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Abstract: Plant cells are frequently challenged with a wide range of adverse environmental conditions
that restrict plant growth and limit the productivity of agricultural crops. Rapid development
of nanotechnology and unsystematic discharge of metal containing nanoparticles (NPs) into
the environment pose a serious threat to the ecological receptors including plants. Engineered
nanoparticles are synthesized by physical, chemical, biological, or hybrid methods. In addition,
volcanic eruption, mechanical grinding of earthquake-generating faults in Earth’s crust, ocean spray,
and ultrafine cosmic dust are the natural source of NPs in the atmosphere. Untying the nature of
plant interactions with NPs is fundamental for assessing their uptake and distribution, as well as
evaluating phytotoxicity. Modern mass spectrometry-based proteomic techniques allow precise
identification of low abundant proteins, protein–protein interactions, and in-depth analyses of cellular
signaling networks. The present review highlights current understanding of plant responses to NPs
exploiting high-throughput proteomics techniques. Synthesis of NPs, their morphophysiological
effects on crops, and applications of proteomic techniques, are discussed in details to comprehend the
underlying mechanism of NPs stress acclimation.
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1. Introduction

Rapid advancement in nanotechnology has taken the food industry to a new height [1].
Nanoparticles (NPs) are ultrafine particles with a size of less than 100 nm in at least one dimension [2].
Owing to having unique physical and chemical properties, such as high surface area and nanoscale size,
these microscopic particles have the potential to improve the quality of food processing, packaging,
storage, transportation, functionality, and other safety aspects of food [2]. Moreover, in recent
years, nanotechnology has gained tremendous attention in agriculture sector as promising agents for
plant growth, fertilizers, and pesticides, ensuring sustainable crop production [3]. The engineered
nanomaterials have a wide range of applications in the healthcare industry, including drug delivery [4],
cellular imaging and diagnosis [5], cancer therapy [6], antimicrobials [7], biosensors [8], anti-diabetic
agents [9], and cosmetics [10]. Nevertheless, unsystematic release of nano-containing biosolids and
agrochemicals is a serious threat to the environment, including plants [11].

Among metal based NPs, iron NPs are widely used in environmental remediation, biomedical,
diagnostic field, and drug delivery because of their unique properties, such as excellent biodegradability,
low cytotoxicity, and ability to attach with multiple targeted ligands or antibodies [12,13]. Few studies
have been conducted to assess the impact of iron NPs on plants [14,15]. Kim et al. [14] reported
that exposure of iron NPs triggered root elongation in Arabidopsis thaliana by nZVI-mediated OH
radical-induced cell wall loosening. Conversely, iron–ion/NPs did not affect physiological parameters
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in lettuce plant [15]. Similar to iron, copper NPs have diverse applications, such as electro metallic
agent, wood preservative, bioactive, and lubricant [16]. However, unmanaged discharge of copper NPs
into the environment poses an increasing threat to plants [17]. Hence, there is urgent need of in-depth
research for understanding the various pathways involved in NPs stress response mechanisms in plants.
Most of the phytotoxicity research so far conducted is focused on effects of NPs on seed germination
and, at very early growth stages, of the plants [18]. Techniques, including cytotoxicity study [19],
transcriptomics [20], and proteomics [21] have been widely used for analyzing uptake, bioaccumulation,
biotransformation, and risks of NPs for food crops. Moreover, NP-mediated phytotoxicity as well as
their ecotoxicity was conducted on mammalian cells [22]. These high-throughput genome-based omics
techniques have been used extensively to dissect plant responses to NPs [23]. Although transcriptional
analysis was performed in a variety of organisms including microbes, humans, mammalian cell
lines, and other model organisms [24], information about plant–NPs interactions and NP-mediated
phytotoxicity is still limited.

The high-throughput techniques used in proteomics focus on revealing structure and conformation
of proteins, protein−protein, and protein−ligand interactions. Proteomics offer several advantages
over the genome or transcriptome-based technologies as it directly deals with the functional molecules
rather than DNA or mRNA [25]. Gel-based or gel-free proteomic techniques, protein chips/microarrays,
and protein biomarkers have been widely used for reliable identification and accurate quantitation
of stress responsive proteins for dissecting plant stress signaling pathways [26]. Improved protein
extraction protocol and advancement in mass spectrometry have made proteomics a rapid, sensitive,
and reliable technique for identification and characterization of differentially modulated proteins to
assess the possible impact of NPs on crops. Alternative to single omics approach, multi-omics
techniques, such as combination of transcriptomics, proteomics, and metabolomics offer more
advantages in identifying the underlying response mechanisms of plants towards the environmental
contaminants, including NPs [27]. This review highlights the various methods used for synthesis of
NPs, their morphophysiological impact on crop plants, and applications of proteomic techniques to
comprehend the underlying mechanism of NPs stress acclimation.

2. Methods for NPs Synthesis

The size, concentration, and stability of NPs primarily determine their effects on plants [23].
The characteristics of NPs largely depend on their mode of synthesis. There are various physical,
chemical, and biological methods for the synthesis of economically important NPs [28]. Although the
methods of NPs synthesis are diverse, there is a bare necessity to develop some ecofriendly processes
so that they may be less hazardous to the environment (Table 1).

