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Abstract

Background: Analysis of single cells in their native environment is a powerful method to address key questions in
developmental systems biology. Confocal microscopy imaging of intact tissues, followed by automatic image
segmentation, provides a means to conduct cytometric studies while at the same time preserving crucial
information about the spatial organization of the tissue and morphological features of the cells. This technique is
rapidly evolving but is still not in widespread use among research groups that do not specialize in technique
development, perhaps in part for lack of tools that automate repetitive tasks while allowing experts to make the
best use of their time in injecting their domain-specific knowledge.

Results: Here we focus on a well-established stem cell model system, the C. elegans gonad, as well as on two other
model systems widely used to study cell fate specification and morphogenesis: the pre-implantation mouse embryo
and the developing mouse olfactory epithelium. We report a pipeline that integrates machine-learning-based cell
detection, fast human-in-the-loop curation of these detections, and running of active contours seeded from detections
to segment cells. The procedure can be bootstrapped by a small number of manual detections, and outperforms
alternative pieces of software we benchmarked on C. elegans gonad datasets. Using cell segmentations to quantify
fluorescence contents, we report previously-uncharacterized cell behaviors in the model systems we used. We further
show how cell morphological features can be used to identify cell cycle phase; this provides a basis for future tools
that will streamline cell cycle experiments by minimizing the need for exogenous cell cycle phase labels.

Conclusions: High-throughput 3D segmentation makes it possible to extract rich information from images that are
routinely acquired by biologists, and provides insights — in particular with respect to the cell cycle— that would be
difficult to derive otherwise.

Keywords: Spatial cytometry, 3D image segmentation, Stem cells, Cell cycle, C. elegans germ line, Mouse pre-
implantation embryo, Olfactory placode, Olfactory epithelium

Background
Understanding the mechanisms by which cells make
proliferation and differentiation decisions is a ques-
tion of key interest to systems, developmental, and
stem cell biologists. Individual cells display rich cyc-
ling and differentiation behaviors that are often not

deterministic — as illustrated by stochastic transitions
between different progenitor states [1–3] — and that
are obscured in population averages. Furthermore, cell
proliferation and differentiation are controlled to a
large degree by extracellular cues that often can be
only very partially and crudely reproduced in vitro.
To better understand the mechanisms underlying cell
proliferation and differentiation, new tools are thus
required to quantify the behavior of single cells in
their native tissue environments.
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Most techniques currently used to quantify properties
of individual cells — such as flow cytometry — rely on
tissues being dissociated prior to analysis, which destroys
the spatial and morphological information present in the
sample. These sources of information are preserved by
imaging of undissociated tissues or organs; such imaging
can be performed readily with current technologies (e.g.
confocal microscopy), but it does not immediately lead
to cell-by-cell information without extensive analysis to
segment individual cells in the resulting three-dimensional
(3D) images.
Here we report the overall methodology that we have

followed to study the spatial distribution of cell cycle or
cell differentiation properties in three different tissues:
the C. elegans germ line, the mouse pre-implantation
embryo, and the mouse olfactory epithelium. While
there is an ever growing set of biological image segmen-
tation software solutions that tackle this problem, we
found that the parameters of these systems were often
difficult to tune and that most did not offer the capabil-
ity to manually curate intermediate results during pro-
cessing. To achieve accurate in vivo cytometry, we thus
chose to develop our own software, built on proven, ro-
bust algorithms for image analysis, to maintain maximal
flexibility in the integration of automated processing and
manual labeling effort.
A number of general image segmentation tools exist

that are specifically targeted at biological applications,
including both open source [4–18] and commercial soft-
ware (e.g. Imaris, Bitplane or Volocity, PerkinElmer). For
more extensive surveys, see e.g. [18–20]. Despite rapid
development (see e.g. cell tracking benchmark competi-
tion [21]), the problem of automatically producing high-
quality 3D segmentations of cells in general images re-
mains unsolved, due to the wide variation in appearance
across different tissue and cell types, labeling procedures
and imaging methods. Rather than tuning existing pipe-
lines or developing custom segmentation algorithms that
might improve performance on images of particular cell
types, we decided to design a pipeline that maximizes
the utility of the most accurate but most expensive re-
source in image segmentation: time spent by users
providing ab initio detections or correcting computer-
derived detections. This pipeline aims to provide
automation of repetitive tasks for which there is no
need for user input (such as applying image transfor-
mations, e.g. blurring with pre-determined parameters
or segmenting out the region around a putative cell
location), and to allow the user to focus on the tasks
that provide the highest added value.
We designed our pipeline Parismi (Pipeline for Auto-

mated oR Interactive SegMentation of Images) around a
simple, two-step idea. Cells are first detected, and these
detections are then used to seed a segmentation

algorithm. Detection can be performed manually (using
a 3D browsing interface similar to e.g. VANO [22]) or by
a machine learning algorithm trained from a set of man-
ual annotations used to bootstrap the procedure. We
chose a machine learning procedure, somewhat similar
to e.g. Ilastik [9] and distinct from ad-hoc processing of
the fluorescence signal (e.g. [23–26]), to facilitate reuse
across sample types that vary in nuclear morphology and
imaging conditions; we use machine learning in a differ-
ent way than Ilastik in that we do not train the algo-
rithm to separate foreground and background pixels, but
rather to identify cell centers. The output of the machine
learning algorithm can be reviewed and corrected by the
same interface — possible operations are addition and
deletion of detections, as well as detection re-centering.
As the set of segmented cells that have received manual
curation expands, the machine learning algorithm can
be re-trained from these segmentations, providing for
iterative improvements in the quality of the automatic
detection step. This approach is loosely similar in con-
cept to “semi-supervised learning” [27] and “active
learning” [9, 28], although our current implementation is
not fully interactive in that sense.
As the second step of our segmentation procedure, we

use “active contours” (implemented following [29]),
which are closed surfaces that are initialized from the
detected center point and grow smoothly outwards in
three dimensions until they encounter the putative cell
boundary (suggested by membrane staining) or until
they collide with surfaces corresponding to neighboring
cells. The surface evolution is governed by both mem-
brane staining (also referred to as the guide image) and
by the curvature of the surface itself; penalizing high
local curvatures helps the surface maintain a roughly
spherical shape, which provides robustness e.g. to noise
in the guide image. In the case of stains that are not lim-
ited to the periphery of the structure being segmented,
such as DAPI or Hoechst stains for nucleus segmenta-
tion, pre-processing of the image can be used to produce
a guide image that outlines boundaries, so that active
contours can still be applied.
The use of active contours has a long history in cell

segmentation and has proven to be a robust approach
for identifying cellular and nuclear volumes in three di-
mensions [29–35]. Other approaches to segmentation
such as geodesic distance transform [16], gradient flow
smoothing [36], and watershed transform have also been
used successfully to perform 3D volumetric segmenta-
tion of cell nuclei in specific sample preparations (e.g.
[37–39]); however, these techniques often require post-
processing ([40]; although see [41]) to correct segmenta-
tion errors. In particular, segmenting densely labeled
whole cells (rather than nuclei) requires high-quality
membrane staining to achieve sufficient local contrast
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[34]. Our choice of seeded segmentation and active con-
tours avoids difficulties that commonly arise in purely
segmentation-based approaches based on local filtering
and enhancement followed by connected components
analysis. In our C. elegans gonadal arm data, the spatial
distribution of DNA towards the periphery of the nucleus
results in gaps (see e.g. Fig. 1 and Additional file 1: Figure
S1) in the DNA stain channel that can be larger than the
separations between neighboring nuclei and that hence
cannot be easily resolved by local smoothing. Active con-
tours do well in that context.
Our choice of seeded segmentation also makes it

straightforward to inject domain-specific knowledge of
expert users in an efficient way. Tools already exist that
enable manual editing of segmentations. ITK-snap [42]

