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Abstract: Spasticity, a common symptom in patients with upper motor neuron lesions, reduces the
ability of a person to freely move their limbs by generating unwanted reflexes. Spasticity can interfere
with rehabilitation programs and cause pain, muscle atrophy and musculoskeletal deformities.
Despite its prevalence, it is not commonly understood. Widely used clinical scores are neither accurate
nor reliable for spasticity assessment and follow up of treatments. Advancement of wearable sensors,
signal processing and robotic platforms have enabled new developments and modeling approaches
to better quantify spasticity. In this paper, we review quantitative modeling techniques that have
been used for evaluating spasticity. These models generate objective measures to assess spasticity
and use different approaches, such as purely mechanical modeling, musculoskeletal and neurological
modeling, and threshold control-based modeling. We compare their advantages and limitations
and discuss the recommendations for future studies. Finally, we discuss the focus on treatment and
rehabilitation and the need for further investigation in those directions.
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1. Introduction

Upper motor neuron syndrome (UMNS) is a set of symptoms arising from damage to the
descending motor pathways from the motor cortex to the spinal cord. UMNS can be a result of stroke,
brain injury or spinal cord injury (SCI), or neurological disorders including cerebral palsy and multiple
sclerosis (MS). Some potential symptoms seen in UMNS include muscle weakness, reduced muscle
endurance, hypotonia (decreased muscle tone) or hypertonia (increased muscle tone). The damage to
the neural pathway can also affect the motor control of an affected person, resulting in worsened speed
or accuracy of movement. Spasticity is a common symptom of upper motor neuron lesions, which can
be described by increased muscle tightness and stiffness, and a hyperexcitability of the reflexes that
causes involuntary contraction of the muscles or jerky movements. Spasticity presents in varying
degrees of severity, and it can interfere with the daily activities, movement or speech of an affected
person, and can cause discomfort or pain [1]. Approximately 42% of stroke patients develop spasticity
within six months of the onset of stroke [2], and spasticity affects about 65% of patients with MS [3],
and about 70% of individuals living with SCI [4].

Despite the general understanding of spasticity, there is a lack of a commonly accepted definition,
especially in neurology and biomechanics societies. In a review of 250 studies [5], 35% simply equate
spasticity with increased muscle tone, and nearly the same number either fail to define it or use their
own definitions of spasticity. However, over 30% of studies refer to Lance’s [6,7] definition of spasticity,
i.e., “a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks, resulting
from hyper-excitability of the stretch reflexes.” Indeed, increased muscle tone, its velocity-dependency
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and stretch reflex hyper-excitability are essential in characterizing spasticity. Rigidity is a symptom
commonly seen in Parkinson’s disease, characterized by increased muscle resistance, which occurs
through the range of motion [8] and neither depends on the velocity nor the acceleration of movement [1],
which is similar yet fundamentally different from spasticity. Spasticity also needs to be distinguished
from clinically defined flexor synergy as described by Twitchell [9] and Brunnstrom [10]. An example
of flexor synergy in the clinical sense, which should not be mistaken with synergy in the context of
motor control, is an abnormal coactivation of shoulder abductor muscles with elbow flexor muscles [11].
Other factors may contribute to increased muscle activity seen in spasticity, such as cutaneous or
pain-related reflex mechanisms [12]. Therefore, it is important to differentiate spasticity from other
symptoms and identify and follow a consistent definition.

There is also a lack of consensus about the mechanisms involved in spasticity [12]. For instance,
what neurological and physiological factors are involved, and how much do they contribute to the
condition? It is challenging to answer the above question as the lesions affect different pathways in
a patient-specific way and the subsequent adaptation in the spinal network varies across patients.
The contribution of the spinal excitatory and inhibitory mechanisms and supraspinal (both inhibitory
and excitatory) pathways to spasticity are still not fully understood and require further investigation.

Assessing spasticity is important for patient follow up, especially to evaluate the effectiveness of
treatments by medication or rehabilitation [13,14], and to improve our understanding of the underlying
factors of spasticity. In this paper, we present a review of the current state of research and application
in assessing spasticity. Instead of a systematic review of the overall research, we focus on identifying
different approaches for quantitative modeling of spasticity. Representative papers were selected based
on modeling approaches to demonstrate the differences between the methodologies. We describe the
subjective measures currently used in the clinical field in Section 2. Section 3 describes the different
objective approaches and the key measures used. In Section 4, we briefly discuss the approaches,
their strengths and limitations, challenges, and future directions for spasticity research.

2. Subjective Clinical Measures

Qualitative measures are widely used in the clinical setting to assess spasticity, most notably the
Modified Ashworth Scale (MAS) [15,16] (see Table 1), which tends to be subjective, relies heavily on
the examiner’s experience, and is inaccurate, especially for the lower limbs [17]. Even for upper limbs,
there is inconsistency in the inter-rater and intra-rater reliability. While some studies reported good
inter- and intra-rater reliability [16,18], mostly for upper limb muscles, others reported poor reliability
between raters [19]. Reporting the reliability based on only two raters, as has been done in those
studies, is questionable. Pandyan et al. [17] in their review suggest that both the Ashworth Scale (AS)
and MAS are only good as ordinal and nominal level measures of resistance to passive movement,
respectively, not measures of spasticity itself.

Table 1. Modified Ashworth Scale (MAS) [16].