2.1. Physical Methods for NPs Synthesis

These methods are being used for the synthesis of various economically important NPs, such as
silver, copper, iron, titanium, and others. The method of tube furnace was used for the synthesis of
spherical silver NPs [29]; while laser ablation resulted in the formation of triangular bipyramidal
nanocrystals of silver [30]. NPs synthesized by Ytterbium fiber laser ablation were spherical in
shape and polycrystalline in nature [31]. Iron NPs with the globular shape were produced using the
thermal dehydration method [32]; whereas irregular shape was attained with thermal decomposition
approach [33]. Furthermore, copper NPs with spherical shaped and uniform diameters were synthesized
using the thermal decomposition approach [34]. The topographic map indicated that NPs synthesized
through sodium borohydrate as the reducing agent produced the NPs with irregular surfaces [35],
while the polyol method synthesized pure crystalline copper NPs with cubic surface [36]. When tween
80 was added as modification in the polyol method, it resulted in the formation of crystalline
copper NPs [37]. The physical approaches mainly synthesized the NPs with uniform morphological
characteristics, which ultimately affected their response towards the environment as well as to the
living ecosystem.
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2.2. Chemical Methods for NPs Synthesis

The chemical reduction using a variety of organic/inorganic reducing agents, electrochemical
techniques, physicochemical reduction, and radiolysis is a well-accepted approach for the synthesis of
NPs [38]. The process of reduction through various chemicals led to the synthesis of the diverse shape
of properties of NPs, such as silver nitrate reduction with sodium borohydrate resulted in the mixture of
spherical and rod shaped silver NPs [39]; however, iron NPs were spherical when iron salt was reduced
with sodium borohydrate [40]. The reduction of copper salts with sodium borohydrate produced
spherical [41] and irregular NPs [35]. Sonochemical and thermal reduction of copper hydrazine
carboxylate produced a network of irregular shaped copper NPs [42]. Wet chemical synthesis involving
stoichiometric reaction also produced spherical copper NPs [43]. Moreover, wet chemical method
produced nanowires of silver [44]; while spherical silver NPs were produced on ascorbic acid as a
reducing agent [45]. Mesoporous silica resulted in the formation of iron NPs having uniform pore
size and large surface area [46]. The zinc NPs with crystalline shaped morphology were obtained
using ammonium carbamate as a precipitating agent [47]; while refluxing zinc acetate precursor in
diethylene and triethylene glycol synthesized oval to rod shaped NPs [48]. Due to the usage of various
chemicals for NPs synthesis, there is growing concern about the possible release and effect of NPs in
the surrounding environment.

2.3. Biological and Green Methods for NPs Synthesis

In biological and green methods, living organisms, such as bacteria, viruses, and plants, are used
as capping and reducing agents. The crystal lattice structure of synthesized copper NPs was achieved
through Morganella [49]. Silver NPs with spherical and cubic shaped having crystalline nature were
synthesized using extracts of Litchi chinensis [50], Eucalyptus macrocarpa [51], and Rhazya stricta [52].
Iron NPs were synthesized using leaf extract of barberry, Elaeagnus angustifolia, saffron, Ziziphus
jujube [53], grape tree [54], and green tea [55]. The involvement of Albizia lebbeck bioactive compounds
in the stabilization of zincoxide NPs were confirmed through various techniques and revealed irregular
spherical morphology [56]; while crystalline hexagonal stage was obtained through the seed extract
of Ricinus communis [57]. Leaf extract of Aloe vera also synthesized highly stable and spherical zinc
oxide NPs [58]. Copper NPs were produced using extracts of Ocimum sanctum leaf [59], Cassia alata
flower [60], Capparis zelynica leaf [61], and Syzygium aromaticum solution [62]. Studies have shown
that green synthesis methods exploiting plants or microorganisms are relatively safe, inexpensive,
and environment-friendly.

Table 1. Mode of synthesis and characteristics of commercially important nanoparticles (NPs).

NPs Mode of Synthesis Size (nm) Characters Ref *

Silver NPs

Litchi chinensis leaf extract 41–55 Crystalline nature [50]
Tube furnace 6.2–21.5 Spherical shape [29]

Laser ablation 20–50

Pentagonal one dimensional (1-D)
nanorods, nanowires,

cubic/triangular-bipyramidal
nanocrystals

[30]

Carboxymethylated chitosan with
ultraviolet light irradiation 2–8 Cubic crystal structure [40]

Eucalyptus macrocarpa leaf extract 10–100 Spherical and cubic shaped [51]
Sodium borohydride 2–4 Nanorods [63]

Silver nitrate with sodium borate 20–50 Mixture of spherical and rod NPs [39]
Wet chemical method 20 Nanowires [44]

Ascorbic acid as a reducing agent 31 Spherical shaped [45]
Silver nitrate and methanolic Rhazya

stricta root extract 20 Spherical shaped [52]



Int. J. Mol. Sci. 2020, 21, 3056 4 of 18

Table 1. Cont.

