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Abstract
Background: Cryptoccocal meningitis continues to present high incidence among AIDS 
patients. The treatment of choice is the synergistic combination of flucytosine (5-FC) 
with amphotericin B deoxycholate (AmBd) or its lipid formulations. However, 5-FC is 
unavailable in many countries and AmB demands hospitalization. The combination 
of AmB with the fungistatic fluconazole (FLC) or the use of high FLC daily doses 
alone became the choice. Nonetheless, sterilization of cerebrospinal fluid is delayed 
with FLC monotherapy, mainly with high fungal burden. These findings suggest the 
search for new antifungal compounds, such as liriodenine. Methods: Liriodenine 
antifungal activity was evaluated by three procedures: determining the minimum 
inhibitory concentration (MIC) on 30 strains of the Cryptococcus neoformans (C. 
neoformans) complex and 30 of the Cryptococcus gattii (C. gattii) complex, using 
EUCAST methodology and amphotericin B deoxycholate as control; performing the 
time-kill methodology in two strains of the C. neoformans complex and one of the C. 
gattii complex; and injury to cryptococcal cells, evaluated by transmission electron 
microscopy (TEM). Liriodenine absorption and safety at 0.75 and 1.50 mg.kg-1 doses were 
evaluated in BALB/c mice. Results: Liriodenine MICs ranged from 3.9 to 62.5 μg.mL-1 
for both species complexes, with no differences between them. Time-kill methodology 
confirmed its concentration-dependent fungicidal effect, killing all the strains below 
the limit of detection (33 CFU.mL-1) at the highest liriodenine concentration (32-fold 
MIC), with predominant activity during the first 48 hours. Liriodenine induced severe 
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Cryptococcus alterations – cytoplasm with intense rarefaction and/or degradation, 
injury of organelles, and presence of vacuoles. Liriodenine was better absorbed at 
lower doses, with no histopathological alterations on the digestive tract. Conclusion: 
The fungicidal activity confirmed by time-kill methodology, the intense Cryptococcus 
injury observed by TEM, the absorption after gavage administration, and the safety 
at the tested doses indicate that the liriodenine molecule is a promising drug lead for 
development of anticryptococcal agents. 

Background
The increased incidence of fungal infections, mainly in 

immunosuppressed patients, and the emergence of resistant 
relevant isolates in many countries worldwide for all available 
compounds, except amphotericin B (AmB), demonstrate the 
importance of looking for new antifungal compounds, mainly 
those recommended for treatment of systemic diseases [1, 2]. 

Cryptococcosis is a systemic mycosis caused by encapsulated 
and non-fermentative yeasts of the Cryptococcus neoformans (C. 
neoformans) and Cryptococcus gattii (C. gattii) species complexes 
[3]. The lungs are the primary portal of entry and focus of this 
infection, but life-threatening meningitis is its main clinical 
manifestation, including in AIDS patients [4, 5].

Treatment of cryptococcal meningitis is carried out with the 
synergistic combination of flucytosine with AmBd or its lipid 
formulations. Nonetheless, flucytosine is unavailable in many 
countries, and AmB demands hospitalization, leading to the use 
of the combination AmB and fluconazole (FLC) for the initial 
treatment in several countries such as Brazil, or the use of higher 
doses of FLC as it is in many African countries [6]. Since FLC 
is fungistatic and causes a slow clearance of the fungus, other 
regimens and/or combinations with immunomodulators have 
been evaluated [6–8].

A number of plants produce molecules with antimicrobial 
activity, including several species of the Annonaceae family, 
which produce benzylisoquinoline alkaloids [9]. One of the most 
common ones is liriodenine, an alkaloid aporphine type found 
in around 90 genera and 300 Annonaceae species [10, 11] with 
activity on fungi, bacteria, and protozoa [12–17]. 

Levorato-Vinche et al. [18] evaluated the in vitro antifungal 
activity of liriodenine on agents of systemic mycoses, and it 
showed a minimum inhibitory concentration (MIC) of 62.5 
µg.mL-1 on most of the isolates. Moreover, its activity was 
fungicidal on susceptible isolates. 