Grade Description

0 no increase in muscle tone.

1
slight increase in muscle tone, manifested by a catch and release or by minimal resistance

at the end of the range of motion (ROM) when the affected part(s) in moved flexion
or extension.

1+
slight increase in muscle tone, manifested by a catch, followed by minimal resistance

throughout the remainder (less than half) of the ROM.

2 more marked increase in muscle tone through most of the ROM, but affected part(s)
easily moved.

3 considerable increase in muscle tone, passive movement difficult.

4 affected part(s) rigid in flexion or extension.
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Such clinical scores are also unable to differentiate the previously discussed overlapping symptoms
seen in UMNS. The scores are also blind to the factors that cause spasticity, therefore they could not
contribute to understanding the underlying phenomena.

The Tardieu Scale is another clinical measure of muscle spasticity that can better account for the
velocity-dependent characteristic of spasticity, by assessing the passive muscle response at slow and fast
speeds. The Tardieu Scale and its modified version have been recently preferred over AS and MAS [20],
as they better follow Lance’s definition and are more sensitive to the changes in spasticity [21,22].
However, there is a lack of investigations of the Tardieu Scale reliability and quality as a measure of
spasticity [23].

The lack of consistency and reliability of subjective measures suggest a need for an objective
measure based on a quantitative approach to accurately estimate spasticity. Such objective measures
could be better suited for assessment and monitoring the subsequent treatment and rehabilitation of
the symptom.

3. Objective Approaches

To address the shortcomings of existing clinical scores, objective measures of spasticity have been
investigated in recent decades. In this section, we discuss the objective approaches that have been
employed to characterize spasticity, where different sensor-based quantitative measurements have
been used (detailed in Section 3.1) along with different modeling techniques (described in Section 3.2)
to produce outcome measures that indicate the severity of spasticity.

3.1. Sensors and Measurements

3.1.1. Electromyography

Electromyography (EMG) measures the electrical current generated in the muscles during
contraction, and the signal can represent the activity of a given muscle [24]. The EMG signal is the
product of a complicated process involving the nervous system and physiological properties of the
muscles. The signal becomes noisy due to traveling through different tissues. Surface EMG (sEMG)
uses electrodes on the skin to collect these signals, which makes it particularly prone to muscle crosstalk.
Improper placement of sEMG electrodes can cause significant variations in the signal amplitude and
spectral characteristics. These variations between recordings could be mistakenly attributed to the
effects of a treatment or rehabilitation method [25]. Electrodes that are not aligned with the muscle
fibers can also result in sEMG signals with distorted amplitude or frequencies. Staudenmann et al. [26]
found that properly aligned bipolar electrodes result in the lowest root mean square difference between
measured muscle forces and estimate muscle forces using the sEMG recordings. Despite the potential
complications, the benefit of sEMG is the ease of use and reduced discomfort when compared to
invasive techniques such as intramuscular EMG involving a needle.

Repeatability of sEMG recordings and analysis is necessary for any objective approach.
Steele et al. [27] demonstrated the high repeatability of sEMG recordings and analysis of muscle
synergies between clinical visits up to six weeks apart, suggesting that any change in the results
of signal analysis reflects a real change in the muscular activity. Accurate detection of the onset of
muscle activity is important in some approaches to quantitative modeling of spasticity, as described in
Section 3.2. This emphasizes the importance of EMG-based event detection algorithms.

Staude and Wolf [28] investigated three representative methods for “event” detection in EMG
signals: the traditional finite moving average (FMA), two-threshold (TT) criterion, approximated
generalized likelihood ratio (AGLR), as well as the cumulative sum (CUSUM) type model (with known
parameters) as a comparative reference for optimal performance. The FMA algorithm uses a sliding
window technique, comparing the (weighted) mean amplitude of the data to a threshold value. The TT
algorithm is essentially based on the sum of two subsequent squared observations, which must pass
two threshold comparisons. The AGLR algorithm gains substantial estimation performance with
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prior knowledge about the dynamic variance profile associated with a muscle activation accounted
for at the expense of more samples required [28]. The methods were compared to a model-based
(dynamic process) algorithm for better detection performance relative to the traditional methods.
They compared the estimated onsets of muscle activity to the true onsets; however, their definition of
the “true onsets” is unclear.

3.1.2. Kinematics, Force and Torque

Most investigations that quantitatively assessed spasticity used a mechanized apparatus,
e.g., [29–33], which supports the limb during the experiments. Such an apparatus allows manual
or motorized movement of the limb while recording kinematic and torque data with the integrated
sensors. This approach is functional and valid for preliminary research with high reliability, but the
restrictive nature of such setups would not represent all aspects of real, natural movement in daily
life. More importantly, the utilized devices are typically bulky, especially if they involve robotic
components [32–34], which is not feasible for widespread application in the clinical setting.

Recent advancements of wearable sensors and technologies allow for ubiquitously accurate
monitoring of our movement, activities and physical health [35–40]. In recent studies of spasticity,
few have used a portable system in their experiments. Some of the existing portable systems utilize
a flexible electrogoniometer (based on strain gauge mechanism) [41–44], which is a simple method
for measuring the joint angles. However, the resulting measurements would not be robust to the
sensor placement; for instance, if the sensor is not perfectly aligned with the frame of motion.
Electrogoniometer measurements could also result in inaccurate estimation of joint angle when the
axis of rotation is changing [45,46]. Additionally, measurement of joint angle with electrogoniometers
relies on accurately identifying the center of rotation, e.g., of the knee joint [47], which changes with
motion [48] and would be difficult to manually identify and track.