NPs Mode of Synthesis Size (nm) Characters Ref *

Iron NPs

Leaf extract of barberry, Elaeagnus
angustifolia, Ziziphus jujube 40 Spherical shaped [53]

Sodium borohydride 44.87 Spherical shaped [40]
Ferric chloride precursor with sodium

borohydride 6 Spherical in shape [40]

Grape tree leaf extract 10–30 Spherical and non-agglomerated [54]

Green tea extract 40–60 Amorphous in nature,
chain morphology [55]

Mesoporous silica 10–300 Uniform pore size, large surface area,
high accessible pore volume [46]

Thermal dehydration 6–10 globular-shape crystallites [32]
Thermal decomposition 50 Irregular and not spherical [33]

Zinc oxide NPs

Albizia lebbeck 66.25 Irregular spherical morphology [56]
Chamomile flower extract 48.2 Pure crystalline [64]

Ricinus communis seed extract 20 Crystalline hexagonal [57]
Ammonium carbamate 10–15 Crystallite rod-shape [47]

Aloe vera leaf extract 25–40 Highly stable and spherical [58]
Refluxing zinc acetate precursor in

diethylene/triethylene glycol 15–100 Oval to rod shape [48]

Copper NPs

Alcothermal method 6 High dispersion, narrow size
distribution [9]

Sodium borohydride 17.25 Spherical shaped [41]

Thermal decomposition 15–30 Nearly spherical with relatively
uniform diameters [34]

Biosynthesis by Morganella 15–20 Crystal lattice structure [49]

Sodium borohydride 15
Pure crystalline metallic phase with

face centered cubic, rich in dents,
irregular surface

[35]

Polyol method 45 Pure crystalline with face centered
cubic structure [36]

Ocimum sanctum leaf extract 77 Different organic molecules,
high crystallinity [59]

Wet chemical synthesis involving
stoichiometric reaction 9 Spherical [43]

Polyol method by copper acetate
hydrate in tween 80 580 Crystalline nature [37]

Reduction of copper (II) acetate in
water and 2-ethoxyethanol using

hydrazine under reflux
6–23 Spherical [40]

Thermal reduction 200–250 Irregular particles [42]
Sonochemical reduction 50–70 Irregular network of small NPs [42]

Cassia alata flower extract 110–280 Aggregates with rough,
particles, spherical [60]

Capparis zeylanica leaf extract 50–100 Cubical structure [61]
Syzygium aromaticum extract 5–40 Spherical and granular nature [62]

Titanium oxide NPs
Ytterbium fiber laser ablation 25 Spherical and polycrystalline [31]

Taguchi method 18.11 Spherical [65]
Sol-gel method 15 Crystalline and nearly spherical [66]

* Ref means references.

3. Morphological and Physiological Effects of NPs on Crops

The most advanced interdisciplinary tool with the larger potential in agriculture for increased
crop productivity is the nanotechnology in which NPs with varying size, concentration, and surface
charge influenced the growth and development of diverse plant species [67]. A variety of NPs have
been tested against germination of seeds, growth of shoot/root, and crop production [68]. NPs exert
species-specific toxicity, plant organ specificity, as well as stress dependency (Table 2).

3.1. Plant Species Specificity of NPs

The impact of NPs depends on the type of plant species used. The aqueous suspension
of aluminum oxide NPs improved the root growth of radish [69] but reduced in cucumber [70].
The aqueous suspension of titanium oxide NPs increased root length of wheat [71] but inhibited in
cucumber [72]. The iron NPs aqueous suspension increased root length of Arabidopsis thaliana [14] and
restricted in lettuce [15]. The aqueous suspension of titanium oxide NPs inhibited root elongation in
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cucumber [69] and carrot [70], but enhanced the growth of maize [1], wheat [73], and spinach [74–77].
The carbon-nanotubes suspension increased germination rate, fresh biomass, and seedling length
in Solanum lycopersicum [78], Allium cepa [79], and wheat [80], while reduced in Cucurbita pepo [81],
rice [72], and lettuce [79]. These studies have increased our understanding of phytotoxicity and plant
responses towards NPs.

3.2. Plant Organ Specific Effects of NPs

The carbon nanotubes, copper-oxide NPs, and titanium-dioxide NPs increased resistance to fungal
infection by altering the level of endogenous hormones [82]. The direct application of silver NPs reduced
seedling biomass of wheat [83], zucchini [81], mung bean [83], and cabbage [84]; while it regulated the
seedling growth in maize [84] and Vigna radiata [83]. The hydroponic applications of silver NPs enhanced
root elongation in rice [85]; while it reduced in zucchini [81]. Changes in the morphological characteristics
of treated plants depend on the types of NPs used. Silver NPs and aluminum-oxide NPs reduced [86]
and improved [87], respectively, growth of wheat. The iron NPs enhanced germination ratio and plant
growth [88]; while copper NPs inhibited the growth of wheat [89]. The flowering and yield of rice
reduced on carbon nanotubes exposure [73]; while enhanced under cerium-oxide NPs treatment [90].
Silver NPs [84] and cerium-oxide NPs [91] improved the growth of maize; while aluminum-oxide
NPs [70], titanium-oxide NPs [1], and copper NPs [80] treatments led to growth reduction. Keeping in
view these studies, NPs might be involved in the alteration of growth in plants.

