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Abstract

The final stage of Ebola virus (EBOV) replication is budding from host cells, where the matrix

protein VP40 is essential for driving this process. Many post-translational modifications

such as ubiquitination are involved in VP40 egress, but acetylation has not been studied yet.

Here, we characterize NEDD4 is acetylated at a conserved Lys667 mediated by the acetyl-

transferase P300 which drives VP40 egress process. Importantly, P300-mediated NEDD4

acetylation promotes NEDD4-VP40 interaction which enhances NEDD4 E3 ligase activity

and is essential for the activation of VP40 ubiquitination and subsequent egress. Finally, we

find that Zaire ebolavirus production is dramatically reduced in P300 knockout cell lines,

suggesting that P300-mediated NEDD4 acetylation may have a physiological effect on

Ebola virus life cycle. Thus, our study identifies an acetylation-dependent regulatory mecha-

nism that governs VP40 ubiquitination and provides insights into how acetylation controls

EBOV VP40 egress.

Author summary

Ebola virus (EBOV) is one of the deadliest pathogens, causing fatal hemorrhagic fever dis-

eases in humans and primates. In this study, we find that P300-mediated NEDD4 acetyla-

tion facilitates EBOV egress. Acetylation promotes NEDD4-VP40 interactions which

enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitina-

tion and subsequent egress. This study implies that inhibitory effect of acetylation can be

regarded as an attractive candidate of drug target for the treatment of Ebola virus disease.

Introduction

Ebola virus (EBOV) is one of the deadliest pathogens, causing fatal hemorrhagic fever diseases

in humans and primates [1,2]. The outbreak in the Democratic Republic of Congo during

June 2020 caused significant alarm. The core nucleocapsid structure of EBOV is composed of

viral RNA, nucleoprotein (NP), viral protein (VP) 35, VP30, and the polymerase L [3–5].
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Surrounding the core structure are the matrix protein VP40 and a host-derived lipid envelope

where the glycoprotein (GP) is inserted [6,7].

The final process of EBOV replication is the budding of viral particles from the host cells

where the matrix protein VP40 is necessary and sufficient to drive it [8–12]. VP40 connects

the viral nucleocapsid to the inside of the cell membrane and promotes the egress event to

achieve the whole viral life cycle, which depend on its oligomerisation ability [13]. When the

C-terminal domain (CTD) of VP40 attaches to cell membranes [14], it then forms polymers

through self-interactions of N-terminal domain (NTD), which contributes to the release of

EBOV particles [15]. VP40 can form linear hexamers and octamer rings [16]: the hexameric

VP40 plays a great role in lipid raft and viral particle formation [17,18]; the octameric VP40 is

essential for binding and viral life cycle [8,19]. Although VP40 is the core driving force in

EBOV egress, other viral proteins, such as GP and NP, can also enhance efficient viral particles

release [20]. In addition to viral proteins for the budding process, EBOV has further developed

several strategies to manipulate host proteins for mediating viral egress. For example, EBOV

hijacks the host cytoskeleton and the ESCRT machinery to facilitate the assembly and budding

of their virions [21–24].

The NTD of VP40 contains two overlapping late budding domains (L domains), namely

7PTAP10 and 10PPEY13 [5,9,25,26] and the L domains can interact with host factors containing

WW domains. This interaction can make VP40 tagged post-translational modifications

(PTMs), especially ubiquitination [9,27–32]. Ubiquitin functions as an internalization signal

that delivers the EBOV VP40 to the cell membrane, followed by viral assembly and budding

[33,34]. NEDD4 is a member of the HECT family of WW-domain- containing ubiquitin

ligases that catalyzes VP40 ubiquitination which facilitates VP40 egress [9,26,30,35]. Strikingly,

the expression of cellular IFN-stimulated gene ISG15 decreases NEDD4-mediated VP40 ubi-

quitination. ISG15 competitively interacts with NEDD4 to block its E3 ligase activity and then

inhibits EBOV VP40 egress [36,37], which provides a snapshot of the negative regulatory land-

scape of NEDD4-mediated VP40 budding process.

In addition to ubiquitination, a growing number of other PTMs have also been reported to

function during the release of EBOV VP40 VLPs, such as phosphorylation and SUMOylation.

For example, the expression of c-Abl1 stimulates the phosphorylation of VP40, which

increases the release of EBOV VLPs [38]. Furthermore, VP40 also undergoes small ubiquitin-

like modifier (SUMO) modification, which regulates the stability of VP40 and affects its bud-

ding [39]. Though the role of PTMs in regulating EBOV VP40 budding is well established, lit-

tle is known about the acetylation controlling the budding process of VP40.

