantify this effect, we fit the first two principal compo-

nents of every sample from each of the nine animals to

their corresponding days using a basic linear model (least

sum of squares, linear fit). The R-squared value of the

Experimental animals was found to be significantly

higher than that of the Control animals (Experimental R-

squared median: 0.85, Control R-squared median: 0.40,

P¼ 0.0119, one-tailed Wilcoxon rank sum test). This

indicates that while both groups experience changes over

time, the Experimental animals had much higher correl-

ation with time.

These results led to a question with important clinical

implications: would it be possible to distinguish Control

versus Experimental animals in the period before seizures

develop? Here, the results from the different groups must

be compared across subjects. To be rigorous and avoid

over-fitting, we approached this as a classification prob-

lem and implemented cross-validation. This analysis used

the same spectral features but required a different ap-

proach with supervised dimensionality reduction and a

support vector machine classifier. We used 9-fold leave-

one-out cross-validation across all nine animals, individu-

ally classifying each 5 min-average evoked response from

each animal.

We found that the classifiers utilizing evoked response

features from the first 10 days (Controls) and Pre-seizure

epoch (Experimental) were accurate in identifying which

animals would later develop epilepsy (Experimental ani-

mals versus Control, overall 75.51% accuracy compared

to 50% accuracy for random chance classification, leave-

one-out cross-validation, AUROC: 0.8217). The classifier

performed worse than random chance on only two (one

Experimental, one Control) of the nine total animals. The

poorly performing Experimental animal (S3—14.79% ac-

curacy) exhibited strange, highly variable evoked response

data that likely led to poor classification accuracy. In

Control 2, the classifier performed slightly worse than

random chance (48.94%). Interestingly, evoked responses

from the first 5 days from Control 2 were all classified

correctly. It was between Days 5 and 6 when the features

of the evoked responses changed drastically and were

classified incorrectly. The data from both these subjects

can be seen in Fig. 8B as disconnected clusters of points

in S3 and Control 2. We were unable to identify any

other changes associated with these findings. However, in

the remaining seven animals the results were quite re-

markable: just a single evoked response train (5 min)

could be classified as either Pre-seizure or Control much

better than random chance.

Discussion
For the first time, both seizure onset dynamics and elec-

trically induced brain responses were studied continuously

Figure 7 Continued

separating the Rising- and Falling-seizure phases. The third shows the day of the last recorded seizure. These lines were not included for the

Control animals, as they did not have seizures. (Column 2) Frequency information from the analyses were investigated by PCA, and the first two

principal components are plotted and labelled based on their epileptogenic phase membership (red ‘squares’ ¼ Pre-seizure phase, green ‘þ’ ¼
Rising-seizure phase, blue ‘o’ ¼ Falling-seizure phase). As seen in the figures, all three phases were quite distinct in all Experimental animals. The

PCA was performed separately for each of the nine subjects. In order to demonstrate the temporal evolution of the induced responses, the first

and second principal component values were segmented based on day and their centroids were calculated and plotted in the line-dot graph.

Centroids from Days 1, 3, 5, 10, 30 and 60 are white and labelled. Days 21 and 22 for Control 1 were redacted from the figure, as they were

corrupted by artefact.
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over a long-term period to determine their roles as bio-

markers for the epileptogenic brain. There has been some

previous work for electrically induced brain responses in

humans, though limited to shorter recordings and always

for patients who are long past the epileptogenesis stage

(Kalitzin et al., 2005; Freestone et al., 2011; Pigorini

et al., 2015; Wendling et al., 2016). This tetanus toxin

animal model provides a unique opportunity to study epi-

leptogenesis from insult to epilepsy, and in this case also

to remission. This study is unique because it compares

two fundamentally different biomarkers simultaneously,

through multiple stages of epileptogenesis.