targets annotation of a few large volumes (e.g. in medical
imagery) and is hence not well adapted to our datasets.
Fiji’s “segmentation editor” [14] enables fully-manual edit-
ing of segmentation products that, even with the help of
interpolation, is particularly taxing in terms of time and
effort (see below). VANO [22] is highly interesting in that
it allows importing of pre-existing segmentations and fast
editing using deletion or merging of segments, and adding
adjustable spheres to segments (VANO also allows anno-
tations of segmented cells, as discussed in more detail
below). Our approach differs from that of VANO in that
we offer a batch processing feature that allows a user to
quickly curate multiple datasets without manual setup of
each image stack, and more importantly in that human in-
put takes place mid-way in the segmentation process, at a
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Fig. 1 Overview of Parismi image analysis pipeline. a Diagram of the C. elegans gonadal arm (left) with an enlarged view of the MZ (right). Cell
rows are numbered with row one at the distal most end where the stem cells reside. b Application of Parismi to images of C. elegans gonadal
arms. The membrane image is preprocessed using a principal curvature approach to produce a guide image. Cell centers are identified manually
or using an SVM classifier, and act as seeds for active contours that are run against the guide image. Position and fluorescence contents are
quantified using segmentation masks derived from the active contours. Arrowheads give an example of cells whose DNA staining gap in the
nucleus center is larger than the gap between each cell. c-e Example 3D segmentations of a C. elegans gonadal arm (c), a pre-implantation
mouse embryo (d), and mouse olfactory epithelium (e); red: DNA channel; green: segmentation mask boundary
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point where it is most efficiently provided. Although in
the future it may be desirable to integrate VANO func-
tionality to edit the final segmentation product, we have
found that, at least for our purposes, active contour out-
put does not need editing as long as each cell is correctly
detected (see Results and Discussion section for perform-
ance quantification). It is more efficient to simply edit the
locations of cell detections than it is to provide a manual
segmentation from scratch, or to start from a completed
segmentation and correct all of the erroneous pixels that
can result from a single mis-detection (put simply, a stitch
in time saves nine). In addition, and importantly, manual
curation results can be used to further train the detection
algorithm and increase its performance, to the point
where manual curation may no longer be required (as we
show below).
In summary, Parismi is composed of four broad com-

ponents: (1) an interface to manually annotate cells in
3D images, and to curate automatic detections if desired;
(2) an automatic cell detector that can be trained from
manual annotations; (3) an active contour implementa-
tion that produces cell segmentations; and (4) a number
of plugins for analysis of segmented cells to e.g. quantify
their position in the organ and their fluorescence con-
tents (Fig. 1). Overall our procedure is similar to previ-
ous reports in that it relies on machine learning for
segmentation of biological images (see e.g. Ilastik [9] or
Trainable Weka [14]) but distinct in three respects. First,
it provides for full automation of repetitive steps, which
has allowed us to segment hundreds of thousands of
cells. Second, it relies on active contours instead of
thresholding, watershed or pixel classification as fore-
ground or background; we have found that active con-
tours provide more robust segmentations when cells are
tightly packed and/or not perfectly separated by a clean
boundary signal. Third, it allows the user to easily curate
results if desired, by editing the set of cell detections and
re-running the active contours segmentation — rather
than relying on perfect detections that must be achieved
by time-consuming fine-tuning of training or segmenta-
tion parameters that apply in the same way throughout
the image.
To illustrate the utility of this methodology in acceler-

ating biological image analysis, we focus chiefly on the
C. elegans gonad, an organ that is especially amenable to
experimental manipulation and imaging and provides a
powerful model system for understanding stem cell
niches [43, 44]. The C. elegans reproductive system is or-
ganized as “gonadal arms”, which form a tube with a
long “distal-proximal” axis; stem cells are located at the
distal end in a mitotic zone (MZ; Fig. 1a). Based on the
analysis of tens of thousands of MZ cells, we derive the
following results: (1) germline stem cells spend a larger
fraction of cell cycle time in the G2 phase than other

cycling cells (see also [45]), (2) germ cells appear to ar-
rest immediately in their current phase of the cell cycle
upon starvation, and (3) cell cycle phase can be identi-
fied using morphological features. We also derive results
on the preimplantation mouse embryo (Fig. 1d),
addressing the relationship between two transcription
factors associated with different cell fates; and on the
olfactory placode (Fig. 1e), where we show that cells in
different regions of this rapidly-growing and -involuting
epithelial structure have different cell-cycle properties.
Overall, our results illustrate the powerful information
that can be extracted from 3D images of tissue to
analyze cell-cycle and cell-differentiation properties of
individual cells.

Results and Discussion
Benchmarking cell detection accuracy, segmentation
accuracy, and fluorescence quantification accuracy
To develop and validate our cell segmentation tech-
nique, we used a dataset consisting of confocal stacks of
intact C. elegans gonadal arms in which nuclei had been
labeled with DNA stain (Fig. 1b-c; see “Datasets” and “C.
elegans gonadal arm image acquisition” in Methods). We
generated a “ground truth” dataset of ~4,500 cell center
locations by manually clicking on the centers in xy, xz,
or yz planes using Parismi’s graphical user interface (see
“Overall software organization” in Methods). A subset of
these annotated images were used to generate examples
for training the system to automatically detect cell cen-
ters while the remainder was used to benchmark the ac-
curacy of various intermediate steps of our processing
pipeline.
First, we evaluated the accuracy of automated cell de-

tection (see “Cell detection” in Methods for implementa-
tion details). A cell detection was considered a true
positive if it was within 1.5 μm (approximately one cell
radius) of a manually-annotated cell center and there
were no other detections closer to the manually anno-
tated center (cell size and cell spacing in the tissue were
such that no pair of ground truth annotations is closer
than 1.5 μm). Otherwise, a cell detection was considered
a false positive. A manually-annotated center with no
cell detections within a 1.5 μm radius was considered a
false negative. Our automatic cell detector contains a
tunable threshold τ; for high thresholds, the detector
returns only a few detections and naturally achieves high
precision (few false positives) at the expense of low recall
(many false negatives). To summarize detector perform-
ance in a manner independent of τ, we computed preci-
sion and recall at all thresholds and report the average
precision (AP), the area under the precision-recall curve
(see Methods). We trained the detector on one experi-
mental dataset composed of twenty MZ image stacks
(from wildtype individuals at larval stage L4 + 1 day;
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total of 7,131 cells), then applied our classifier across
twelve independent experimental samples composed of
worms of different genotypes, stages of development,
and feeding or mating treatments (Additional file 2:
Table S1). In these twelve samples, the detector achieved
an average AP of 98.7 % ± 2 % in the MZ (Additional file
2: Table S1). Visual inspection showed that most errors
were associated with condensation of DNA during M-
phase. Although our datasets consist mainly of gonadal
arms in which only the MZ was imaged, we also mea-
sured detector performance in seven whole gonadal arm
images. Detection performance decreased when evalu-
ated on the whole gonadal arm as opposed to its MZ
subset, with average AP = 90.6 % ± 9 % (Additional file 2:
Table S2). This is likely due to wider range of nuclear
morphologies in the proximal germ line that results
from meiotic progression (Additional file 1: Figure S1).
The range of nuclear morphologies in the gonadal arms
is substantially more varied than typically seen in other
tissues or organs. Thus, although limitations remain in
the application of models trained on one kind of cells to
other kinds of cells (as highlighted by an outlier gonadal
arm with a lower accuracy of 70 %, Additional file 2:
Table S2), overall the relatively high AP over the whole
gonadal arm suggests that the automated nuclear detec-
tion does generalize.
To quantify the amount of training data needed

for good detector performance, we also trained the
detector on varying sized subsets of the twenty train-
ing images. The detector was trained on each subset
and then evaluated on the test dataset. On average, a
detector trained with only a single MZ image
achieved an average AP of 95.7 % ± 4 % (Additional
files 3 and 4: Figure S2 and S3A). Average AP
quickly reached a plateau, reaching 99.5 % ± 2 % at
eight stacks (Additional file 3: Figure S2); we note
that, not surprisingly, this average AP is slightly
higher than the 98.7 % value reported above when
testing across various experimental conditions.
Altogether, these results demonstrate that our auto-
matic cell detector is remarkably accurate in the
MZ, while being robust to different experimental
conditions such as genotype, developmental stage,
and replicate variability. In addition, training the
detector does not require an inordinate amount of
labeled training examples: detector performance
plateaus at eight training images.
Next, we evaluated segmentation accuracy by compar-