Inertial measurement units (IMU) were used in recent studies on spasticity [49–51]. IMU calibration
procedures were developed [51,52] in order to correct for imperfect placement and orientation and
to produce signals that accurately represent the real motion of the limbs under study. Estimation
of joint axis and angle estimation using IMU measurements has been shown to be accurate and
valid when compared to camera-based motion capture systems [53,54], or compared to magnetic
tracking systems [55]. IMU-based measurement of human kinematics has also been demonstrated
with high repeatability and validity, for instance in gait analysis [56,57], and when fused with other
sensors [58], and in 3D joint angle estimation [55]. Even using a single IMU has been shown to result in
accurate motion analysis in studies evaluating rehabilitation exercise performance [59,60]. As wearable
sensors, IMUs are more convenient and practical for use in a clinical setting than bulkier or stationary
alternatives such as the camera-based motion capture systems. IMU-based joint kinematics estimation
is therefore beneficial for spasticity evaluation, due to its ease of use, reliability, and repeatability of the
measurements. Wireless sEMG and IMU sensors have been combined to assess rehabilitation activities
such as reaching, flexing movements and other exercises [61,62], where high intra- and inter-subject
reliability were demonstrated for the measurements [63]. IMU and sEMG sensors have also been used
for load estimation in the industrial setting and showed potential in estimation of the biomechanical
overload risks for manufacturing workers [64].

Many of the studies discussed in this review included in their analysis the resistive force (in many
cases represented with torque) generated by the spastic muscles being investigated. Detailed in
Section 3.2, some studies aimed to model and estimate the reflexive force and the EMG activity, as they
reflect the magnitude of the spastic response to muscle stretch. The force or torque was also related
to other outcome measures to characterize spasticity. As mentioned previously, the joint torque was
often measured by a torque sensor in the experimental apparatus, otherwise the reactive force was
measured by a multi-degree-of-freedom force sensor, or torque estimated by other sensors such as a
dynamometer [34] or differential pressure sensor [65].
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3.2. Quantitative Models

This section describes three quantitative modeling approaches of spasticity and different examples
of each approach. The reviewed studies grouped based on their modeling approaches can be found in
Tables 2–4, along with details on used sensors, methods, and computed measures.

3.2.1. Mechanical Models

Several studies approached modeling spasticity from a purely mechanical perspective [30,31,65–67].
Chung et al. [30] measured the resistive joint torque and angular position of the hemiplegic spastic ankle
during passive dorsi- and plantar flexion motion. The slope of the torque-angle curve (see Figure 1) at
the dorsiflexion ROM limit represented the quasi-stiffness of the ankle joint. Additionally, the area
inside the curve across the dorsiflexed ROM represented the energy loss during dorsiflexion, which was
then normalized by the ROM limit. Higher stiffness and energy loss indicate higher resistive forces
during the joint motion, suggesting severe spasticity. The resistive torque at the nominal limits of
plantar flexion and dorsiflexion, as well as the ROM, were also considered as outcome measures,
where a smaller ROM and higher torque would suggest more severe spasticity. The participating stroke
subjects showed significantly higher resistive torque, stiffness, and energy loss, as well as lower ROM
when compared to healthy control subjects. These passive biomechanical properties had moderate
to low correlation with the MAS scores (Kendall τ = 0.294, 0.297, 0.230 for torque, quasi stiffness,
and energy loss, respectively; p < 0.05) [30], thus could provide informative measures of the spasticity
in the muscles acting on the ankle joint.
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Figure 1. Representative torque-angle curves (hysteresis loops) from the experiments of Chung et al. [30]. The limit
of dorsiflexion range of motion (ROM) was designated as the point of 10 Nm of resistive torque in both stroke
and control subjects. The quasi-stiffnesses are the s.stiff and c.stiff slope values, respectively, for the stroke and
control subjects.
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Table 2. Reviewed mechanical approaches to modeling spasticity.

Authors Target Population Target Joints Sensors Method Outcome Measures

Alibiglou et al. [31] Post-stroke Elbow and ankle Non-wearable 6-axis force sensor,
potentiometer, tachometer

Motor-driven motion; system
identification model; goodness of
fit evaluated by percent variance

accounted for (%VAF)

Intrinsic stiffness, reflex
stiffness; near-zero

correlation with MAS

Chen et al. [65] Post-stroke Elbow Wearable gyroscope, differential
pressure sensor, sEMG sensors

Manually driven motion;
phase-shifted torque-angle curve

Average viscosity (across
multiple stretching

speeds), muscle activity
onset

Chung et al. [30] Post-stroke Ankle Non-wearable 6-axis force sensor,
unspecified kinematics sensors

Motor-driven motion;
torque-angle curves

Resistance torque,
quasi-stiffness, energy loss

and ROM; low to
moderately correlated

with MAS

Park et al. [66] CP (children) Elbow Unspecified kinematics and
force sensors

Manually driven motion; model
of torque during pre-, during,

and post-catch phases

Replication of MAS level
on simulated spastic

elbow (haptic device);
model accuracy evaluated

by blinded assessors

Wu et al. [67] Post-stroke Elbow
Non-wearable potentiometer,

torque sensor; wearable
sEMG sensors

Manually driven motion;
torque-angle curve, 4-D

characterization of catch angle
using torque, torque rate of
change, angle and velocity;

model accuracy evaluated by
mean square error

ROM, stiffness, energy
loss, catch angle; high
correlations with MAS
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Table 3. Reviewed musculoskeletal and neural dynamics approaches to modeling spasticity.