Quantifying seizure dynamics

In both clinical and basic research, it is often necessary

to describe seizure characteristics and attempt to compare

them across different conditions. However, these compari-

sons have previously been limited to visual descriptions

such as morphology and peak spiking frequency (Perucca

et al., 2014; Lagarde et al., 2019). These methods of

comparison are the basis of clinical epilepsy, but it is un-

clear when those differences comprise fundamental

changes in the seizures themselves, e.g. is a 4 Hz versus a

7 Hz spike train really a different ‘type’ of seizure? The

result is that it is very difficult to compare seizures across

time and different subjects. In this work, we designed fea-

tures based upon invariant aspects of seizure dynamics

(Jirsa et al., 2014). In effect, these are the features that

define when one seizure is ‘different’ from another, based

upon principles of dynamics. Interestingly, this theory ac-

tually predicts that the spiking frequency is not import-

ant—only the temporal trend is. This robust method is

designed to classify seizure dynamics, applicable to any

seizure: computer model, experimental animal or human.

Our primary result was that there were clear differences

in seizure dynamics over the course of epileptogenesis, as

evidenced by the Henze–Penrose statistic results. These

measures indicate that the epileptic tissue follows a fairly

stereotyped dynamical pathway over the course of the tet-

anus toxin-induced epilepsy, tending to form seizures

with fast, low amplitude spiking and DC shift at the be-

ginning, versus seizures with repetitive bursts with

increasing frequency at the end. While investigating the

mechanisms underlying this change was beyond the scope

of the current work, these results provide an intriguing

guide for such research in the future. In effect, this type

of analysis can quantify differences between seizures,

identifying salient differences and providing rigour to fu-

ture epileptogenesis research.

While not a main focus of the current research, it is

also interesting to comment on the types of bifurcations
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Figure 8 Qualitative differences between Experimental and Control evoked responses—(A) aggregate of all evoked response data

from the Pre-seizure phase of all Experimental animals (blue ‘x’) compared with all data up to Day 10 in the Control animals (red ‘o’). These data

were plotted on the unsupervised PCA distribution formed from all nine subjects’ data. (B) The first two principal components generated by

aggregating all six experimental animals were used as axes for all nine animals. S1–S6 refer to the Experimental subjects 1–6. The evoked

responses are colorized according to the day of recording (1–70). Each of the Experimental animals has a clear temporal trend, while there is no

consistent trend in the Control animals. Control 1 had many days with high variability but it, like all three Control animals, had similar responses

at the beginning and end of the experiment. This figure is presented for illustrative purposes to show the differences between the groups using

the same processing as prior figure; however, the actual classification used a different, supervised analysis with 9-fold cross-validation (see text).

Days 21 and 22 for Control 1 were redacted from the figure, as they were corrupted by artefact.
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seen over the course of epileptogenesis. In all animals,

the initial seizures tended to have features consistent with

SN bifurcations, while the final seizures more commonly

were consistent with SNIC or SubH bifurcations.

However, between these times, there was a range of dif-

ferent dynamics. There were two phenomena noted in all

animals. First, each animal had seizures with different dy-

namics alternating over time, e.g. SN alternating with

SNIC or SupH bifurcations. The relative frequency of

each type changed over time, with SN being much more

common in the Rising phase and SNIC/SubH more com-

mon by the end. Second, as shown in Fig. 5 (column 2),

there were many seizures that did not conform to strict

bifurcation types. Viewed collectively, it appears that

many seizures between the early and late patterns (which

clearly change from SN to SNIC/SubH) have mixed char-

acteristics, as if the seizures make a slow transition from

SN to SNIC/SubH over the course of weeks. This transi-

tion suggests a ‘map’ of brain states, wherein the progres-

sion of epileptogenesis slowly moves the dynamics from

one region to another, as proposed by Saggio et al.

(2017). Clearly, limiting to a low-dimensional model can-

not explain all dynamical behaviour in the brain.

Nevertheless, it is striking that despite limiting our ana-

lysis to the more parsimonious low-dimensional model, it

still provides very strong separability, and even provides

a strong rationale for explaining the evolution of seizure

dynamics in Fig. 5.