ing our implementation of active contours with the
more classical method of marker-controlled watershed
[46, 47] and a simple baseline method we term “trun-
cated Voronoi” segmentation, which assumes constant
radius and non-overlapping cells (see Methods for image
pre-processing and implementation of the various

algorithms). We hand-constructed segmentations to
serve as “ground truth” using Fiji’s “segmentation
editor” [14]. Since hand-segmentation of 3D images is
an arduous task, we performed this validation on
three image stacks, focusing on distal regions
comprising a total of 856 cells. To quantify segmenta-
tion accuracy, we scored the overlap between an
automatically-produced mask and a ground-truth
mask (see Additional file 5: Figure S4 for compari-
son). For each segment, we computed the ratio of the
volume of the intersection of the two specified re-
gions to the volume of their union. This ratio, also
known as the Jaccard index, has a maximum value of
1 when the segments are identical and penalizes seg-
ments returned by the algorithm that are too small or
too large. To aggregate accuracy over a whole collec-
tion of segmented cells, we first computed an optimal
one-to-one matching between the machine and hu-
man segments that maximized the overlap between
matching segments, and then calculated the average
overlap (AO) score averaged across all matched
segments.
Marker-controlled watershed (AO = 0.53 ± 0.06, where

the standard deviation corresponds to inter-germline
variability), truncated Voronoi (AO = 0.61 ± 0.03), and
active contours (AO = 0.62 ± 0.02) performed similarly
under ideal conditions with perfectly centered segmenta-
tion seeds and clean membrane images (Fig. 2, Additional
file 2: Table S3). Since experimental conditions are often
less than ideal, we also characterized segmentation accur-
acy in the presence of a membrane guide image that was
artificially degraded to mimic suboptimal staining (see
Methods). We found that the segmentation accuracy for
marker-controlled watershed decreased drastically when
the membrane image was degraded (AO = 0.13 ± 0.01,
75.5 % relative decrease) while active contours were min-
imally affected (AO = 0.57 ± 0.02, 7.1 % relative decrease).
Truncated voronoi does not use the membrane signal and
hence is unaffected. To measure the influence of imper-
fectly localized cell detections, we computed segmenta-
tions from marker locations offset by uniform spherical
noise of 0.5 μm in radius; this resulted in a 3.3 % relative
decrease in AO for active contour segmentation and a lar-
ger 8.6 % relative decrease in AO for truncated Voronoi.
This noise level roughly matches the statistics of auto-
matic detections, which had an average distance of 0.5 μm
from the “true center” (calculated from manually-
constructed segmentations). Similarly, if offset noise was
increased to 1 μm, the AO of active contour segmentation
decreased by 9.6 %, while truncated Voronoi AO
decreased by 28.7 %, i.e., nearly three times as much.
Altogether, our results demonstrate that marker-
controlled watershed is not robust to poor guide image
quality and that active contours provide more accurate
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estimates of cell volume than truncated Voronoi which
assumes constant sized cells and does not utilize the guide
image (Fig. 2). Thus, our active contour implementation is
more appropriate than our marker-controlled water-
shed or truncated Voronoi implementations for segmen-
tation of our images. We expect this result would likely
also hold for other variants of the active contour
model such as the explicit surface representations
used in [33, 35].
Experts may disagree as to what ground truth should

be (see e.g. [48, 49]). To ask how strongly the ground
truth we used to quantify performance depends on the
particular user that established it, we quantified the
agreement between hand-constructed segmentations of
an ~80 cell dataset performed independently by three
users with Fiji’s “segmentation editor”. Taking one user’s
segmentation as ground truth to score agreement with
another user, we used the same method as outlined
above and derived an AO of 0.64 ± 0.036, precision of
98 % ± 1.5 %, and recall of 97 % ± 3.3 % (Additional file
6: Figure S5). Ground truths derived by different users
are thus highly similar. In addition, we note that the
level of agreement between users is very similar to
agreement of our fully automated procedure with indi-
vidual users (Additional file 4: Figure S3).
Accurate quantification of fluorescent staining is made

difficult in confocal imaging of thick tissues by attenu-
ation loss, which depends on tissue and imaging geom-
etry. To address this, we developed a procedure to
identify cells belonging to the top layer of the tissue,
which show minimal attenuation (see “Quantification of
top-layeredness” in Methods), as well as a normalization
procedure, and evaluated the ability of this protocol to
produce accurate estimates of DNA content (see “Quan-
tification of DNA content in the C. elegans gonadal
arms” in Methods). We quantified DNA fluorescence

contents in automatically detected cells from gonadal
arms that were pulse-fixed with the thymidine analog
EdU, which helps identify the phase of the replication
cycle in which cells reside at the time of the pulse. We
tested accuracy of our estimates of DNA content using
the facts that (1) cells at the G1 phase of their cycle have
not initiated DNA replication and should thus have min-
imal content, and (2) that cells in the G2 and M phases
have finished replication and should thus have maximal
content. As expected, DNA content histograms of cells
that were EdU-negative, indicating that they were not
replicating their DNA at the time of the pulse-fix and
were thus in G1 or in G2/M, displayed characteristic
peaks at 2C (minimal content) and 4C (maximal content)
with a coefficient of variation of ~20 % (see “EdU content
quantification” in Methods; [45]). We verified that our
classification of cells as EdU-positive or EdU-negative was
accurate; we found specificity and sensitivity of 85 and
88 %, respectively, using manual annotations as “ground
truth” (Additional file 2: Table S4). This compares well
with the minimal specificities and sensitivities achieved by
scoring one user’s EdU status classification using a second
user’s classification as ground truth (85 and 92 %, respect-
ively, n = 147 cells). Altogether, these results demonstrate
that our image analysis pipeline provides accurate fluores-
cence quantification.
Finally, we tested the accuracy of a cell row counter

we developed to assign cells a position along the distal-
proximal axis of gonadal arms (counting from the distal
end; Fig. 1a; see “Quantification of cell position in the C.
elegans gonadal arms” in Methods). Counting in cell
rows rather than in “physical distance” is useful for com-
parison with reports in the literature, which convention-
ally use this unit of measurement. We compared
measurements of MZ length performed using our cell
row counter against manual measurements. The average
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deviation of automatic cell row measurements from
manual measurements was 9.4 %, and we observed
strong correlation between measurements (R2 = 0.72;
Additional file 7: Figure S6). This compares well with
the average deviation between MZ lengths performed in-
dependently by two users (12 %, n = 9 MZs), indicating
that our cell row counter can adequately substitute for
human scoring.

Comparison to other software
To help place our technique on the fast-evolving land-
scape of image segmentation software, we evaluated the
performance of well-established solutions on the same
hand-segmented stacks we used to assay our pipeline.
We initially tested a large number of possibilities (in-
cluding Icy [11], Farsight [7], Ilastik [9], Fiji and Train-
able Weka [14], Tango [15], BioImageXD [12], and V3D
[8, 50]) and focused on four that appeared particularly
promising for our image data: Imaris (Bitplane), Vaa3D
Gradient Vector Field (GVF) plugin [17], Ilastik [9], and
MINS [16] (see “Comparison to other software” in
Methods for setup details). Our pipeline had substan-
tially lower false positive and false negative rates than
Imaris, Vaa3D, Ilastik, and MINS (precision and recall
97 % ± 0.73 % and 93 % ± 5.6 % vs e.g. 90 % ± 1.4 % and
77 % ± 3.4 % for MINS or 92 % ± 1.5 % and 72 % ± 3.7 %
for Vaa3D; Additional file 2: Table S5; see Additional file
8: Figure S7 for example Ilastik and MINS output, and
Methods for derivation details), and also higher segmen-
tation accuracy for cells that were correctly detected
(Additional file 2: Table S5; AO = 0.60 ± 0.015 vs 0.37 ±
0.047 for the runner-up, Imaris).
To verify that our comparison was robust to variations

between experts providing ground truth, we used the
same dataset introduced above consisting of ~80 cell
segmentations hand-constructed by three users inde-
pendently. This set of cells was located at the distal end
of a mitotic zone, because these cells are more densely
packed than proximal cells and are thus expected to pro-
vide stronger discrimination between different tech-
niques. Using this set of cells actually increased AO for
Imaris (to 0.54 ± 0.039), but Parismi still had higher AO
(0.61 ± 0.038), precision (97 % ± 2.3 %), and recall
(100 % ± 0.8 %) than Imaris, Vaa3D, Ilastik and MINS
(runner-ups in each category scored at 0.54 ± 0.039, 96
% ± 0 %, and 85 % ± 2.4 %, respectively; Additional file 2:
Table S6). We emphasize that these results are specific
to our dataset — but in any case they demonstrate
that our pipeline is an appropriate tool in this setting.
Parismi’s graphical user interface (GUI) makes it

possible for a user to review and correct detections
spending about 15 min per gonad mitotic zone. Using
Fiji’s “segmentation editor”, user estimates of time
spent to hand construct segmentations range from

8 h per mitotic zone (using 3D interpolation) to 14 h
(without using 3D interpolation). Importantly, time
curating Parismi detections is mostly spent examining im-
ages rather than actively drawing cell outlines — which is
particularly taxing, both mentally and physically, when
done on a large scale. In addition, Parismi enables fast hu-
man annotation of detected cells with custom labels (in as
little as a single click per cell or per group of cells, for a
pre-selected label). Overall, Parismi thus enables better
use of human time, with interactions that are targeted at
fixing specific issues in segmentations rather than creating
them from scratch.