Authors Target Population Target Joints Sensors Method Outcome Measures

Koo and Mak [34] Post-stroke Elbow
Non-wearable dynamometer and
needle EMG electrode; wearable

sEMG sensors

Motor-driven motion; parameter
identification in torque estimation

and sensitivity analysis; model
goodness of fit evaluated by root

mean square error (RMSE)

Minimum spindle firing
rate for 0.5% neural

excitation, muscle spindle
static gain

Lindberg et al. [68] Post-stroke Wrist
Non-wearable stepper motor,

unspecified force sensor;
wearable sEMG sensors

Motor-driven motion (multiple
speeds); force estimation to

separate into components; re-test
with ischemic nerve block

Neural component (NC)
of force—model validated

by NC reduces with
ischemic nerve block and
velocity dependence of

NC; moderate correlation
between NC and MAS,
also integrated EMG

Shin et al. [69] Post-stroke Ankle
Non-wearable torque sensor,

rotary encoder; wearable
sEMG sensors

Manually driven motion;
parameter identification in torque
estimation; model goodness of fit
evaluated by %VAF, normalized

RSME, and R2

Muscle spindle firing rate
for 50% motor neuron
recruitment, standard

deviation of alpha motor
neuron pool function

de Vlugt et al. [70] Post-stroke Ankle
Non-wearable potentiometer,

force transducer; wearable
sEMG sensors

Motor-driven motion (multiple
speeds); parameter identification

in torque estimation; model
goodness of fit evaluated by

%VAF, performance
by repeatability

Stiffness and viscosity
parameters; stiffness

moderately correlated
with AS at low speed,

reflex torque moderately
correlated with AS at

fast speeds

Wang et al. [71] Post-stroke Wrist
Non-wearable force transducer,
high-precision stepper motor;

wearable sEMG sensors

Motor-driven motion (slow and
fast speed); parameter
identification in torque

estimation; model goodness of fit
evaluated by %VAF and R2

Passive stiffness, muscle
spindle firing rate for 50%
motor neuron recruitment,
motor neuron pool gain
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Table 4. Reviewed threshold-control approaches to modeling spasticity.

Authors Target Population Target Joints Sensors Method Outcome Measures

Arami et al. [51] Incomplete SCI Ankle Wearable IMUs, 6-axis force
sensors, wireless sEMG sensors

Manually driven motion at
different knee angles; DSRT
model for dorsi- and plantar

flexor muscles; models goodness
of fit evaluated by R2

Model µ and TSRT for
each muscle; spastic joint

space; joint torque
moderate-high correlation

with DSRT angle
and velocities

Bar-On et al. [49] CP (children) Knee and ankle Wearable IMUs, 6-axis force
sensors, wireless sEMG sensors

Manually driven motion; DSRT
model and torque-angle curve;

model evaluated by repeatability

ROM, max velocity,
average RMS-EMG,
torque, and work

Blanchette et al. [42] Post-stroke Ankle Wearable electrogoniometer,
sEMG sensors

Manually driven motion; DSRT
model for plantar flexors

Model µ and TSRT;
interrater reliability

for TSRTs

Calota et al. [43] Post-stroke Elbow Wearable electrogoniometer,
sEMG sensors

Manually driven motion; DSRT
model of biceps brachii

TSRT; moderately good
intra- and interrater

reliability, no correlation
with MAS

Germanotta et al. [32] CP (children) Ankle

Non-wearable mini-rail linear
encoders, unspecified torque

sensor; wearable wireless
sEMG sensors

Motor-driven motion; DSRT
models of dorsi- and plantar

flexors; goodness of fit evaluated
by r correlations

Model µ and TSRT; low to
moderate correlations

with MAS

He et al. [44] MS Knee Wearable electrogoniometer
Pendulum test [72]; estimation of

swing trajectory during
pendulum test

DSRT, TSRT and stretch
reflex gain

Jobin and Levin [73] CP (children) Elbow
Non-wearable angle and velocity

transducers; wearable
sEMG sensors

Motor-driven motion; DSRT
models of elbow flexors and

extensors

TSRT; high test-retest
reliability by ICC, no
correlation with CSI2

Kim et al. [41] Post-stroke Elbow Wearable twin-axis
electrogoniometer, sEMG sensors

Manually driven motion; DSRT
models, K-means clustering of

TSRT groups

Significant differences
between K-means groups
(3 levels), no significant

differences between
groups by MAS; very high

correlation between
K-means groups

and TSRTs
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Table 4. Cont.