Evoked responses

Quantifying the response to a perturbing stimulus has

been very limited in epilepsy research but has shown

intriguing results (Alarcon, 2005; David et al., 2010).

This procedure has a robust history in other fields such

as ecology, power systems and reservoirs (Chow et al.,

1990; Kikani and Pedrosa, 1991; Heppell et al., 2000;

Martı�nez et al., 2004; Ehrlén and Groenendael, 2008;

Ma et al., 2012) but is difficult to perform in vivo. The

basic theory is that perturbation is a probe of excitability

and thus should change if the network is inherently

‘more epileptic’, i.e. closer to seizure threshold. In add-

ition, perturbation can be used to assess proximity to

specific bifurcations because it shows different responses

when a SubH or a SupH bifurcation is nearby (Bryant

and Wiesenfeld, 1986; Vohra et al., 1994; Yaghoobi

et al., 2001). Because our system records at 2048 Hz, we

are able to see a wide range of fast neuronal activity.

There are many physiological phenomena in the 500–

1000 Hz range: units, multi-units, high frequency oscilla-

tions, etc. Perhaps the most pertinent are ‘very high fre-

quency waves’ produced by somatosensory evoked

potentials, recorded with subdural electrodes very similar

to this experiment (Amassian and Stewart, 2003).

Our data demonstrate that, like seizure dynamics,

evoked responses show clear evolution over the course of

epileptogenesis. As expected, there were also changes

over time in the Control animals, but the effect was

much more prominent in the Experimental animals.

Perhaps the most important result is that these changes

started even during the latency (i.e. Pre-seizure) period,

and that evoked responses taken during this time can be

used to help distinguish which animals are going to de-

velop epilepsy. This outcome shows that this method

may be a useful tool to assess the progression of epilep-

togenesis even prior to the first seizure. These results are

limited because there were no evoked responses done

prior to the tetanus toxin injection to establish the

healthy baseline. Future studies will evaluate these poten-

tial confounds.

This study contains some important limitations. First,

concerning the relationship between seizure dynamics and

evoked responses, while we make the assumption that

these measurements are independent, repeated stimulation

has been found to affect the brain (Chen et al., 1997;

Yamamoto et al., 2002). Therefore, it is possible that the

stimulation affected the seizure dynamics, rather than dis-

ease progression; however, we note that the seizure pro-

gression found in these animals is wholly compatible

with prior studies that did not have stimulation (Jefferys

and Walker, 2006). Second, we did measure evoked re-

sponse changes in the Control animals, which was likely

due to some combination of aging, stimulation effect and

implantation/experimental effect. Finding such differences

was not surprising; the key aspect of our results was that

the changes occurring in the Experimental animals were

both qualitatively and quantitatively different than those

occurring in the Control animals. Furthermore, our classi-

fication of Experimental versus Control in the first

10 days inherently controls for this change and was much

better than a random classifier.

Summary
Treating epileptogenesis has been challenging due to the

inherent heterogeneity of epilepsy as well as the temporal

changes in molecular mechanisms. This has motivated re-

search to develop biomarkers to track the disease pro-

gression in models of acute brain injury. Electrically

induced evoked responses have been successful in diag-

nosing neural excitability to determine many epileptic

characteristics. Additionally, a recent framework of seiz-

ure dynamics has been produced, creating a foundation

and methodology for characterizing seizures based on sig-

nature dynamic manifestations. These two independent

features hold great promise as biomarkers of epileptogen-

esis. This study investigates how the different stages of

epileptogenesis modulate these features. We provide

proof-of-concept evidence that these features change over

time and can be used to inform the progression of the

disease, in particular that the response to stimulation can

help differentiate which subjects will develop epilepsy in

the future. These features, in conjunction with other
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methodologies, can be used to better research progression

of epilepsy as well as asses the efficacy of administered

drugs post-injury.
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