3.3. Stress Dependency of NPs

Various modes of applications determine the effects of NPs on growth and productivity of plants.
Direct application of aluminum oxide NPs improved root length of wheat [87]; while reduced in maize
in hydroponic condition [70]. Exposure of aluminum oxide NPs improved survival percentage and
weight/length of root including hypocotyl of soybean under flooding stress [92,93]. There are some
NPs with the capability to keep the same effects on the plant, though, applied through various ways,
e.g., titanium-oxide NPs improved the growth of spinach when applied through seed treatment [94]
and foliar spray [95]. Similarly, soil or direct application of iron NPs increased the growth [96] and
yield [97] of wheat. The alteration in the morphology of plants is dependent on the mode of application
and the type of NPs exposure is dependent on the mode of application.

Table 2. Mode of applications and morphophysiological responses of crops upon NPs treatments.

NPs Species Mode of
application Morphophysiological responses Ref *

Silver NPs

Rice Hydroponic
application Enhanced root length [85]

Wheat Direct application Reduced seedling growth [86]
Zucchini Direct application Reduced seedling biomass [81]

Wheat Direct application Reduced seedling biomass [83]
Mung bean Direct application Reduced seedling biomass [83]

Cabbage Direct application Decreased root length [84]
Maize Direct application Increased root length [84]

Eruca sativa Direct application Increased root length [98]

Ajwain Direct application Improved water use efficiency, nutrient uptake,
reduced fertilizer requirement [99]

Zucchini Hoagland solution Reduced rate of transpiration [81]
Mung bean Direct application Regulated seedling growth [83]

Aluminum oxide NPs

Wheat Direct application Enhanced root growth [87]

Maize Hydroponic
application Reduced root elongation [70]

Soybean Direct application Improved survival and root growth [92]
Maize Direct application Increased root length [69]

Soybean Flooding Increased root length [93]

Radish Aqueous
suspension Improved root growth [69]

Cucumber Aqueous
suspension Reduced root growth [70]
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Table 2. Cont.

NPs Species Mode of
application Morphophysiological responses Ref *

Titanium oxide NPs

Wheat Aqueous
suspension Increased root length [71]

Rose Water-agar plates
with suspension

Enhanced plant resistance to fungal infection by
altering endogenous hormones content [82]

Cucumber Aqueous
suspension Restricted root growth [69]

Carrot Aqueous
suspension Restricted root growth [70]

Wheat Aqueous
suspension Reduced biomass [100]

Spinach Seed treatment Enhanced growth [74]
Spinach Seed treatment Significantly affected the plant growth [94]
Spinach Foliar spray Increased seedling growth [95]

Chickpea Foliar spray Improved redox status [101]
Spinach Seed treatment Increased dry weight and chlorophyll content [94]

Narbon bean Seed treatment Reduced seed germination and root length [1]
Maize Seed treatment Reduced seed germination and root length [1]

Wheat Aqueous
suspension Increased shoot length [73]

Spinach Aqueous
suspension Increased fresh and dry biomass [74]

Spinach Aqueous
suspension Improved growth related to nitrogen fixation [75]

Spinach Aqueous
suspension

Improved light absorbance and carbon
dioxide assimilation [76]

Iron NPs

Lettuce Aqueous
suspension High concentration inhibited germination [15]

Wheat Direct application Enhanced seed germination and plant growth [88]
Pumpkin Direct application No toxic effect [102]

Wheat Direct application Increased shoot and root biomass [96]

Wheat Soil applied Increased spike length, number of grains per spike,
1000 grain weight [103]

Various plants Direct application Development of thicker roots [104]

Copper/ Copper
oxide NPs

Wheat Direct application Reduced root and seedling growth [89]

Rose Water-agar plates
with suspension

Increased plant resistance to fungal infection by
altering endogenous hormones content [82]

Pumpkin Aqueous
suspension Reduced biomass [81]

Wheat Direct application Reduced seed germination [103]
Wheat Direct application Increased plant growth and biomass [97]

Maize Aqueous
suspension Reduced seedling growth [80]

Mung bean Agar culture media Reduced seedling growth [89]
Wheat Agar culture media Reduced seedling growth [89]

Zucchini Aqueous
suspension Reduced biomass and root growth [81]

Rice Aqueous
suspension Decreased seed germination and seedlings growth [105]

Barley Aqueous
suspension Restricted shoot and root growth [106]

Maize Aqueous
suspension Suppressed root elongation [80]

Barley Aqueous
suspension Decreased plasto globule and starch granule [107]

Maize Aqueous
suspension Reduced shoot and root biomass [108]

Zinc oxide NPs

Pleuroziumschreberi NPs suspension Reduced L-ascorbic acid content [109]
Wheat NPs suspension Reduced biomass [100]

Soybean Direct application Increased root growth [91]
Soybean Direct application Decreased root growth [91]

Ryegrass Direct application Reduced biomass, shrunken root tips, broken
epidermis/root caps [69]

Soybean Direct application Increased root growth [110]

Maize Aqueous
suspension Highly reduced root growth [69]

Ryegrass Hoagland solution
Reduced biomass, shrank root tips, broken
epidermis/root cap, highly vacuolated and

collapsed cortical cells
[69]
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Table 2. Cont.