The present study aimed at evaluating liriodenine antifungal 
activity on isolates of both C. neoformans and C. gattii species 
complexes using the time-kill curve and the analysis of cell 
alterations by electron microscopy. 

Methods

Antifungal compounds
AmBd (Sigma Chemical Company, St. Louis, MO, USA) and 

liriodenine were used for MIC testing. Moreover, a time-kill 
evaluation of liriodenine was performed.

Source and extraction of liriodenine
Liriodenine was obtained from Annona mucosa Jacq. planted 

at the geographical coordinates 22º59’27’’S and 48º28’22’’W in 
Rio Sul locality, Botucatu (São Paulo state, Brazil). The taxonomic 
sample was under reference voucher number 33185 of the BOTU 
Herbarium – São Paulo State University (UNESP), Botucatu 
(São Paulo state, Brazil). This species is neither threatened nor 
protected. Liriodenine is an oxoaporphine alkaloid, yellow 
needle, fluorescent, plain, with an oxo group in position 7, 
isolated from the root barks.

Liriodenine was extracted from root bark (1,000 g) in the 
Laboratory of Botany of Botucatu Biosciences Institute, São 
Paulo State University (UNESP), Brazil, according to a previously 
reported methodology [19].

Stock solutions
Stock solutions of each agent were prepared using dimethyl 

sulfoxide (DMSO). Stock solutions of 1000 μg.mL-1 were separated 
into aliquots and stored at -70ºC until they were used. RPMI 
1640 liquid medium (Sigma) buffered to a pH 7.0 with 0.165 M 
morpholinepropanesulfonic acid (Sigma) was used to obtain final 
tested agent concentrations. To demonstrate that DMSO did not 
affect the growth of the studied strains, fungal colonies were 
grown in the presence of final (1% vol/vol) DMSO concentration 
and compared to growth in DMSO-naïve conditions. 

Microorganisms
Sixty strains, previously identified by molecular typing 

[20], were evaluated in this study. Thirty of them belonged to 
the C. neoformans complex and the other 30 to the C. gattii 
complex. Regarding AFST-EUCAST recommendations, two 
quality control strains – Candida krusei (ATCC 6258) and 
Candida parapsilosis (ATCC 22019) – were also evaluated 
along with the tests. More than 99% of the QC results were 
within the acceptable limits. These isolates were kept frozen in 
15% glycerol solutions at –20 °C at the Laboratory of Tropical 
Diseases, Section of Medical Mycology, Experimental Research 
Unit (Unipex), Botucatu Medical School, UNESP, until they 
were ready for use in the study. Before testing, each strain was 
plated on CHROMagar Candida® (Becton Dickinson, Franklin 
Lakes, NJ, USA) to ensure purity and viability.

Cryptococcal susceptibility testing
The in vitro susceptibility to liriodenine and to AmBd was 

evaluated by the broth microdilution method, according to 
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the European Committee on Susceptibility Testing (EUCAST) 
[21]. The antifungal epidemiologic cutoff values (ECOFFs) and 
clinical breakpoints were proposed according to the EUCAST 
E.Def 7.3 document (European Committee on Antimicrobial 
Susceptibility Testing), and by using colorimetric indicators [22].

Serial dilutions of the stock solution using RPMI-1640 as 
diluent were performed, and 10 concentrations of liriodenine 
ranging from 0.97 to 500 μg.mL-1 were obtained. Volumes of 
100 μL of each concentration were distributed in microplates 
with 96 wells. AmBd was included as a positive control in 10 
concentrations from 0.03 to 16 μg.mL-1. The inocula of the 
fungal cells were adjusted to a final concentration of 1-5 × 
105 cells/mL, and 100 μL were added to each well containing 
either liriodenine or AmBd, and to the control wells without 
antifungal compounds. The plates were incubated at 35 °C 
± 2 ºC for 48 h, and then the reading was performed with a 
microdilution plate reader under 450 nm wavelength. The 
antifungal concentration that elicited an relative absorbance 
≤ 50% or < 90% of that observed in the negative control well 
(without antifungal compound) was considered the MIC of 
liriodenine and AmBd, respectively. All the tests were carried 
out in triplicate [21].