Authors Target Population Target Joints Sensors Method Outcome Measures

Levin and Feldman [74] Post-stroke Elbow Non-wearable precision digital
resolver; wearable sEMG sensors

Motor-driven motion; DSRT
models of elbow flexors

and extensors

Model µ and TSRT;
moderate correlations

with MAS

Mullick et al. [1] Post-stroke, Parkinson’s Elbow Non-wearable precision axial
gauge; wearable sEMG sensors

Motor-driven motion 1; DSRT
models of elbow flexors and

extensors; goodness of fit
evaluated by R2

Sensitivity of DSRT to
velocity – high for

post-stroke, near-zero for
parkinsonian; zero

correlation between µ and
TSRT and CSI 2

Turpin et al. [75] Post-stroke Elbow Non-wearable optical encoder;
wearable sEMG sensors

Manually driven (passive) and
active motion; DSRT models of

flexors and extensors

Velocity sensitivity µ and
TSRT increased in active
stretch; change in TSRT

between passive and
active was moderate to

highly correlated with CSI
2 and FMA 3

Zhang et al. [76] Post-stroke, brain trauma, SCI Elbow Wearable IMUs and
sEMG sensors

Manually driven motion; DSRT
model of flexor muscle,
reconstructed models of

kinematic profiles; supervised
single/multi-variable linear

regression and support
vector regression

Predicted evaluation
scores (MAS) using TSRT,

biomarkers from
kinematics models, and

combination of both;
models estimation

performance evaluated by
mean square error

1 Velocity profile was bell-shaped (more natural), other motor-driven apparatus used ramp-shaped motion; 2 Composite Spasticity Index [77]; 3 Fugl-Meyer Arm Assessment [78].
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Spasticity is typically characterized by the velocity-dependent increase in muscle tone, and the
“catch”—the joint angle where the increased tone suddenly appears during fast passive stretching of
the muscle [79]. To model this changing of muscle tone, Park et al. [66] divided the stretching motion
of the elbow into three phases: pre-catch, catch, and post-catch. For the pre-catch phase, the passive
elbow resistance was modeled as a linear mass-spring-damper system:

τpre = m
..
θ+ b

.
θ+ kθ (1)

where m is the inertial mass of the hand and forearm, and b and k are the damping and stiffness,
respectively. The catch angle can be represented as:

θcatch = θi +
L

.
θpre

(2)

where L is the catch angle constant, θi is the angle at the beginning of the stretching motion, and
.
θpre

is the average speed during the pre-catch phase. During the catch phase the elbow resistance was
modeled as:

τcatch = h
.
θc_startδ(t) + τpre_end δ(t) =

{
1 i f t− tc_start < ∆tc

q (q < 1) i f t− tc_start ≥ ∆tc
(3)

where h is the catch torque constant,
.
θc_start is the stretching speed at the beginning of the catch phase,

τpre_end the torque at the end of the pre-catch phase, q the residual torque constant, tc_start the time when
catch begins, and ∆tc the duration of peak torque. Finally, the elbow resistance during the post-catch
phase was represented as a position-dependent torque:

τpost = kpost
(
θ− θpost_start

)
+ m

..
θ+ b

.
θ (4)

where kpost is the stiffness and θpost_start is the initial joint angle of the post-catch phase. The model
was based on analyzing the kinematics and force measurements during passive elbow stretching with
four cerebral palsy (CP) participants. The MAS scores of the subjects were also assessed, and the
complete model was used to simulate each subject’s spasticity in a haptic device consisting of a robotic
arm, motor, and controller. The clinicians then performed the MAS assessment on the haptic device,
which simulated the other subjects that they had not assessed previously, to validate the results of
the modeling.

3.2.2. Musculoskeletal and Neural Dynamics Models

Previous reviews on the objective characterization of spasticity showed the importance of
differentiating the mechanical (musculotendon) and neural components of spasticity, especially for
monitoring the effects of treatment or rehabilitation [80,81]. Obtaining those components requires the
inclusion of both biomechanical and electrophysiological signals in the assessment of spasticity.

To model the neural and physical components of spasticity, several studies have designed
theoretical controllers that include the musculoskeletal geometry, musculotendon dynamics, muscle
spindle, motor neuron pool and subsequent muscle activations. The theoretical controllers receive
the measured kinematics as inputs to estimate the force [68] or torque [34,69–71] generated by the
muscles (due to reflex) for a given passive movement. The controller parameters consist of neural and
non-neural parameters (e.g., muscle spindle firing rate, passive viscoelasticity, etc.) and are optimized
to fit to the measured data. The estimated force or torque is generally represented as a sum of the
effects of inertial, gravitational, and active muscle forces [69]:

τT = τI + τG + τM (5)
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where τT is the measured torque, τI represents the torque from the moment of inertias, τG is the torque
generated by gravity, and τM is the muscle torque consisting of a passive and active element, as in the
following equation [69]:

τM = τpassive + τactive (6)

The passive torque is characterizable beforehand by a slow, passive movement (e.g., joint angle
speed of 15 deg/s), which minimizes muscle activation, leaving only the passive parameters to be
identified by fitting the measured torque-angle curve [69]:

τpassive = r(θ)
(
kE1ekE2∆L + B

.
L + F0

)
(7)

where r(θ) is the moment arm about the joint, L is the muscle length, kE1 the coefficient of the elastic
exponential curve, kE2 the rate of change of the curve slope, B the viscosity coefficient, and F0 the
elastic curve shape parameter. The active torque generated by the muscle was calculated based on the
Hill-type muscle model, such as in [69]:

τactive = r(θ)∆a(t) fv
( .
L
)

fl(L) (8)

where fv
( .
L
)

the relation between moment and rate of change of muscle length, fl(L) the relation
between moment and muscle length, and a(t) is the muscle activation function, which includes the
muscle spindle and motor neuron pool models.