Spatial distribution of cell cycle phase indices in the
C. elegans germ line
To validate our approach in a way that goes beyond the
benchmarks provided above, we decided to compare re-
sults derived from our spatial cytometry pipeline — run
with fully-automatic cell detection or with manually-
curated cell centers — to results from the literature
derived using classical techniques. We relied on 48 C.
elegans EdU pulsed-fixed gonadal arms containing
12,997 segmented MZ cells, from which we derived cel-
lular DNA and EdU contents that we used to categorize
cells as being in G1, S, or G2 phase (in this approach we
ignored M-phase cells, which are present at only ~3 %).
Results derived from either fully-automatic cell detection
or manually-curated centers were virtually identical
(Fig. 3a-b; see also [45] for manual results, with the
difference that they did not rely on the cell row counter
reported here). Defining cell cycle phase “index” as the
proportion of cells found at that particular phase, we ob-
served a decrease in G2 index along the first four cell
rows of the gonadal arms, with the G2 index of the first
cell row being significantly higher than that of the fourth
cell row (p < 0.01, categorical chi-square test; Fig. 3b; this
result was unchanged when manually annotating M-
phase cells). This finding is of interest because it shows
distinctive cell-cycle behavior of stem cells located at the
distal end of the MZ, at the G2 cell cycle phase. While it
was previously observed that M-phase index differs
along the distal-proximal axis of the gonadal arm [51],
our approach makes it possible to examine the behavior
of stem cells at all other phases of the cell cycle — which
together account for ~97 % of cell cycle time.

Morphological predictors of cell cycle phase in the
C. elegans germ line
As a second step in deriving new results based on seg-
mentations, we asked whether DNA morphology changes
with phase of the cell cycle. Although M-phase and its
sub-phases have characteristic morphologies that can be
classified using machine learning approaches [52, 53], the
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other phases G1, S, and G2 superficially appear similar to
one another. Previous studies have suggested that cell im-
ages carry information enabling computer analysis to dis-
tinguish between cell types (e.g. [54]), and in particular
that a relationship exists between chromatin texture and
cell cycle phase [55, 56]. Our observations made using
mosaics of segmented and classified cells (Additional
file 9: Data 1) suggested that the DNA of G1 phase cells
tends to have a punctate morphology with approxi-
mately 5–6 puncta per cell; S phase DNA has a smooth
morphology without readily visible puncta; and G2
phase DNA has a punctate morphology with a variable
number of puncta (Fig. 3c). In addition, the area covered
by DNA in G2 phase cells appeared larger than that in
S-phase cells, which in turn appeared larger than that in
G1-phase cells. In order to place these observations on
a more quantitative footing, we chose a 2D slice in the
middle of each cell, thresholded the DNA image from
each of those slices using Otsu’s method [57], and mea-
sured the total number of connected components (i.e.,
the number of spots) in segmented DNA as well as the

area (i.e., the spatial extent) of the segmented DNA. We
found that the average number of spots in G1 or G2
phase nuclei is larger than that observed in S-phase
nuclei (p < 1e–12, Bonferroni corrected rank-sum test;
see Fig. 4, Additional file 2: Tables S7–S8), and that the
average spatial extent of DNA fluorescence in G1 phase
nuclei is smaller than that in S-phase nuclei, which in
turn is smaller than that in G2-phase nuclei (p < 2e–14,
Bonferroni corrected rank-sum test; see Fig. 4, Additional
file 2: Tables S9–S10).
Having established that morphological differences exist

between the nuclei of G1-, S-, and G2-phase cells, we
asked whether these differences could provide a basis for
cell phase classification. We extracted the following fea-
tures from segmented nuclei: (1) the number of con-
nected components of the thresholded foreground mask,
(2) the total number of pixels composing the thre-
sholded foreground mask, and (3) Haar-like features
[58]. We used these features to train SVM classifiers (see
“Morphological classification of cell phase” in Methods),
whose mean sensitivity and specificity exceeded 0.66 for
all classifiers (Additional file 2: Table S11). Thus, seg-
mentation of individual cells shows that DNA morph-
ology carries substantial information about cell cycle
phase. A crucial advantage of using this morphological
information is that it is acquired as a matter of course in
most imaging experiments, and does not require fluores-
cent transgene expression or live imaging that facilitate
cell cycle phase identification (e.g. [59–64]) but limit the
kind of tissue that can be imaged, the strains that can be
used, and the number of imaging channels that are
available for readouts unrelated to the cell cycle. Fu-
ture work will focus on improving classifier perform-
ance, using an extended set of features and more
powerful classification techniques, which will enable
practical applications.

Cell cycle arrest upon starvation in the C. elegans germ
line
As a third application of segmentation, we asked how C.
elegans germ cells respond to worm starvation, which is
expected to occur frequently in the wild [65]. Although
the germ line is known to undergo dramatic cell death
or regeneration upon changes in nutritional status [66],
and larval germ cells are known to arrest in G2 in
starved larvae [67, 68], the kinetics of cell cycle response
to food removal remain uncharacterized in adults. To
ask whether cells stop at a particular point of the cell
cycle, we tracked cell cycle progression of labeled and
unlabelled cells in germ lines pulsed with EdU and
chased over a five-day starvation period. We observed
little to no cell cycle progression (Fig. 5a) in two inde-
pendent experimental repeats that included a total of
20,022 MZ cells in 73 gonadal arms. This unexpected
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result suggests that there are a large number of points
along their cycle at which cells can pause in response to
food removal, at least in adult nematodes.

Pre-implantation mouse embryos
We next turned to datasets from pre-implantation
mouse embryos and the mouse olfactory placode. First,
we asked whether our active contour implementation
generalized to images from these systems, whose appear-
ance is substantially different from that of C. elegans

gonadal arms. We found that, with some adjustments to
the image pre-processing steps applied prior to running
active contours (see “Preprocessing of mouse pre-
implantation embryo guide images” Methods), cells from
these three sources could be suitably segmented (Fig. 1d-
e). Second, we evaluated automatic detection accuracy in
pre-implantation mouse embryos (see Methods). We
found detection performance to be comparable to that for
worm germ cells: the detector’s AP was 96.8 %, and the
precision-recall curve shows that, with an appropriate
threshold, we detect more than 80 % of cells without a sin-
gle false positive (Additional file 4: Figure S3).
We next asked whether we could derive new insights

in regulation of cell differentiation in pre-implantation
mouse embryos (see [69] for another application). We
quantified expression of Cdx2 and Nanog, two antagon-
istic regulators involved in the early differentiation deci-
sion made in the embryo that guides the establishment
of an embryonic stem cell-like population [70, 71]. Des-
pite being antagonistic, these factors are co-expressed
early during embryonic development ([71]; Fig. 6a–c);
such paradoxical early co-expression is also true of a
number of other antagonistic gene groups that mediate
cell fate decisions, and models have been proposed to ac-
count for initial co-expression or concomitant upregulation
of antagonistic factors [72–74]. To further assess the rela-
tionship between Cdx2 and Nanog in different cell sub-
populations in the pre-implantation mouse embryo, we
used a recently-published dataset in which we had anno-
tated cells as being either on the “interior” of the embryo or
on the “periphery” of the embryo and quantified the levels
of Cdx2 and Nanog in each subpopulation [69]. As ex-
pected, cells on the periphery of the embryo had higher
Cdx2 content and lower Nanog content than cells on the
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interior (Fig. 6d). Interestingly, we observed that despite the
Nanog/Cdx2 antagonism both inner and outer cell popula-
tions show a significant positive correlation between Cdx2
and Nanog expression levels at the ~29 cell stage (Fig. 6c).
Surprisingly, however, the positive correlation was removed
specifically in the outer cells upon chemical inhibition of
BMP signaling, which we recently showed to be active in
early embryonic development (Fig. 6e; [69]). These results
suggest that BMP signaling may play a context-dependent
role in the regulatory interactions between Nanog and
Cdx2 or their upstream controls; this intriguing context-
dependence would have been obscured had we evaluated
only average expression levels across all cell sub-
populations. These findings further emphasize the utility of
segmentation methods in understanding complex regula-
tory networks that underlie cell differentiation.