NPs Species Mode of
application Morphophysiological responses Ref *

Carbon nanotubes

Rose Water-agar plates
with suspensions

Increased plant resistance to fungal infection by
altering endogenous hormones content [82]

Tomato Aqueous
suspension

Enhanced seed germination, fresh biomass,
stem length [78]

Onion Direct application Increased root length [79]
Rice Direct application Delayed flowering and decreased yield [72]

Pumpkin Aqueous
suspension Reduced biomass [81]

Wheat Direct application Increased root length [80]

Tomato Aqueous
suspension

Increased germination rate, fresh biomass,
stem length [78]

Rice MS medium Delayed flowering and decreased yield [72]

Tomato Aqueous
suspension Reduced root length [79]

Lettuce Aqueous
suspension Reduced root length at longer exposure [79]

Cerium oxide NPs

Wheat Direct application Enhanced shoot growth, biomass, grain yield [18]
Lettuce Direct application Inhibited root growth [69]
Maize Direct application Increased stem and root growth [91]

Maize Aqueous
suspension Increased root and stem growth [91]

Tomato Aqueous
suspension Reduced shoot growth [91]

Maize Aqueous
suspension Reduced biomass [91]

Sorghum Foliar spray Increased leaf carbon assimilation rates,
pollen germination, seed yield [111]

Rice Direct application Enhanced growth [112]
Onion Foliar spray Improved yield, plant growth, nutrient content [113]

Gold NPs
Lettuce Aqueous

suspension Enhanced root elongation [104]

Cucumber Aqueous
suspension Improved germination [104]

Nd2O3NPs Pumpkin Aqueous
suspension Increased antioxidant capacity [114]

* Ref means references.

4. Applications of Proteomic Techniques to Assess the Impact of NPs on Crops

With the advancements in mass spectrometry, proteomics has become a powerful technology
for the identification and characterization of stress-induced proteins. Detailed proteome analysis of
plant organelles generates comprehensive information about the intrinsic mechanisms of plant stress
responses towards NPs. Proteomic analyses of various crops exposed to different NPs are summarized
in Table 3.

4.1. Proteomic Analysis of Silver NPs Challenged Crops

Silver NPs are considered as a promising antibacterial agent due to their strong biocidal effect
against microorganisms [115]. These NPs are synthesized through different physical, chemical, and
biological methods and well-defined parameters of size and shape [28]. The effects of silver NPs
were initially analyzed using proteomic techniques in Chlamydomonas [116], Escherichia coli [117],
and Bacillus thuringiensis [118]. Currently, various crop plants were exposed to silver NPs and their
effects were analyzed using gel-based or gel-free proteomic techniques. Our gel-free proteomic study
revealed restricted growth of soybean seedlings under silver NPs treatment [119]. Proteins related to
secondary metabolism, cell organization, and hormone metabolism were mostly influenced by silver
NPs exposure. In contrast, silver NPs of 15 nm in size significantly improved the soybean growth under
flooding stress by enhancing proteins linked to amino acid synthesis [120]. In wheat, the accumulation
of different cellular compartmental proteins on silver NPs exposure in shoot and root was mainly
involved in metabolism and cell defense [86]. Silver NPs with chemical exposure increased the proteins
related to photosynthesis and protein synthesis, while decreased the glycolysis, signaling, and cell wall
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related proteins in wheat [121]. Large numbers of proteins involved in the primary metabolism were
increased in soybean [119]. Silver NPs treatment increased the proteins related to protein degradation,
while decreased protein synthesis related proteins in soybean; indicating that it might improve the
growth of soybean under flooding stress through protein quality control [122]. Proteins related to
the oxidative stress, signaling, transcription, protein degradation, cell wall synthesis, cell division,
and apoptosis were found to be increased in silver NPs exposed rice [118]. In Eruca sativa, proteins
associated with the endoplasmic reticulum and vacuole were differentially modulated under silver
NPs exposure [86]. These findings indicate that silver NPs primarily influence various metabolic
processes in wheat and protein quality control in soybeans; thus, improving plant growth.

4.2. Proteomic Analysis of Aluminum Oxide NPs Stressed Crops

Aluminum oxide NPs are mostly used in military and commercial products [123]. Extensive
usage of aluminum oxide NPs leads towards their possible leakage into environment, which ultimately
interacts with living organisms including plants [124]. Proteomic analysis of soybean root treated
with aluminum oxide NPs revealed an increase in the number of proteins related to protein synthesis,
transport, and development during the recovery from flooding [92]. A study by Mustafa et al. [120]
revealed that proteins associated with the ascorbate-glutathione cycle, as well as ribosomal proteins,
were differentially influenced by aluminum oxide NPs. Moreover, high abundance of proteins involved
in oxidation-reduction, stress signaling, hormonal pathways related to growth and development,
were evident in aluminum oxide NPs challenged soybean [119]. A separate study has shown growth
promoting effects of aluminum oxide NPs in the soybean under flooding stress by regulating energy
metabolism and cell death [125].