Figures 2 and 3 show examples of a theoretical controller used to indirectly estimate active torque
generated by spastic reflex, allowing for identification of parameters related to the reflex. These models
are used to estimate the measured experimental torque at the joint, and the optimized biomechanical
and neural parameters of the controller are the outputs of this type of quantitative modeling which can
characterize the level of spasticity. The models are complex and while they can be used to simulate
spastic behavior, they may be less applicable in clinical evaluations.
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Figure 3. Another similar model used by Koo and Mak [34] that combines the moment arms of all
the muscles that affect the joint movement being investigated with their active forces to estimate the
resulting reflex torque.

3.2.3. Threshold Control Models

Several spasticity models have been developed based on muscle reflex models and the stretch
reflex threshold (SRT). One hypothesis of how the central nervous system (CNS) controls human
movement is threshold position control [82], or in a more general form, the Equilibrium Point (EP)
hypothesis [83]. The EP hypothesis suggests the CNS changes the relationship between length and
force in muscles to reach a new position and force equilibrium where opposing muscle forces are
balanced, resulting in movement or a static posture. Specifically, it assumes the CNS controls a motor
action, whether single-joint or multi-joint, by modulating the thresholds or EPs, which results in
transitioning between states along a planned trajectory. Spasticity can be defined as an involuntary,
velocity-dependent increase in tonic stretch reflexes, or reduction in the threshold of muscle stretch
at which the tonic reflex begins and muscle force increases as a function of length. Since spasticity
distorts the tonic reflex thresholds, it can adversely affect the motion control, which can be described
by the EP hypothesis.

Levin and Feldman [74] used sEMG recordings to detect the onset of the elbow flexor muscle
activations as a result of spastic hyperexcitability during passive extension at different speeds. In their
experiment, a motorized apparatus was used to hold and passively move a participant’s arm,
while recording the kinematic data. Figure 4 shows an example of a motorized setup and an example
of a manual setup for investigations of the lower extremities.
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The joint angular velocity and the joint angle at the onset of spasm was used to define the dynamic
stretch reflex threshold (DSRT). Repeating passive elbow extension multiple times at different speeds
allowed for data-driven modeling, building a linear regression model on the combined data for a
given motion and associated muscle(s). The intercept of this linear model (Equation (9)) with zero
velocity represents the tonic stretch reflex threshold (TSRT) (see Figure 5a). Several other investigations
used this fundamental approach to evaluate spasticity [1,32,41–43,51,73,76], based on the following
equation [74]:

DSRT = TSRT − µ×Velocity (9)

where µ represents the sensitivity of the dynamic stretch reflex threshold to velocity, and a higher µ
means greater spasm sensitivity to velocity.
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Figure 5. (a) Example of tonic stretch reflex threshold (TSRT) estimation by 20 dynamic stretch reflex
threshold (DSRT) points found by stretching the elbow flexor muscle biceps brachii at different velocities;
(b) example of a threshold model for a post-stroke subject versus healthy person, where the TSRT lies
outside the biomechanical range of the joint [43].

For an individual with spasticity, the TSRT of an affected muscle is shifted within the biomechanical
range of motion of a joint, even at a relax state, preventing movement throughout the full range.
In contrast, the TSRT for a healthy individual or unaffected muscle would lie outside the ROM. This is
supported by their dynamic stretch reflexes only appearing at higher potential velocities (see Figure 5b),
in a case such as a knee tendon tap, which evokes a similar response to a very high stretch velocity of
the quadriceps muscles, in excess of 300 deg/s [73,84]. Therefore, as the quantitative outputs of the
model, a lower TSRT value and higher µ value would suggest more severe spasticity for a specific
muscle. Combining the models for the muscles acting on a particular joint can provide a map of the
spastic joint space [51].

The mentioned studies, including the purely mechanical approaches and musculoskeletal and
neural dynamics models, investigated spasticity through passive-movement experiments. However,
in daily life situations and outside of the lab setting, spasticity could also be triggered due to active
movement. Thus, it is important to extend the scope of experiments to include active movements to
characterize and assess spasticity in a more comprehensive capacity.

According to the threshold control theory, some believe that spasticity can be described as an
impaired ability to regulate the tonic stretch reflex thresholds, and recent studies have begun to
investigate this concept. Turpin et al. [84] tested both passive flexion and extension of the elbow joint
by an experimenter, and with active, volitional elbow motion in identical conditions. Passive and active
movements were performed with the same range of motion specific to each participant at a variety of
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joint angular velocities. Obtained TSRTs were at greater angular displacements, corresponding to more
stretched muscles, in the active stretching compared to the passive stretching (by 10–40 deg), suggesting
an increase in non-spastic ROM. Conversely, the slopes of the regressions (parameter µ) were increased
by 1.5 to 4.0-fold, showing a higher sensitivity to velocity during volitional control. These findings
suggest that during volitional motion an affected individual could stretch the muscle/extend the
joint further than the during passive motion, particularly at slower speeds. However, at greater
velocities the DSRTs estimated from active and passive motions are in a similar range. Figure 6 shows
a representative subject from that study.
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Figure 6. A representative subject in [84] where in the active stretching of elbow flexors—biceps brachii
(BB) and brachioradialis (BR)—the TSRTs were found to occur at greater joint angle or higher stretch.
In contrast, the sensitivity to velocity was found to be increased in both muscles, when compared to
passive motion.