Time-kill studies with liriodenine
The time-kill studies were conducted with two strains (strain 

32 and strain 57) of the C. neoformans complex and one (strain 
17) of the C. gattii complex, according to the procedures of 
Klepser et al. [23] and Silva et al. [24]. Initially, the isolates were 
subcultured on potato dextrose agar plates. Individual colonies 
(≥ 1mm) from 48-h culture were suspended in 10-mL buffered 
RPMI 1640 with 2 % glucose and L-glutamine medium. Isolates 
were grown overnight with shaking at 35 °C. The initial inoculum 
was adjusted to 0.5 McFarland turbidity standard (106 CFU.
mL-1). One milliliter of the adjusted fungal suspension was then 
added to either a 9-mL MOPS-buffered RPMI medium alone 
(control) or a solution of culture medium containing liriodenine. 
Liriodenine was tested in eight concentrations calculated as 
multiples of the MIC values (0.5×, 1×, 2×, 3×, 4×, 8×, 16× and 
32× MIC). The test tubes were incubated at 35 °C ± 2 °C under 
agitation. Fungal growth was monitored over a time-course of 
72 h (0, 2, 4, 6, 8, 12, 24, 48, 72 h). For every sampled time point, 
0.5 mL of the tube content was removed, serially diluted 1:10 in 
sterile deionized water, and viable counts were determined in 
30 μL plated on Sabouraud dextrose agar [25–27].

Analysis
The data were analyzed according to Klepser et al [23]. Colony 

counting data, in log10 CFU per milliliter, from time-kill studies 
in triplicate, were averaged and plotted as function of time 
for each isolate. The rate and extent of liriodenine antifungal 
activity were assessed. Fungicidal activity was defined as a ≥ 
99.9% reduction in the number of CFU per milliliter from the 
starting inoculum count, and fungistatic activity occurred when 
this decrease was < 99.9%. 

Transmission electron microscopy
Transmission electron microscopy (TEM) was performed at 

the Center of Electron Microscopy of São Paulo State University 
(UNESP), Botucatu Biosciences Institute (São Paulo state, Brazil), 
regarding its previously reported specifications [18].

Two strains, numbered 21 (C. gattii) and 41 (C. neoformans), 
were treated with the respective liriodenine MICs in a 24-well plate.  
The final volumes of liriodenine and inoculum were adjusted to 
1 mL, and Karnovsky’s fixative was added after 48-h incubation 
at 37 °C. Following this period, the material was removed from 
the fixative and washed three times for 5 min each in 0.1 M 
phosphate buffer, pH 7.3. The material was immersed in 0.1 M 
osmium tetroxide, pH 7.3, for 2 h. Next, the material was washed 
three times for 10 min each in distilled water and immersed in 
0.5% uranyl acetate for approximately 2 h. After dehydration in 
an increasing acetone series, a mixture of Araldite® resin + 100% 
acetone (1:1) was added, and the material was left to stand at room 
temperature for 12 h. Pure resin was added for approximately 
one hour at 37ºC, and the material was embedded. Ultrathin 
(90 nm) sections were cut from the blocks and counterstained 
with uranyl acetate in 50% alcohol for 20 min, followed by 
counterstaining with lead citrate for 10 min. The sections were 
observed with a Tecnai Spirit transmission electron microscope 
(FEI Company).

Statistical analysis
The comparison between the MIC values of different species 

and the antifungal compounds was carried out using the 
Mann-Whitney test. The correlation of MIC between antifungal 
compounds was performed by the Spearman rank correlation 
coefficient. Statistical tests were performed by using SAS (SAS 
Institute, Cary, NC, USA). Significance was set up at p ≤ 0.05. 

In vivo evaluation of absorption and toxicity

Animals

Four isogenic albino male BALB/c mice, five to seven weeks of 
age and 25 g average weight, were obtained from the husbandry 
of the Experimental Laboratory of Infectious and Parasitic 
Diseases of Botucatu Medical School, São Paulo State University 
(UNESP), Botucatu (São Paulo state, Brazil). The animals were 
kept in boxes containing two animals on average, with a bed 
of pressure-treated wood shavings, in an environment ranging 
23-25 °C, with lighting controlled by electromechanical time 
switch, that is, 12 h with the light on and 12 h in the dark. They 
received filtered water and commercial mice diet ad libitum.