Mouse olfactory placode
Finally, we asked whether cell segmentation could allow
us to make new findings on cell cycle behavior during
embryonic development, using mouse olfactory placode
as a model system (Fig. 7a). The olfactory placode is a
thickened region of head ectoderm that invaginates into
developing head mesenchyme to form the olfactory mu-
cosa, a highly-branched mucosa whose epithelial lining
contains the primary sensory neurons that subserve the

sense of smell [75]. Questions remain about the forces
that drive the early phases of invagination in this and
other ectodermal placodes of the head. A number of
possible mechanisms have been proposed for such mor-
phogenetic changes, including local modulation of cell
proliferation rates [76]. We used Parismi to ask whether
we could detect different cell cycle behavior in sub-
regions of olfactory placodes, which we called center
and outer “rings” of each placode based on known pat-
terns of gene expression and cell differentiation state
[75, 77]. We developed a staining protocol for the pla-
code that relies on thick, minimally processed vibratome
sections, because traditional frozen sections did not pro-
duce tissue of sufficient quality for our analysis (see
Additional file 10: Figure S8 for a comparison, and
“Mouse olfactory placode image acquisition” in
Methods). We processed and imaged placodes from the
developing heads of E9.5 mouse embryos, and catego-
rized cells as G1-, S-, G2- (based on DNA content and
EdU content; see “Quantification of DNA content in the
mouse olfactory epithelium” in Methods), or M-phase
(using manual annotations based on DNA morphology).
S-phase index was higher in the outer rings than in the
center rings of these placodes (p < 0.0062, categorical
chi-square; Fig. 7b). There was also a significant change
of overall cell cycle phase distribution (p = 0.037,
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categorical chi-square test). The increased S-phase index
of outer ring placode cells is particularly interesting be-
cause this is the region in which Sox2- and Fgf8-
expressing stem cells of the early olfactory epithelium are
found in highest number [77], suggesting that prolifera-
tion of these stem cells may be important for driving early
morphogenesis of the olfactory epithelium.

Conclusions
The biological results we report here could not have
been derived without distinguishing between subpopula-
tions of cells in the tissues that we studied. In some
model systems cell types could perhaps be distinguished
using cell-type specific markers and analysis of dissoci-
ated cells, but relevant markers are not always known or
available. Some, but not all, of the cell cycle results we
report could also conceivably have been derived using
“double labeling”, which relies on the use of two cell
cycle phase labels (e.g. BrdU and EdU) applied in succes-
sion, and binary classification of cells as positive or

negative for each of the two labels — and thus does not
require quantification of fluorescence contents (e.g.
[78, 79]). But such double labeling requires extra ex-
perimental manipulation and imaging of two fluores-
cence channels in addition to the one normally used
for DNA visualization. Limitations on multiplexing cap-
abilities make it advantageous to rely on imaging of DNA
and a single cell cycle label to 1) identify cell types, relying
in part on position in the tissue and morphology, and 2)
to infer cell cycle characteristics; using a single label frees
fluorescence channels to quantify other properties of
interest on a cell-by-cell basis.
Overall, we have provided a detailed methodology

to answer different kinds of questions within the
context of the C. elegans gonadal arms, the mouse
pre-implantation embryo, and the mouse olfactory
epithelium. This methodology relies on the use of 3D
imaging of cells in their native setting, followed by
quantification of fluorescence content on a cell by cell
basis. Future developments of direct interest to
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biologists working on these model systems or similar
systems may include making more extensive use of
morphological information to increase accuracy of cell
cycle phase classification and to identify cell types
without the use of specific markers.
The software pipeline developed for the applications in

this report has been made freely available, along with image
datasets and curated gold-standard annotations for these
images. While researchers working on the same or similar
model systems may prefer to utilize other software ecosys-
tems (such as Fiji, Vaa3D, BioimageXD, Icy, or other work-
flow architectures that offer plugins to perform similar
detection and segmentation tasks), we expect that the sys-
tem reported here will provide a useful guide of overall
methodology and baseline measures of performance. In
particular, unlike workflows that derive from the long trad-
ition of adaptive thresholding followed by morphological
processing to identify individual objects, the two-phase
strategy utilized here of detection followed by seeded seg-
mentation appears to be quite robust, providing a modular
workflow that allows easy injection of “high level” manual
curation by adding or removing detections with a single
click prior to segmentation, rather than tedious editing
the final segmentation output at the pixel level.

Methods
Datasets
Datasets supporting results of this article are available at
http://cinquin.org.uk/static/Parismi_datasets.tgz. The
datasets contain original images for ~45,000 worm germ
cells, Parisimi segmentation pipelines, as well as segmen-
tation results stored both as Google Protobuf files (the
format is specified at https://github.com/cinquin/par-
ismi/blob/master/A0PipeLine_Manager/src/protobuf_se-
ginfo_storage.proto) and as TIFF files in which pixel
value denotes cell index. Parismi source code is available
at https://github.com/cinquin/parismi/

C. elegans gonadal arm image acquisition
Young adult worms (staged 24 h after the last larval
stage L4) were pulsed with the thymidine analogue EdU
(Invitrogen Carlsbad, CA USA) for 30 min to label cells
in S-phase, fixed, and processed as described [80]. For
starvation experiments, L4 + 1 day virgin fog-2 females
were pulsed with EdU for 30 min and immediately
transferred from E. coli plates, washed multiple times
and starved in S-medium for 5 days. DAPI was used to
label DNA and an α-PH3 antibody to label M-phase
cells. Gonadal arms were imaged at 0.3 μm z-intervals
with Zeiss LSM 710 or 780 confocal microscopes. Go-
nadal arms with abnormal morphology (n = 2/159) were
excluded from the cell cycle analysis.

Mouse olfactory placode image acquisition
Embryos were staged by designating mid-day of vaginal
plug detection day as embryonic day 0.5 (E0.5). E9.5 em-
bryos were obtained by crossing CD1 mice (Charles River
Laboratories, Wilmington, MA USA). For pulse-fix analysis
of EdU incorporation, EdU was injected intraperitoneally
into pregnant dams (12.5 μg/gm body weight) and embryos
were collected 30 min later. Dissected tissues were fixed
with 4 % paraformaldehyde in PBS (Sigma-Aldrich, St.
Louis, MO), embedded in 7 % LMP agarose (Fisher BP165-
25) and vibratome sectioned (100 μm thickness). To create
a guide image for active contours, we stained with rabbit
polyclonal anti-cadherin (1:500; Thermo, Waltham, MA
USA: clone # PA5-19479), detected with Cy2-conjugated
donkey anti-rabbit-IgG (1:100; Jackson ImmunoResearch,
West Grove, PA, USA). After the secondary immunostain-
ing reaction, tissue was processed with the EdU Click-iT
Kit (Invitrogen). DNA was detected with bisBenzamide H
33342 trihydrochloride (10 μg/ml in PBS). Samples were
mounted on slides in Aqua-mount (Thermo Scientific
13800) prior to imaging at 0.3 μm z intervals with Zeiss
LSM 710 or 780 confocal microscopes. Samples without
M-phase cells (required for DNA normalization) were ex-
cluded from analysis (n = 4/6 samples covering a total of
two OE invaginations were used).
Pre-implantation mouse embryo images were acquired

as previously described [69].
All protocols for animal use were approved by the

Institutional Animal Care and Use Committee of the
University of California, Irvine.