In an earlier study on implicit learning and generalization for stretch reflexes in healthy subjects,
Turpin et al. [75] found the amplitude of the stretch reflex decreases and remains attenuated by
5–12 repeated stretches, and does not increase even after 5 min of rest. This observation can be
explained by the anticipation of the stretching which can result in the pre-modulation of spatial
thresholds that can suppress the muscle resistance to stretch. This pre-tuning of stretch reflex is similar
to the clasp-knife phenomenon [85] seen in individuals with Parkinson’s disease and stroke survivors
who have rigid or spastic muscles [86,87].

4. Discussions

4.1. Comparing the Modeling Approaches and Future Directions

Subjective measures, most commonly the AS and MAS, as well as other clinical scores, are currently
used to assess spasticity in clinical practice. These scores are easy to obtain and do not require any
equipment and sensors, unlike the objective approaches. However, the issue remains of their
questionable reliability, weak correlation with muscle activity measurements of the reflexes [73,88,89],
and inability to reflect the complex mechanisms of the spastic reflexes. Despite these shortcomings,
subjective measures should not be totally abandoned until a reliable, objective measure is found and
established, but they need to be supplemented with current quantitative approaches.
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The mechanical modeling approaches represent spasticity at the joint level, usually in joint
torque-kinematic space, whether by identifying biomechanical properties that differ between a healthy
individual and an individual with spasticity (e.g., change in joint mechanical impedance) or representing
the spastic behavior by a simulation model. The outcomes have been shown to moderately correlate
with clinical scores such as the MAS [30], demonstrating the potential of this type of approach, which is
also simpler and easier to use in a clinical setting than more complex modeling approaches. However,
as previously discussed, the assessment of spasticity for follow up and treatment is better accomplished
by differentiating biomechanical and neural components of spasticity, using both mechanical variables
and electrophysiological signals [80,81].

The resulting biomechanical and neural parameters of the musculoskeletal and neural dynamics
models allow for characterizing spasticity at the muscle level. The obtained measures may allow
understanding of some aspects of the neurophysiology of spasticity, and could potentially be applied
to the development of treatments. For example, Shin et al. [69] arrived at optimized parameters µ
which represents the muscle spindle firing rate at 50% motor neuron recruitment, and σ as the standard
deviation of the Gaussian cumulative distribution that represents the function of the alpha motor
neuron pool. A lower µ means a lower minimum spindle firing rate which indicates hyper-reflexia
in the muscle [90]. The higher reflexive torque (increased muscle tone) found with lower µ and σ
values in their experiments shows a possible relationship between those parameters and spasticity.
Koo and Mak [34] showed similar results by looking at µ0, the minimum spindle firing rate for just
0.5% neural excitation, and GL as the muscle spindle static gain. These parameters were posited to be
more physiologically meaningful in relation to spasticity. Using sensitivity analysis, µ0 and GL were
determined as the key parameters when predicting reflex torque. Koo and Mak suggested that drug or
treatment development could be focused on effectively regulating those specific parameters. Clinical
scores have been used besides this modeling approach to assess the subjects’ spasticity [70], and it was
found that stiffness, viscosity, and reflex torque are positively correlated with AS scores. However,
the authors did not include neural parameters in their torque estimation model, and instead used
measured EMG to estimate the neuromuscular activity due to stretch reflex. Recent advancements
in joint mechanical impedance estimation during active movements [91–94] would allow further
investigations on how spasticity affects the modulation of joint impedance, particularly joint stiffness
and viscosity, during volitional movement and walking.

From a research-oriented point of view, this type of investigation can provide meaningful details
about spasticity. However, they are not likely to be clinically applicable, as also mentioned in
other reviews of the literature [95], due to the complexity and time required for setup preparation
and data processing. An easy to use objective assessment method that can still benefit from
high level neural and mechanical modeling could provide a more suitable solution for spasticity
assessment in the clinics. This high-level approach could be based on the threshold control-based
models [1,32,41–43,51,73,74,76,84], which explicitly reflect the velocity-dependence of spasticity.
These models have also been shown to be moderately correlated with clinical scores, agreeing
with the current practice and are generally simpler than the methods that use parameter-based
estimations of spastic responses. While these models are usually acquired with robotic setups which
can be complex and not available in every clinic, several studies showed the potential of using wearable
sensors and inexpensive hand-held instruments to obtain such models accurately [49–51].

Previous studies have found that the spastic reflex is affected by the initial stretch level at the
beginning of a stretching motion, given the same stretching velocity [29,96]. Kamper et al. [29] found
that with longer initial lengths of the elbow flexor muscles, the reflex threshold and stiffness were
significantly reduced and increased, respectively, indicating a negative relationship between the initial
muscle length and the spastic reflex. The approaches discussed in Section 3 do not account for this
observation. Future studies should incorporate varying initial stretch positions in addition to varying
stretch speeds in their investigations.
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More recent studies have found that the firing of muscle spindles is not necessarily unique
in relation to muscle length and stretch velocity but may be more directly related to muscle force.
Blum et al. [97] demonstrated that the instantaneous firing rates (IFRs) of muscle spindle primary
afferents are significantly better predicted by force-related variables than muscle length-related
variables, especially at higher stretch velocities. Falisse et al. [98] also found that estimating muscle
activity (using EMG) during spastic reflexes in passive motion, as well as gait in children with CP,
was better accomplished using measured force (applied by the examiner in passive motion and
ground reaction forces in gait) than models that estimated using kinematics variables. For instance,
the activity of the hamstrings was predicted significantly better in both cases by force than velocity or
acceleration (R2 = 0.73 ± 0.10, 0.46 ± 0.15 and 0.47 ± 0.15, respectively). These results suggest a need
for incorporating reflex generated muscle force or torque into the modeling of spasticity beyond that of
estimating the measured profiles using other variables such as joint kinematics. Future investigations
should aim to consider the relationship between muscle force and the spastic reflex in characterizing
and assessing spasticity.