4.3. Proteomic Analysis of Crops Exposed to Copper NPs and Iron NPs

Among the various metal-based NPs, copper NPs are by far the most well studied NPs whose
toxicity has been tested in wide range of crops. They have wide applications in electronics, air/liquid
filtration, ceramics, wood preservation, bioactive coatings, and films/textiles [16]. At the cellular level,
copper acts as structural and catalytic component of many proteins involved in various metabolic
processes. In wheat seedlings, abundance of proteins associated with glycolysis and tricarboxylic acid
cycle was found to be increased; while, photosynthesis and tetrapyrrole synthesis related proteins
were decreased on exposure to copper nanoparticles [97]. Wheat grains obtained after NPs exposure
were analyzed through gel-free proteomic technique, which indicated an increase in proteins involved
in starch degradation and glycolysis [96].

Similar to copper NPs, iron NPs have extensive industrial, commercial, and biomedical
applications [12]. Because of their high reactivity and magnetic property, iron NPs have been
used as remediation agents for environmental applications [13]. Iron NPs have known stimulatory
effects on the seed germination and plant growth of wheat [96]. Authors exploited gel-free/label-free
proteomic technique to elucidate the impact of iron NPs on shoot growth of drought tolerant and salt
tolerant wheat varieties. A study revealed that differentially expressed proteins in both varieties were
mainly associated with photosynthesis. Notably, proteins related to light reaction were enhanced in the
salt tolerant variety compared to drought tolerant wheat on iron NPs exposure. A separate study on
grain analysis of wheat indicated an increase in the number of proteins related to starch degradation,
glycolysis, and the tricarboxylic acid cycle [103].

4.4. Proteomic Analysis of Other NPs Challenged Crops

One of the most commonly used nanomaterials in agriculture and the energy sector is titanium
dioxide NPs [126]. They have diverse applications in personal skincare products, water-treatment
agents, and bactericidal agents owing to their high stability and anticorrosive/photocatalytic
properties [127,128]. The toxicological effects of nanometer titanium dioxide on a unicellular green
alga Chlamydomonas reinhardtii were accessed by monitoring the changes in the physiology and
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cyto-ultrastructure [129]. Authors reported nano titanium dioxide mediated inhibition in photosynthetic
efficiency and cell growth, with increased contents of carotenoids and chlorophyll b.

In addition, various NPs are being extensively utilized to improve the growth and productivity of
crop plants. However, application of zinc oxide NPs had marked effects on soybean seedling growth,
rigidity of roots, and root cell viability [119]. Gel-free proteomic analysis revealed down regulation
oxidation-reduction cascade associated proteins, including GDSL motif lipase 5, SKU5 similar 4,
galactose oxidase, and quinone reductase in zinc oxide NPs exposed roots. A separate study on cerium
oxide NPs treatment in maize indicated enhanced accumulation of heat shock proteins (HSP70) and
increased activity of ascorbate peroxidase and catalase [130]. This up regulated antioxidant defense
system might help maize plants to overcome NPs-induced oxidative stress damages.

All of these studies indicate that NPs have the potential to modulate plant metabolic processes,
and impact of NPs could be either positive or negative, depending on the plant species and type of
nanoparticles used, their size, composition, concentration, and physical/chemical properties.

Table 3. Summary of proteomic analyses of various crops exposed to different NPs.

NPs Plant Organ Proteomic Technique Protein Response Ref *

Silver NPs

Soybean Root Gel-free
(nanoLC–MS/MS)

Decreased proteins associated with secondary
metabolism, cell organization,

and hormone metabolism.
[119]

Eruca sativa Root
Gel-based

(2-DE, nanoLC–
nESI-MS/MS)

Altered endoplasmic reticulum and vacuolar
proteins involved in sulfur metabolism. [98]

Wheat Root Gel-based
(2-DE, LC–MS/MS)

Altered proteins involved in metabolism
and cell defense. [86]

Soybean Root Gel-free
(nanoLC–MS/MS)

Altered proteins associated with stress,
cell metabolism, signaling. [125]

Soybean Root,
Hyp **

Gel-free
(nanoLC–MS/MS)

Decreased protein synthesis with increased amino
acid synthesis. [93]

Soybean Root,
Hyp **

Gel-free
(nanoLC–MS/MS)

Increased protein degradation related proteins.
Decreased protein synthesis associated proteins. [122]

Wheat Shoot Gel-free
(nanoLC–MS/MS)

Increased proteins related to photosynthesis and
protein synthesis. Decreased proteins linked to

glycolysis, signaling, cell wall.
[121]

Tobacco Root,
Leaf

Gel-based
(2-DE, MALDI-
TOF/TOF MS)

Altered abundance of root proteins involved in
abiotic/biotic and oxidative stress responses.

In leaf, proteins associated with photosynthesis
markedly changed.