Liriodenine preparation and administration in uninfected mice

Liriodenine was dissolved in 4% DMSO. For the preparation 
of the doses 0.75 and 1.50 mg.kg-1, 1.5 and 3.0 mg of liriodenine, 
respectively, 0.240 mL of 4% DMSO were added. Liriodenine 
was given by gavage in a single dose at 12:00a.m. Each animal 
received 0.120 mL of the liriodenine-containing solution.  
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The doses used were defined based on the results of the in vitro 
sensitivity test [18]. Two uninfected mice received 0.75 mg.kg-1 
and other two 1.50 mg.kg-1 of liriodenine in a single dose.

Blood collection and euthanasia of the mice

The animals were submitted to blood collection and euthanasia 
six and 12 h after liriodenine administration. Blood samples were 
collected from each animal by cardiac puncture to determine 
the serum levels of liriodenine. 

Mice were initially anesthetized and killed with 0.08 μL of a 
solution containing 24 μL ketamine, 32 μL xylosin, and 24 μL 
distilled water, which was administered intraperitoneally with 
the aid of a 1.0 mL disposable syringe. After sedation, the blood 
was collected by cardiac puncture using a 1.0 mL syringe and a 
25 × 7-gauge needle. The blood was transferred to a sterile test 
tube without anticoagulants and, subsequently, centrifuged at 
3.500 rpm in a Revan Cycle C I centrifuge.

Serum dosage of liriodenine

The serum samples from the mice were diluted in 15 mL 
deionized water to increase the volume of the working solution. 
In order to extract the fat present in the serum, the mixture 
was placed in a separatory funnel with 10 mL hexane, from 
which the aqueous phase was collected and then adjusted to 
9.5 pH with saturated solution of Na2CO3. After that, it was 
placed in a separatory funnel with 10 mL chloroform, and the 
chloroform phase containing the liriodenine was then collected. 
For the identification and quantification of the liriodenine, the 
sample was kept to stand until the chloroform was completely 
evaporated, then dissolved in methanol and analyzed in High 
Performance Liquid Chromatography (HPLC), according to the 
specifications modified by de-La-Cruz-Chacón et al. [16, 17].

The samples were eluted in isocratic mode – 80% methanol (J. 
T. Baker, HPLC grade) and 20% ultrapure water – and the pH 
was adjusted to 3.0 with acetic acid. The flow rate of the mobile 
phase was 1.0 mL/min and the total time was 15 min, with 254 nm  

wavelength and 20 μL injection volume. The compartment of 
the chromatographic column oven was programmed to 30 °C. 
The equipment used was an HPLC (Thermo Scientific Dionex 
Ultimate 3000) equipped with a 0UV-VIS detector, an automatic 
injector with an oven and a four-channel pump with built-in 
degasser, and LUNA® 5 μm C18 (250 × 4.6 mm) column by 
Phenomenex [28].

The serum level of each sample was measured in triplicate, 
using the average of the concentrations found.

Histopathological evaluation

The histopathological examination of the intestines was 
performed in all animals. The intestines were collected and 
fixed in formalin for 48 h, then transferred to 70% alcohol and 
embedded in paraffin. Cuttings were performed, and afterwards, 
the slides were stained with hematoxylin and eosin (H&E).

Results

Minimum inhibitory concentrations (MICs)
The MIC of liriodenine ranged from 3.9 µg.mL-1 to 62.5 µg.mL-1 

for C. neoformans as well as for C. gattii (Figure 1). MIC90 was 
31.25 µg.mL-1 for both species. All the strains were inhibited 
to liriodenine and presented no differences in susceptibility 
regarding the species (p > 0.05). In addition, the low MICs of 
AmB did not differ between the species (p > 0.05). MIC90 was 
0.125 µg.mL-1 for both species, and all strains showed high 
susceptibility to AmB. 