Overall software organization
Parismi is designed as a highly-modular pipeline with a
Java scheduler, plugins written in Java, C++, or Matlab
that perform image segmentation and quantification.
The plugins are decoupled from the input/output code
and from the graphical user interface, in part through
the use of parameter injection with Java field annota-
tions, and have parameters serialized in a way that
allows for backward-compatible changes to the set of
plugin parameters. This ensures high reusability of the
code in future projects, and high reusability of archived
pipelines designed for and run using older plugin
versions. The pipeline scheduler can automatically
parallelize plugins (e.g. a plugin that works on 2D image
planes can be made to run automatically in parallel on
4D stacks), which minimizes the amount of coding and
code repetition. Many plugins (such as the active con-
tour plugin) are in addition internally multithreaded. De-
pending on the dataset Parismi can thus take full
advantage of a large number of processor cores (up to
64 in our usage). Run time for C. elegans MZ stacks is
about 4 min for cell detection, and about 7 min for
downstream analysis on a 64-core machine.
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Parismi can run in a fully automated mode on mul-
tiple datasets, either from the GUI or from the com-
mand line — in a way that relies on Makefiles to
minimize re-computation after input or parameter
changes [81]. It can also run in an interactive mode
as an ImageJ [13] plugin that allows for Parismi plu-
gin parameters to be adjusted on an image-by-image
basis with live updates and graphical display of quan-
tification results; Parismi makes it straightforward to
quickly annotate 3D image structures by clicking and
dragging on any of three orthogonal views, and to
move from one dataset to the next without manual
closing and opening operations (see Additional file
11: Figure S9 for GUI screenshot). The pipeline can
be re-run from the original set of images using the
record of edited cells and of any adjusted plugin pa-
rameters. A more detailed operation overview is avail-
able (https://github.com/cinquin/parismi/raw/master/
Parismi_operation_overview.pdf ).

Cell detection
We trained an automatic cell detector that predicts cell
center locations from DNA-stained image stacks by clas-
sifying each sub-window of the stack as either containing
a cell center or not. Positive example sub-windows were
specified by hand-clicking cell centers, and negative ex-
amples automatically extracted from locations farther
than one cell radius from all positive labels.
We extracted image features from the training set

using 2D windows taken along the xy and xz planes run-
ning through detection centers. From the xy slice we
computed two features: average pixel brightness of the
detection window, and a histogram of oriented gradients
(HOG features) computed over a grid of non-
overlapping sub-windows ([82]; Additional file 3: Figure
S2). Within each sub-window, the image gradient was
estimated at each pixel and binned into one of 18 orien-
tations. These histograms were normalized and the
normalization factor along with the normalization of
neighboring bins were stored as additional features. The
same HOG features were computed for the xz slice.
Since there was no a priori favored image orientation,
the features were symmetrized left-right and top-bottom
for positive training examples. Overall, 2,147 cells across
6 gonadal arms were used for training.
We trained a support vector machine (SVM) classifier

to distinguish positive detections from negative detec-
tions in the training set. A given feature vector corre-
sponds to a cell center if

wTv > τ

where w is a weighted vector learned by the SVM, v is a
feature vector, and τ is a tunable parameter. A lower

value of τ yields more cell detections at the cost of more
false positives. Since there are millions of negative detec-
tions in our training set, we used an iterative training algo-
rithm to decrease run time and memory requirements.
This iterative algorithm trains the detector with a subset of
negative examples, searches for additional high-scoring
negative examples, adds them to the training set, and re-
trains the classifier. This iterative approach of hard negative
mining is mathematically equivalent to performing training
on the set of negative detections.
To make the training algorithm robust to potential errors

in the localization of cell centers by manual labeling, we
performed latent estimation of the “true” cell center for
each positive training example [83]. Briefly, once a detector
had been trained, we ran the detector on the positive train-
ing data and re-estimated the center of each cell as the
maxima of the detector response within a small radius of
the original ground-truth detection. The detector was then
re-trained with these updated set of positive locations.
The final step in automatic detection applies the SVM

classifier to all sub windows in a given DNA stained
image. To accurately handle natural variation in cell
sizes, this detection process was carried out multiple
times on scaled versions of the original image stack
(scale factor ranging from 0.7–1.5 for MZ stacks). Since
a given cell may produce multiple positive detections in
slightly offset sub-windows, we suppressed detections
which overlapped with any higher-scoring detection
within one cell radius. Overall, the testing dataset size
was 3579 cells across 10 gonadal arms.
For automatic detection of pre-implantation mouse

embryo nuclei, we used 16 image stacks containing 484
cells in total (15–56 per stack). We used a single stack
containing 24 cells for training, keeping the detection
parameters used for C. elegans gonadal arms. Of the
remaining 15 stacks, we used 7 as a validation set, to
find the scale range and detection suppression radius
that maximized average precision, and 8 as a test set; de-
tections were considered to be correct if they were
within a distance 0.35 * d from the manually-annotated
cell center, where d is the cell diameter (defined as the
average of manually-determined cell width and cell
height). Average precision, defined as average precision
over all recall values, is the same as the area under the
precision-recall curve (Additional file 4: Figure S3).
For results shown in Figs. 6 and 7, cell centers in im-

ages of the mouse OE and mouse embryos were curated
manually.

Preprocessing of C. elegans gonadal arm and mouse
olfactory epithelium guide images
We preprocessed membrane images to facilitate subsequent
image segmentation steps. First, we removed low frequency
noise from the membrane image by “sharpening” the
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image. We normalized pixels to the average pixel value in a
surrounding 2D sliding square parallel to the xy-plane; we
chose the size of the sliding square to be the average cell
diameter; this normalization made fluorescence contents
even across the z-axis. Second, we removed sharp discon-
tinuities and high frequency noise by blurring the sharp-
ened image. We set the standard deviation of the Gaussian
kernel to the membrane thickness. Third, we enhanced
“sheet-like” structures using a principal curvature approach
[84]. For each pixel in the blurred image I, we calculated
the Hessian matrix H:

H x; y; zð Þ ¼
Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

2
4

3
5

with ordered eigenvalues d1(x,y,z), d2(x,y,z), d3(x,y,z).
Then, we enhanced sheet-like structures by computing
the intermediate image I’:

I 0 x; y; zð Þ ¼ −d1e
− d2

2d1

� �2

e
− d3

2d1

� �2

Finally, we generated the final preprocessed image by
removing sharp discontinuities through blurring, with
the standard deviation of the Gaussian kernel again set
to the membrane thickness.

Preprocessing of mouse pre-implantation embryo guide
images
For mouse pre-implantation embryos we used the DNA
channel as a guide image for segmentation. We prepro-
cessed the images as follows. First, we thresholded the
DNA image (D) using an adaptive algorithm. Let p = {x,y,z}
be a given cell detection point, and let {pi} be a set of cell
detections. For a small window around a given pi, we calcu-
lated the mean DNA pixel value m(xi,yi,zi). Then, we fit co-
efficients c1,c2,c3,c4 to the model m(x,y,z) = exp(c1z) (c2x +
c3y + c4). We calculated an adaptive threshold t(x,y,z):

tðx; y; zÞ ¼ kec1zðc2xþ c3yþ c4Þ

and applied this threshold to the DNA image. We chose
k heuristically; k = 1/3 worked well in practice. Second,
we removed removed high frequency noise from the
thresholded image through median filtering. Third, we
inverted the image. Finally, we removed sharp discon-
tinuities via blurring, yielding the final preprocessed
guide image for active contours.

Artificial degradation of preprocessed guide images
A degraded preprocessed guide image was generated
for segmentation benchmarking using the following
procedure:

1. Let I denote the original preprocessed membrane
image. An image kernel K was generated by
cropping a 108 x 108 x 40 section of I.

2. The kernel was inverted and thresholded so that no
pixel values fell above 0.85. Then, the kernel was
scaled so that all pixel values fall between [0,1].