[131]

Aluminum
oxide NPs

Soybean Root,
Hyp **

Gel-free
(nanoLC–MS/MS)

Increased proteins related to protein synthesis,
transport, and development during post- flooding

recovery period.
[92]

Soybean Root,
Hyp **

Gel-free
(nanoLC–MS/MS)

Regulated the ascorbate/glutathione pathway and
increased ribosomal proteins. [120]

Soybean Root,
Leaf

Gel-free
(nanoLC–MS/MS)

Increased proteins involved in oxidation,
stress signaling, and hormonal pathways. [119]

Soybean Root,
Hyp **

Gel-free
(nanoLC–MS/MS)

Decreased energy metabolism and changed
proteins related to glycolysis compared

to flooding stress.
[125]

Copper NPs
Wheat Shoot Gel-free

(nanoLC–MS/MS)
Increased proteins related to glycolysis and

tricarboxylic acid cycle. [97]

Wheat Seed Gel-free
(nanoLC–MS/MS)

Increased proteins involved in starch degradation
and glycolysis. [103]

Iron NPs
Wheat Shoot Gel-free

(nanoLC–MS/MS)
Decreased proteins linked to photosynthesis and

protein metabolism. [96]

Wheat Seed Gel-free
(nanoLC–MS/MS)

Increased proteins related to starch degradation,
glycolysis, tricarboxylic acid cycle. [103]

Zinc oxide NPs Soybean Root,
Leaf

Gel-free
(nanoLC–MS/MS)

Decreased proteins involved in oxidation-
reduction, stress signaling,
and hormonal pathways.

[119]

Cerium
oxide NPs Maize Shoot Gel-free

(nanoLC–ESI-MS/MS)
Increased accumulation of heat shock protein.

Increased ascorbate/ peroxidase/ catalase activity. [130]

* Ref means reference; ** Hyp stands for Hypocotyl. Abbreviations: 2-DE, two-dimensional gel electrophoresis;
nESI, nanoelectro spray ionization; MALDI-TOF, matrix-assisted laser desorption ionization time-of-flight.

5. NPs Uptake and Mode of Action

The phytotoxicity of NPs largely depends on the particle size, concentration and chemistry of
NPs, in addition to the chemical milieu of the subcellular sites at which the NPs are deposited [23].
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Plants, being an indispensable component of terrestrial ecosystems, serve as a potential route for the
factory discharged-NPs to enter the plant root system and their transportation to other parts of the
plants, resulting bioaccumulation in the food chain [132]. The physico-chemical properties of soil
matrix (viz. mineral composition, pH, ionic strength, dissolved organic matter, etc.) as well as the of
metal based NPs (viz. size, surface charge, surface coating, etc.) are the determining factors for NPs
mobility [133]. Primary-lateral root junctions are the prime sites through which NPs could enter xylem
via cortex and finally reach the central cylinder [23]. Study on the uptake pathways of zinc oxide NPs
by maize roots reveals that majority of the total zinc oxide NPs undergo dissolution in the exposure
medium, and the released Zn2+ ions are only taken up by the roots [134]. Only a small fraction of zinc
oxide NPs adsorbed on the root surface can cross the root cortex as a result of speedy cell division and
root tip elongation, apart from their entry to vascular system through the gap of the Casparian strip at
the sites of the primary–lateral root junction.

Once NPs enter the root cells, these ultrafine particles upon dissolution discharge metal ions that
interact with the functional groups of proteins (carboxyl and sulfhydryl groups) causing altered protein
activity. The released redox-active metal ions could trigger reactive oxygen species (ROS) generation
through the Fenton and Haber–Weiss reactions [135]. In these reactions, the hydrogen peroxide (H2O2)
is decayed by the metal ions leading to the formation of more toxic ROS, namely hydroxyl radical
(•OH) and hydroxyl anion (OH−). Elevated ROS generation was documented in leaves of soybean
exposed to zinc oxide NPs and silver NPs [119] as well as in copper oxide NPs challenged rice [105].
These NPs mediated excess ROS formation disturbs the cellular redox system in favor of oxidized
forms, causing oxidative damage to vital cellular components including nucleic acids, lipids, and
proteins [135].

Cellular compartments with extremely high oxidizing metabolic activity or with an intense rate of
electron flow, such as mitochondria, chloroplasts, and peroxisomes, constitute a major source of ROS
production in plants [136]. Investigations have revealed that zinc oxide NPs mediated deregulation of
photosynthetic efficiency in plants is due to the down regulation of chlorophyll synthesis genes and
structural genes of photosystem I [137,138]. To protect cells against such oxidative damages, plants
have developed robust multi-component antioxidant defense system comprising of both enzymatic
and non-enzymatic machineries [119,139]. The enzymatic antioxidant defense system chiefly includes
ROS scavenging enzymes of the ascorbate–glutathione cycle, which operates in nearly all plant cell
organelles [140]. The orchestrated action of key antioxidant enzymes viz. superoxide dismutase
(SOD), ascorbate peroxidase (APX), catalase (CAT), monodehydroascorbate reductase (MDHAR),
dehydroascorbate reductase (DHAR), and glutathione reductase (GR) is an adaptive strategy of plant
to cope with the NPs induced oxidative stress damages.