Time-kill studies
Figures 2, 3 and 4 show time-kill curves for liriodenine using 

three strains exposed to four different agent concentrations and 
one untreated control of each strain. Liriodenine induced a 
fungicidal effect in all three strains, yet the onset of the fungicidal 
activity depended on the tested concentration and differed among 

Figure 1. Minimum inhibitory concentrations (MICs) of liriodenine (LRD) and amphotericin B (AmB) for 30 strains of the Cryptococcus neoformans complex and 
30 strains of the Cryptococcus gattii complex, determined by broth microdilution method. Results as median and interquartile intervals, as well as geometric mean. 
The Mann-Whitney U rank test. Comparison of MICs as to Cryptococcus complex, (A) LRD: C. neoformans: 15.62 [15.62; 31.25], C. gattii: 31.25 [15.62; 31.25],  
p = 0.30; (B) AmB: C. neoformans: 0.6 [0.06; 0.06], C. gattii: 0.06 [0.06; 0.13], p = 0.45.
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Figure 2. Time-kill curves for lireodenine against strain 17 of Cryptococcus gattii complex. Eight doubling dilutions are plotted, the highest concentration corresponds 
to 32 × MIC as measured with the EUCAST microdilution method, and the blue line represents growth in absence of lireodenine. The compound was added at 
timepoint 0 and monitored until 72 h. The limit of detection in the assay was 33 CFU/mL. CFU: colony forming units; MIC: minimum inhibitory concentration.

Figure 3. Time-kill curves for lireodenine against strain 57 of Cryptococcus neoformans complex. Eight doubling dilutions are plotted, the highest concentration 
corresponds to 32 × MIC as measured with the EUCAST microdilution method, and the blue line represents growth in absence of lireodenine. The compound was 
added at timepoint 0 and monitored until 72 h. The limit of detection in the assay was 33 CFU/mL. CFU: colony forming units; MIC: minimum inhibitory concentration.
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Figure 4. Time-kill curves for lireodenine against strain 32 of Cryptococcus neoformans complex. Eight doubling dilutions are plotted, the highest concentration 
corresponds to 32 × MIC as measured with the EUCAST microdilution method, and the blue line represents growth in absence of lireodenine. The compound was 
added at timepoint 0 and monitored until 72 h. The limit of detection in the assay was 33 CFU/mL. CFU: colony forming units; MIC: minimum inhibitory concentration.

the strains. All strains were killed to below the limit of detection 
(33 CFU.mL−1), at the highest liriodenine concentration (32-fold 
MIC). The strains experienced the most killing during the first 
48 h at high antimicrobial concentrations. For strains 57 and 
32, the fungicidal activity decreased at lower concentrations.

Transmission electron microscopy
Transmission electron microscopy (TEM) of untreated 

cryptococcal cells revealed round shape with regular contours, 
uniformly thick walls, and a polysaccharide capsule. The 
organelles were preserved and intact, enabling the detection 
of free ribosomes, a discrete rough endoplasmic reticulum, 
multivesicular bodies, vacuoles of a heterogeneous material and 
various sizes, and a few lipid droplets. Ligaments between cells 
and their buds were also demonstrated (Figures 5A and 5B).

However, liriodenine-treated cryptococcal cells presented 
significantly altered morphology. In both species complexes, 
the cytoplasm showed intense rarefaction and/or degradation, 
injury of organelles, vacuoles, or other structures, suggesting 
death of the microorganism (Figures 5B, 5C, 5E and 5F).

In vivo evaluation of absorption and toxicity

Clinical observation and histopathological analysis

Prior to the administration of liriodenine, all animals had 
shiny hair, and had been calm eating regularly. Such conditions 
did not change with the administration of liriodenine.

Nevertheless, 12 h after the administration of liriodenine, 
the mice that had received the dose of 1.50 mg.kg-1 of body 
weight had abdominal distension; the laparotomy revealed the 
presence of large amounts of intestinal gas (Additional file 1).  

These findings were not observed in animals that received 
liriodenine at the dose of 0.75 mg.kg-1 of body weight.

The cross-sectional histological analyses of the intestines in 
all the animals, which were observed using light microscopy, 
showed no pathological alterations with either of the doses 
administered or in either of the two different moments of 
euthanasia (Figure 6).