3. The kernel was tiled to form a new image the same
size as I.

4. The degraded preprocessed image was generated by
multiplying I and K.

Active contour segmentation
Implicit active contours have been used extensively in
biological image analysis [29–35]. We use an implicit
formulation in terms of level sets first described in [85].
Active contours are model-based and work well even in
the presence of a poor guide image. Since C. elegans
germ cells are roughly spherical and uniform in size, ac-
tive contours represent a good choice for segmenting
them. Consider the partial differential equation:

∂ϕ
∂t

¼ g ∇ϕk k 1−c1kð Þ þ c2∇g⋅∇ϕ

used to update active contours. Here, g is the inverted
preprocessed guide image, ɸ is a higher dimensional
function that embeds segmentation mask composed of
points where ɸ(x,y,z) < 0, and k is the mean curvature:

k ¼ ∇⋅
∇⋅ϕ
∇ϕk k

� �

used to enforce smooth segmentation borders. ɸ is ini-
tialized at cell detection points and then active contours
are run in two steps. The first step of active contours is
conservative; masks stop short of boundaries in the
guide image. This is achieved with c2 < 0 so that con-
tours are pushed backwards as they approach inner
edges. The second step of active contours refines the
masks so that they stop on the boundaries of the guide
image. This is achieved with c2 > 0 so that the contour is
pulled forward as it approaches an inner edge, then
pushed back as it approaches an outer edge. In order to
prevent overlapping segmentation masks, we set
dɸ(x,y,z)/dt = 0 when two different masks “collide”, i.e.,
when ɸq(x, y, z) < 0 and ɸp(x, y, z) < 0 for any two q ≠ p
where ɸq is the segmentation mask for cell q. Hence, all
contours are blocked at any position where collision has
occurred (a future improvement would be to include a
more flexible penalty term in the energy [30, 31], which
would allow the constraints to remain active even after
collision has occurred). Typical active contour parameter
values are c1 = 0.1 and c2 = −1 for the first step of active
contours, and c1 = 0.1 and c2 = 1 for the second step.
The stopping criterion for contour evolution is a set run
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time (for step 1: 650 time steps of 0.15 each, and for step
2: 300 time steps of 0.15 each).
In order to decrease run-time, we ran individual ɸ

corresponding to individual cells in cropped sub-
windows. In addition, we computed updates to ɸ using
the narrow band level set method [30, 31, 86]. Finally,
we note that while we chose the implicit representation
for ease of implementation, recent approaches based on
explicit surface representation [33, 35] are faster and
more memory efficient.

Truncated Voronoi
For a set of cell detections p = {p1,p2,…,.pn}, consider the
following:

1. The Voronoi diagram V consisting of Voronoi
polygons so that V = {v1, v2, …, vn}

2. The set of points ci within radius r of point pi so
that C = {c1, c2, …, cn}

We computed the truncated Voronoi segmentation S
as segmentation masks si that consist of the intersection
of points between vi and ci

S¼ s1;s2; …;snf g;si¼vi∩ci

Note that the result of truncated Voronoi only
depends on input cell detections, and not on the prepro-
cessed guide image. This provides a naïve baseline
against which more elaborate approaches can be
compared.

Marker-controlled watershed
A detailed description of marker-controlled watershed
can be found in [47]. In brief, let I be the guide image
used to define segmentation boundaries and let p be a
set of cell detections. We imposed local minima at I(p)
via morphological reconstruction. Then, we ran a water-
shed transform on I in order to generate segmentation
masks. We thresholded segmentation masks based on
size in order to remove gross mis-segmentations.

Comparison to other software
We ran the Vaa3D GVF plugin using 5 diffusion itera-
tions, a fusion threshold of 1, and a minimum region
size of 999. We performed an extensive coordinate-wise
search over parameter settings, choosing these param-
eter settings which we found yielded the best segmenta-
tion performance. We ran the Imaris v8.1.2 cell
detection module both with default parameters and with
hand-adjusted parameters, and report best results; scor-
ing of the exported segmentations required ad-hoc re-
moval of segment borders and anti-aliasing artifacts. We
ran Ilastik v1.1 with hysteresis thresholding (low and

high set to 0.20 and 0.80, respectively), using ~230 brush
strokes to provide examples of background and fore-
ground pixels, and tried a number of feature combina-
tions: fine-scale features only, fine- and medium-scale
features, medium- and coarse-scale features, coarse-scale
features only, and all features. Overall the choice of fea-
ture combinations had a minor effect, but coarser-scale
features (sigma = 5.0px, sigma = 10.0px) seemed to work
best. The main limitation of Ilastik was its difficulty in
separating cells that are tightly packed together and thus
not neatly separated by pixels it is trained to recognize
as background (Additional file 8: Figure S7A). We ran
MINS v1.3 setting the noise level to 3 and using the de-
fault smoothing settings. Although MINS performed
well in cell detection, its segmentations did not adhere
as closely to cell boundaries as manual and Parismi seg-
mentations did (Additional file 8: Figure S7B-E), which
explains its low AO score. Note that because of RAM
requirements MINS and Ilastik were run on cropped
images, which may increase their apparent accuracy
because it eliminates opportunities for false positives
outside the crop region.

Quantification of top-layeredness
“Top-layeredness” is a metric we used to identify cells
on the “top layer” of the gonadal arms (Additional file
12: Figure S10). During imaging, these cells have direct
line of sight to the microscope objective and thus exhibit
minimal attenuation along the z-axis. We defined the
top-layeredness θ of a cell to be the fraction of its seg-
mentation mask that is unobscured in the z-projection
over all cell segmentation masks. Thus, θ = 0 means that
a cell is completely obscured from the path of the micro-
scope objective, while θ = 1 means that a cell has direct
line of sight to the microscope objective. In practice, θ >
0.1 was a good threshold to define cells on the top layer
of the gonadal arm. Due to the relatively small number
of cells per image, top-layer thresholding was neither
applied to mouse olfactory epithelium images nor to
mouse embryo images.

Quantification of cell position in the C. elegans gonadal
arms
We computed cell spatial position in two ways:

1. Based on “geodesic distance”. We fit a principal
curve to cell detection points using the algorithm
detailed in [87]. We then computed the distance of
each cell to the distal end of the gonadal arm along
the principal curve (distal ends were manually
annotated).

2. Based on cell row distance. We generated a
connectivity map between germ cells based on
touching segmentation masks. We then computed
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the minimal path of a given cell to the distal end of
the gonadal arm via Dijkstra’s algorithm [88]
(Additional file 7: Figure S6A).

Quantification of DNA content in the C. elegans gonadal
arms
The naive way to calculate cell DNA content would be
to simply sum pixels in a given segmentation mask.
However, appreciable fluorescence attenuation often
occurs along the distal-proximal axis and z-axis of the
gonadal arm, which can introduce bias into spatial cell
cycle studies. In addition, it is not straightforward to
aggregate data in different experimental replicates since
staining efficiency is sometimes variable. We corrected
for these artifacts using the following normalization
procedure:

1. We filtered segmented cells to only keep those in
the “top layer”, which minimized artifactual
variations in DNA content due to fluorescence
attenuation along the z axis.

2. For each segmentation mask, we computed the raw
DNA content (sum over all DNA pixel values inside
the mask) and the 95 % DNA content percentile
(95 % percentile of DNA pixel values inside the
mask).

3. We fit a cubic spline to the empirical distribution of
95 % DNA content percentiles as of function
geodesic distances, on a gonad-by-gonad basis. We
normalized raw DNA contents against this spline to
derive spline-normalized DNA contents. This step
reduces potential bias from fluorescence attenuation
along the distal-proximal axis of the gonadal arms.

4. Cellular data was binned by spatial position. The
10th and 85th percentile of spline-normalized DNA
contents in each bin was normalized to 2C and 4C
DNA content, respectively. A bin size of four cell
rows was used. This step allows us to aggregate data
across germ lines by assuming each spatial bin con-
tains the same proportion of G1/S/G2/M-phase cells
across germ lines.