Moreover, NPs exposure often leads to disruption of cellular redox homeostasis and cause cell
membrane damage through lipid peroxidation [105,106,108]. Among the ROS, hydroxyl radical
(•OH) is known to be the most reactive, capable of stealing hydrogen atom from a methylene (-CH2-)
group present in polyunsaturated fatty acid side chain of membrane lipids and, thus, initiates lipid
peroxidation [141]. Since, •OH is derived from H2O2 as a consequence of one electron reduction,
H2O2 scavenging peroxides play essential roles in protecting lipid membranes from NPs mediated
oxidative stress. Among ROS, a recent study revealed down regulation of ascorbate peroxidase (APX1)
in zinc oxide NPs challenged maize leaves with concomitant increased malondialdehyde (MDA) level,
an indicative of oxidative stress induced damage to the lipid membrane [108]. The NPs-induced higher
membrane damage is in accordance with the previous reports in rice [105] and Syrian barley [106].

Apart from enzymatic component of ascorbate-glutathione cycle, plants have evolved a second line
of defense to cope with the NPs induced oxidative stress. The thioredoxin (Trx) family protein is one of
them, engage in mitigating oxidative damages by providing reducing power to reductases, detoxifying
lipid hydroperoxides or repairing oxidized proteins. They also act as regulators of scavenging
mechanisms and key components of signaling pathways in the plant antioxidant network [142].
In addition, these proteins are necessary for their potential roles as facilitators and regulators of protein
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folding and chaperone activity [143]. Furthermore, plant quinone reductases (QRs) are involved redox
reactions and act as detoxification enzymes of free radicals. Soybean seedlings exposed to zinc oxide
NPs and silver NPs treatments exhibited significantly declined abundance of Trx and QR proteins [119].
Severe oxidative burst evident in zinc oxide NPs and silver NPs challenged soybean might be the result
of such declined protein abundance affecting optimum growth of seedlings. Enzymes of shikimate
pathway involved in the synthesis of amino acids (phenylalanine, tryptophan, and tyrosine) were also
found to be affected under NPs exposure. These aromatic amino acids not only act as substrates for the
protein synthesis, but are also linked with formation of secondary products, including lignin, suberin,
and phytoalexins. The abundance of 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase,
the first enzyme of the shikimate pathway, was reported to be decreased in soybean under silver NPs
treatment [119]. The reduced shoot length of silver NPs exposed soybean seedlings might be the result
of such marked decline in DAHP synthase level. In a nutshell, low abundance of proteins involved in
oxidation-reduction, shikimate pathway might limit the growth of the silver NPs challenged soybean
seedlings up to a certain level. Summarizing all these findings, a comprehensive model of cellular
responses to NPs is presented in Figure 1.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 12 of 19 
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Figure 1. Schematic illustration of diverse cellular responses to nanoparticles (NPs). Exposure
to metal based-NPs triggers oxidative stress through enhanced reactive oxygen species (ROS)
generation, disruption of redox homeostasis, impaired photosynthetic activity, mitochondrial dysfunction,
lipid peroxidation, and membrane damage. Upward arrows indicate increased and downward arrows
indicate decreased protein abundance in response to NPs stress, respectively. Abbreviations: APX, ascorbate
peroxidase; AsA, reduced ascorbate; CAT, catalase; DAHP, 3-deoxy-D-arabino-heptulosonate-7-phosphate;
DHAR, dehydroascorbate reductase; ETC, electron transport chain; H2O2, hydrogen peroxide; MDA,
malondialdehyde; MDA-radical, monodehydroascorbate radical; MDAR, monodehydroascorbate
reductase; •OH, hydroxyl radical; OEE, oxygen-evolving enhancer; PS, photosystem; QR, quinone
reductase; ROS, reactive oxygen species; SOD, superoxide dismutase; Trx, thioredoxin.
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6. Conclusions

Nanotechnology has gained tremendous momentum in recent times because of the wide
applications of NPs in agriculture, cosmetic industry, cellular imaging, medical diagnosis, biosensing,
drug delivery, and cancer therapy. Nevertheless, unintended release of such commercially
manufactured nanomaterials into the environment has raised global concern. Hence, considerable
attention is now being paid to the methods and strategies of NPs synthesis, plant-nanomaterials
interactions, and their environmental fate. As compared to traditional physical and chemical processes,
green synthesis of NPs using microorganisms and plants is an environment-friendly, cost effective,
safe, biocompatible, green alternative approach for large scale production of NPs. Morphophysiological
as well as proteomic studies on NPs-induced phytotoxicity reveal that particle size, concentration,
and chemistry of NPs, as well as the type of plant species used, are the key factors determining the type
and magnitude of the cellular responses. However, more initiatives must be taken to find out whether
the metal-based NPs exert phytotoxicity exclusively due to their high surface area and nanoscale size
or due to the released metal ions. Moreover, there is a need for more comprehensive omics approach
integrating genomics, transcriptomics, proteomics, and metabolomics, so that the impact of the applied
NPs on plants can be assessed well in time.
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