Figure 6. Intestinal histomorphology of BALB/c mice after administration of 
liriodenine by gavage. Note the absence of pathological changes at different 
doses (0.75 and 1.50 mg.kg-1) of liriodenine and different moments of euthanasia  
(6 and 12 h of administration) [H&E; 5XX].
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Figure 5. Transmission electron microscopy of Cryptococcus neoformans and Cryptococcus gattii species complexes. (A) Untreated Cryptococcus neoformans species 
complex cells. (B, C) Liriodenine-treated Cryptococcus neoformans species complex cells at a concentration of 31.25 µg.mL-1. (D) Untreated Cryptococcus gattii species 
complex cells. (E, F) Liriodenine-treated Cryptococcus gattii species complex cells at a concentration of 62.5 µg.mL-1. PM: plasma membrane; PC: polysaccharide 
capsule; MVB: multivesicular bodies; VA: vacuoles; LI: lipids; RER: rough endoplasmic reticulum; CR: cytoplasmic rarefaction; cell membrane irregularity.
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Figure 7. Serum levels of liriodenine were observed at 6 and 12 h after the 
administration by gavage of both doses of 0.75 and 1.50 mg.kg-1 of body weight. 
Data from one animal per dose at the time. The serum level is the average of 
three repetitions performed in each sample. 

Serum dosage of liriodenine

Liriodenine was detected in the serum of both mouse groups 
that had received it at the doses of 0.75 mg.kg-1 and 1.50 mg.kg-1 
of body weight, confirming the absorption of this substance 
after administration by gavage (Figure 7).

However, serum levels of liriodenine showed different 
behavior due to the time of administration, according to the 
dose used in the mice: the ones that had received 0.75 mg.kg-1 
presented an increase in concentration over time, while the 
opposite was observed in animals to which 1.50 mg.kg-1 had 
been administered.

Discussion
In spite of the well-conducted studies on the treatment of  

cryptococcal meningitis, many questions still remain unanswered 
in the clinical practice, stimulating the investigation of new 
compounds, such as liriodenine [6–8, 29, 30]. The choice of 
this compound was based on some previous information:  
(a) liriodenine is extracted from Annona mucosa, a plant 
available in the Brazilian region where our university is located;  
(b) liriodenine extraction was performed in this university;  
(c) its chemical composition is known, making it easier to have 
a possible future production and modification of the molecule; 
(d) the literature review revealed some antimicrobial activity; 
(e) our previous study showed its activity on some fungi, mainly 
from the Cryptococcus genus [18]. 

Antifungal susceptibility testing (AST) has become a powerful 
tool in the choice and management of treatment of many 
systemic fungal diseases. Therefore, the protocols used in AST 
should be very well standardized and validated. The ones used 
in this study were RPMI 1640 buffered to a pH 7.0 with MOPS, 
incubation of time-kill samples at 35 °C with agitation, effect 
on antifungal carryover and evaluation for at least 24 hours 
compliant to Klepser et al. [23] standardization, being most 
of them confirmed by Zaragoza et al. [31]. In addition, the 
correlations between AST and clinical response are poor with 
MIC, increase a little with minimum fungicidal concentration 

(MFC), and are much better with the time-kill methodology 
[32], which was carried out in this study. As already described 
for the fungicidal drug AMB, isolates can show different profiles 
in the time-kill methodology that are impossible to identify 
only by MIC [24–26]. Future studies on pharmacokinetics 
and pharmacodynamics associated with time-kill data should 
improve the knowledge on the in vivo activity of liriodenine.

The present study demonstrated fungicidal activity of 
liriodenine on fungi of the C. neoformans and C. gattii species 
complexes, showing MIC values ranging from 3.9 to 62.5 µg.mL-1. 
Such results are similar to those obtained by Cruz et al. [33], 
who observed the activity of the synthetic 8-nitrohormone on 
eight strains of fungi from the Cryptococcus genus, with MICs 
of 40 µg.mL-1; however, the authors did not evaluate whether the 
compound presented a fungistatic or fungicidal effect.

The MICs of liriodenine observed in the present study were 
lower than those showed by the fatty acid methyl esters extracted 
from seeds of Annona cornifolia (> 500 µg.mL-1) [34], and they 
were also lower when compared to the essential oil and its major 
components linalool and geraniol extracted from Ocimum 
basilicum var. Maria Bonita, whose MICs ranged from 156 
to 2500 µg.mL-1 [35]. Nevertheless, higher activity was found 
with maytenin and pristimerin, extracted from Maytenus 
ilicifolia (Celastraceae), when evaluated against five isolates of the 
Cryptococcus genus, showing MICs and MFCs ranging from 0.48 
to 3.90 µg.mL-1 and from 0.97 to 7.81 µg.mL-1, respectively [36].