4.2. Effect of Spasticity Modeling on Follow-Ups and Treatment

As discussed previously, reliable and accurate assessment of spasticity by objective measures could
lead to better follow-ups and treatment. Previous studies of treatment of spasticity have been limited
by solely using clinical scores to evaluate the effects of the treatments. Simpson et al. [99] used the
AS to evaluate the efficacy of botulinum toxin type A (BTX-A)—a common treatment option—on the
upper limb spasticity in post-stroke subjects. The experiment was randomized, double-blind and
placebo-controlled, but the limitations of the AS calls into question the results that showed significant
reductions in spasticity. In a recent study by Turna et al. [100] the effects of different injection techniques
of BTX-A were investigated for treating ankle plantar flexor spasticity. To compare those techniques
the effects of the treatment were evaluated with subjective scores including the AS, Brunnstrom stages,
and Barthel index score, which again limits the reliability of the results.

Some studies have initially explored the idea of investigating the effects of treatments and
management of spasticity by objective measures. Chen et al. [65] compared the spasticity in the affected
biceps-brachii muscle in ten chronic stroke patients, two weeks before and after BTX-A injection.
Measured by a portable device, the elbow joint kinematics, reactive torque and muscle activity were
analyzed to estimate the viscosity of the muscle and the DSRTs (as a percentage of the stretch cycle).
They found a significant decrease in viscosity and a significant increase in DSRT after injection.
The results indicated a reduction in spasticity, which agreed with their MAS assessments performed
before and after the treatment. However, Pandyan et al. [15] identified reductions in spasticity in the
elbow flexors of stroke patients, which were not detected by the MAS assessments. These results
reinforce the idea that clinical scores offer an insufficient and unreliable evaluation of spasticity. A better
measure of spasticity can be obtained by employing quantitative evaluations that provide objective,
accurate measures of spasticity and offer models that can predict spastic behavior [65]. Investigations
beyond this preliminary research could potentially reveal precise relationships between dosage and
the effects, allowing for an optimally effective plan to be designed for each patient [15,65].

Several studies have investigated repetitive transcranial magnetic stimulation (rTMS) and
functional electrical stimulation (FES) and their effect on spasticity. Several studies found that
rTMS significantly reduces spasticity in the lower limbs, for instance, in SCI participants with the
effects lasting up to a week as measured by the MAS [101], and in stroke patients [102] as measured by
their own clinical scale. Franek et al. [103] found that FES improves spasticity in the hip adductors
of subjects with SCI for a few days up to a few months, as evaluated by a subjective scale (scale of
1–6) and objective measures such as H reflex recruitment curves and the number and intensity of
contractions, while Alfieri [104] found that not all their participants (varying cases with hemiplegia
and SCI) benefitted from FES. Powell et al. [105] found that FES improves wrist extensors strength
and ROM, though not specifically for spasticity as evaluated by AS, and it was unclear how long the
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effects lasted. A review of ten recent studies [106] found that spasticity was significantly reduced in
quadriplegic and paraplegic patients by treating with FES-cycling exercise. However, the effects were
primarily evaluated by MAS. Overall, there is limited evidence of the benefit of FES for spasticity,
and in many cases the utilized subjective scores and their lack of reliability (particularly for lower
limbs) could have contributed to the mixed results. Objective measures of spasticity, such as the DSRT,
could better evaluate and potentially prove the usefulness of FSE and rTMS for alleviating spasticity in
conjunction with other treatments or rehabilitation [107].

5. Conclusions

This paper reviewed different approaches used for modeling spasticity, with a focus on objective
and sensor-based systems. Approaches that use purely mechanical modeling can provide some
information on the biomechanical properties of spastic behavior but lack consideration for the neural
factors of spasticity and electrophysiological activity. The musculoskeletal and neural dynamics
models can provide insight into the detailed mechanisms of spasticity, such as the theoretical
neural parameters involved in the spastic reflex but lack practicality and applicability in the clinical
environment. The threshold control-based models can provide an easy-to-use objective method of
assessment, especially with wearable sensors in the clinical setting. However, further investigations
into the neural mechanisms involved in spasticity may prove beneficial for better understanding and
assessing spasticity.

There is a need to develop a system that can provide an objective, accurate and reliable assessment
of spasticity—especially in the lower limbs—to better evaluate the effects of treatment and rehabilitation
options. Identifying an accurate and objective spasticity model for each patient allows for predicting
the kinematic states that provoke spastic behavior. Such a model could inform rehabilitation programs
and enable adapting the assisted movements provided by a physiotherapist or an assistive exoskeleton
so that uninterrupted exercises may be achieved. Obtaining spasticity-free assisted exercises has the
potential to remarkably improve the outcomes of physical rehabilitation.
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