Quantification of DNA content in the mouse olfactory
epithelium
We corrected for fluorescence fluctuation along the
long, medial-lateral axis of the OE (which corresponds
to the x-axis in our images) by fitting a second order
polynomial to the 90 % percentile pixel intensity in each
x-slice, then normalizing against this polynomial. We
corrected for z-attenuation by fitting a first order poly-
nomial to the 90 % percentile pixel intensity in the mid-
dle 25 z-slices of each image, then normalizing against
this polynomial. We used the middle 25 z-slices because
cells were evenly distributed in this region.

We measured DNA content for each cell by summing
the normalized DNA fluorescence content inside the
segmentation mask. DNA content was normalized based
on M-phase cell annotations.

EdU content quantification
We normalized EdU contents using the following
procedure:

1. We first applied a median filter and thresholded the
image. All pixel values less than t1 were set to t1
and all pixel values greater than t2 were set to t2
(t1 and t2 were determined on an image-by-image
basis). We next normalized the image to the [0,1]
range.

2. For each segmentation mask, we summed all
normalized EdU values of pixels inside the mask.
We then normalized the 10th and 85th percentiles
of cellular EdU contents in a given gonadal arm to 0
and 1, respectively.

3. We classified cells as EdU-positive or EdU-negative
by applying a manually set threshold.

Cell cycle phase indices were computed at each row
by aggregating cells at that row, and computing the
proportions of cells at various phases of the cell cycle
(EdU-positive cells are in S-phase, EdU-negative cells
with low DNA content are in G1, and EdU-negative
cells with high DNA content are in G2/M).

Morphological classification of cell phase
We cropped 2D cell segmentations to a maximum size
of 34x34 pixels. We used the following features in mor-
phological classification of cell phase:

1. Number of connected components of the
thresholded foreground mask. For each segmented
cell, we generated a foreground mask via Otsu
thresholding of of the DNA channel. Then, we
counted the number of connected components via
Matlab’s regionprops command.

2. Number of pixels composing the thresholded
foreground mask. For each segmented cell, we
generated a foreground mask via Otsu thresholding
of the DNA channel. Then, we counted the number
of pixels inside the foreground mask.

3. Center-surround Haar-like features. Haar-like features
are simple convolution masks that can be used to
detect puncta [89]. Let r = (α,β,u,v) parameterize a
rectangle such that r is composed of all points
bounded by α ≤ x ≤ α + u and β ≤ y ≤ β + v. Then a
Haar-like feature can be specified by two rectangles r1,
r2 where r1 encompasses r2. In our application of
Haar-like features, we used “center-surround” features
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such that r1, r2 are squares and r2 is positioned in the
center of r1. In addition, we set the maximum size of
r1 to be eight pixels wide; altogether, there are 5239
possible Haar-like features that are eight or less pixels
wide in a 34x34 image frame. The image response to a
Haar-like feature is the average pixel value within r2
minus the average pixel value within r1 not in r2.

We trained and ran SVMs using Matlab’s svmtrain
and svmclassify commands. We trained SVMs using the
following parameters:

1. Maximum number of iterations = 150,000
2. Tolerance = 1e-7 for the G1 classifier, 1e–8 for the S

classifier, 1e–8 for the G2 classifier, 1e–8 for the M
classifier.

3. Box constraint = 1e–5 for the G1 classifier, 1e–3 for
the S classifier, 1e–2 for the G2 classifier, 1e–3 for
the M classifier

When training and running SVMs, we split datasets
randomly into equally-sized, non-intersecting training
and testing subsets. In order to generate classifier statis-
tics, we repeatedly resampled training and testing subsets.

Availability of supporting data
Datasets comprising ~45,000 segmented worm germ
cells can be downloaded from http://cinquin.org.uk/
static/Parismi_datasets.tgz.

Additional files

Additional file 1: Figure S1. Examples of varying DNA morphologies
across C. elegans germ cells. Cells shown were taken at different phases
of mitosis (A) or meiosis (B). (PDF 334 kb)

Additional file 2: Table S1. Average precision of cell detection over a
variety of experimental conditions. Table S2. Average precision of cell
detection over the whole worm gonadal arms. Table S3. Average
overlap of cell segmentations across different experimental conditions.
Table S4. Benchmarking EdU quantification accuracy. Table S5.
Performance comparisons with other software. Table S6. Performance
scored following ground truths provided by different users. Table S7.
Number of connected components of DNA image in G1-, S-, G2-, and
M-phase cells. Table S8. Pairwise comparisons of number of connected
components in DNA images. Table S9. DNA spatial extent in G1-, S-, G2-,
and M phase cells. Table S10. Pairwise comparisons of DNA spatial extent
in G1-, S-, G2-, and M-phase cells. Table S11. Sensitivity and specificity of
classifier. (PDF 114 kb)

Additional file 3: Figure S2. Cell detection via HOG features. (A) HOG
weights learned from germ cells. The left two panels display the
component of the weight vector learned from xy sections, while the
right two panels correspond to xz sections. (B) Variation of training
samples. The left panel corresponds to the 20 highest-scoring training
samples and the right panel corresponds to the 20 lowest-scoring training
samples. (C) Eight curated MZs are sufficient for accurate training of the cell
detector. (PDF 697 kb)

Additional file 4: Figure S3. Precision-recall curves benchmarking cell
center detection. (A-B) Precision-recall trade off as the detection threshold
is varied for C. elegans MZ cells (A) and mouse embryo (B). Based on

these curves, an automatic detection threshold can be chosen that yields
high precision (e.g. P = 0.98); automatic detection using this threshold
can be followed by manual curation using Parismi’s annotation tool to
add cells missed by the detector. Red circles show recall and precision
for each of the three manual segmentations performed on the same set
of cells (see main text). (PDF 117 kb)

Additional file 5: Figure S4. Segmentation accuracy for C. elegans
germ cells. Overlay of microscope image (white signal, derived from the
DNA stain DAPI) with hand-constructed segmentation (green, top row) or
automatic segmentation (red, bottom row). Average overlap is 74 %. 7 z
slices are shown, which cover the cell visible in the center of each slice.
(PDF 101 kb)

Additional file 6: Figure S5. Comparison of hand-constructed segmen-
tation produced independently by three users. The segmentations were
performed in three dimensions; the same representative slice is shown
for the three users. (PDF 23 kb)

Additional file 7: Figure S6. Benchmarking of cell row counter
accuracy for C. elegans gonadal arms. (A) Overlay of microscope image
(white signal, derived from the DNA stain DAPI) with segmentations
color-coded by cell row position from the distal end (left), as computed
automatically using our counter. (B) Size of the MZ scored manually vs
size computed through the automatic counter. A small amount of noise
(0.5 cell rows) was added in order to aid visualization of overlapping data.
Positions scored manually and automatically are in close agreement; average
percent deviation is 9.4 %. Diagonal shown for reference in red. (PDF 152 kb)

Additional file 8: Figure S7. Example output of various programs on C.
elegans gonadal arm. (A) Ilastik after training with ~230 brush strokes,
showing original DNA signal in white, and pixels classified as foreground
(respectively background) in green (respectively red). Arrow points to
nuclei that do not appear separated by background pixels, and
arrowhead to a set of pixels that are classified as background instead of
foreground. (B-E) The same representative slice from original DNA signal
(B), hand-constructed segmentation (C), Parismi segmentation (D), and
MINS segmentation (E), in which segments tend to say confined to the
interior of the nuclear domain delimited by DNA signal. (PDF 420 kb)

Additional file 9: Data 1. DNA morphologies of cells classified as
G1-, S-, G2-, and M-phase based on DNA and EdU content. (PDF 3296 kb)

Additional file 10: Figure S8. Comparison of frozen or vibratome
section segmentations. (A) Active contour segmentation of frozen
sections is often inaccurate (red arrows) due to poor cell separation in
the original image. (B) Vibratome sections enable clearer staining and
thus more accurate segmentation (yellow arrows). (PDF 749 kb)

Additional file 11: Figure S9. Parismi GUI screenshot. (PDF 1381 kb)

Additional file 12: Figure S10. Identification of cells on the top layer
of gonadal arms. (A) “Top-layeredness” θ is measured as the fraction of a
cell’s pixels that project up the z axis without intersecting another cell. (B)
Gonadal arm images where all (red) and top-layer only (purple) cells have
been segmented. In practice, θ > 0.1 is a suitable threshold for top-layer
cells. (PDF 172 kb)
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