Punicalagin, a hydrosoluble tannin extracted from Lafoensia 
pacari A. St.-Hil (Lythraceae), presented a fungistatic effect on 
fungi of the C. neoformans complex, with MICs ranging from 0.5 
to 4.0 µg.mL-1, which are values lower than those observed in the 
present study. However, its fungicidal activity was demonstrated 
at 256 µg.mL-1 [37].

The previous findings with liriodenine based on MFC [18]  
were confirmed by the present study, in which the time-
kill methodology was carried out. In addition, the intense 
morphological alterations demonstrated by TEM – suggestive of 
killed cryptococcal cells – seem to justify liriodenine fungicidal 
activity. To the best of our knowledge, this is the second study 
showing the effect of an antifungal compound on cryptococcal 
cells using TEM. 

The mechanism of action of liriodenine has yet to be 
demonstrated. The results of this study could be taken into 
consideration, contributing to fill this gap. The in vitro and in 
vivo inhibition of the topoisomerase II enzyme of the DNA, alike 
the quinolones, suggest an interference in the RNA and protein 
synthesis [38]. Furthermore, melanin, produced by the action of 
phenol oxidase on L-DOPA [39, 40], is a virulence factor for fungi 
of the Cryptococcus genus for protecting them from oxidative 
stress, phagocytosis, the action of antifungal compounds, as 
well as for modifying the host immune response [41–46]. As 
liriodenine inhibits the melanin synthesis in PC-12 cells, this anti-
melanin activity could play a role in its anticryptococcal activity 
[47]. Finally, liriodenine causes an imbalance in the iron cell 
homeostasis, leading to the accumulation of the mitochondrial 
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iron, a decrease in the number of iron enzymes, and an increase 
in the oxidative stress, which causes fungal death [48].

Ultrastructural studies of antifungal compound actions 
on Cryptococcus cells are scarce [49–51]. Subinhibitory 
concentrations, from 0.125 to 0.5 of MIC either of AmB or 
of fluconazole, alter cell and capsule size, and cell shape at 
scanning electron microscopy [49]. Terbinafine, a fungistatic 
compound, causes detachment of the cell membrane from the 
cell wall, which probably results in membrane impairment, as 
well as increased cytoplasmic vacuoles that could account for 
the lipid accumulation and mitochondrial swelling [51]. Some of 
these findings, including irregularity of cytoplasmic membranes 
and cytoplasmic vacuoles, are also observed with liriodenine, 
a fungicidal compound.

The evaluation of liriodenine serum levels after gavage 
administration suggests better absorption with the lower dose 
used, 0.75 mg.kg-1, which may be justified by the gas formation 
determined by the dose of 1.50 mg.kg-1. Thus, the abdominal 
distension due to gas formation could lead to a reduction 
in the absorption of liriodenine since the histopathological 
evaluation with the H&E staining of the intestinal fragments 
did not reveal any organic lesion. This result prompts the 
development of further studies on liriodenine or its derivatives 
as an anticryptococcal compound.

The potential weakness of this study is MIC90 higher than that 
observed with AmB. Such finding suggests the investigation of 
liriodenine derivatives with the same fungicidal activity but 
with lower MICs, which is ongoing. The best derivatives will 
progress into the determination of the mechanism of action, 
pharmacokinetic studies, and combination with other antifungal 
compounds. 

Conclusions
The present in vitro studies of liriodenine on fungi of C. 
neoformans and C. gattii species complexes demonstrated 
intense structural alterations of the yeast cells and fungicidal 
activity when assessed by time-kill methodology. These results 
suggest that this molecule can be a promising prototype of 
anticryptococcal compounds. Investigations on modifications 
of the liriodenine molecule to improve its pharmacological 
properties and experimental cryptococcal infection are 
currently ongoing for evaluating the safety and efficacy of 
this antifungal compound and its derivatives. 
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