Acetylation has been identified as an evolutionarily conserved modification in key cellular

processes and has recently been exploited to play a broad and critical role in viral infection

[40,41]. Viruses have also evolved to manipulate the acetylation network to facilitate viral

propagation at multiple steps of viral life cycle. For example, acetylation is critical in the early

stages of human immunodeficiency virus type 1 (HIV-1) infections [42–44]. Likewise, Kaposi’s

sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) infections induce

the acetylation of microtubules and facilitate subsequent transport of viral particles [45,46]. In

the context of the acetylation and viral release stage, influenza A virus (IAV) nucleoprotein at

K229 acetylation impairs the release of viral particles [47]. Conversely, acetylated microtubules

can promote IAV release via upregulating the trafficking of viral components to the plasma

membrane [48].

In this study, we found that NEDD4 was acetylated by P300 and enhancements in NEDD4

acetylation status dramatically increased NEDD4 E3 ligase activity and ubiquitination of

VP40, resulting in subsequent migration of VP40 to the plasma membrane and egress. This
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study revealed crosstalk between acetylation and ubiquitination, which vastly expanded the

functional diversity of NEDD4 in the regulation of EBOV VP40 egress process.

Results

Acetylation-mimicking mutation of NEDD4 promotes VP40 budding

PTMs play critical roles in the EBOV VP40 budding process [33], but protein acetylation has

not yet been explored. Therefore, we aimed to investigate whether acetylation was involved in

regulation of the EBOV VP40 budding process. We used three broad-spectrum deacetylase

inhibitors to increase the level of cellular acetylation and then examined the release of VP40

VLPs. We found that when all proteins were detected at equivalent levels in cell lysates, the

HDAC deacetylase family inhibitors trichostatin A (TSA) (Fig 1A, lane 2) and suberoylanilide

hydroxamic acid (SAHA) (Fig 1A, lane 3) could facilitate the release of VP40 VLPs (compared

to Fig 1A, lane 1), while the increased levels of acetyl-tubulin implied the two inhibitors had

worked (Fig 1A). Interestingly, the SIRT deacetylase family inhibitor nicotinamide (NAM)

could not enhance VP40 egress which suggested SIRT deacetylases may have no influence on

VP40 budding (Fig 1A, compared with lanes 1 and 4). In order to verify the specificity of the

enhancement on VP40 egress by HDAC deacetylase inhibitors, we treated HEK293T cells with

increasing concentration of TSA. We found that VP40 VLP production was specifically

increased in response to increases in TSA concentration (S1A Fig). The above data indicated

that the enhanced cellular acetylation by HDAC deacetylase inhibitors may promote EBOV

VP40 egress.

Given that VP40 is essential for driving viral budding, we assumed that enhanced cellular

acetylation may increase VP40 acetylation levels which subsequently facilitated VP40 egress.

In S1B Fig, we used an anti-acetyl-K antibody to immunoprecipitate acetylated VP40 detected

via immunoblotting with an anti-Myc antibody. Consistent with our hypothesis, we found the

form of VP40 acetylation in cells (S1B Fig, lane 2) and VP40 acetylation could be enhanced by

TSA (S1B Fig, lane 3). Then we questioned whether VP40 acetylation could facilitate the

release of VP40 VLPs. To answer the question, we needed to identify the acetylated site(s) of

VP40 and confirm the acetylated site(s) had influences on VP40 egress. During the course of

our study, another study reported that Zaire ebolavirus VP40 can be acetylated at numerous

lysines, namely K221, K224, K225, K274 and K275 [49]. All the five sites are located in the C-

terminal domain of VP40 and are essential for interactions with cell membranes [14]. There-

fore, we mutated each of these K residues according to their reported sites to an arginine (R),

which abolished capacity for acetylation at these positions [50], and then determined whether

this lack of acetylation might affect the release of VP40 VLPs. The mutational results showed

that substitution with non-acetylabtable arginine did not affect the release of VP40 VLPs com-

pared to the wild-type (WT) VP40 (S1C Fig), suggesting that the acetylations of VP40 K resi-

dues were not involved in regulating the release of VP40 VLPs in HEK293T cells.

Since the acetylation of VP40 did not directly affect the function of its budding, we hypoth-

esized that the acetylation of host cellular factors might regulate the budding of VP40. To test

this hypothesis, we examined the acetylation of two key cellular factors, NEDD4 (an E3 ubiqui-

tin ligase that is most widely studied in the context of VP40 budding) [9,26,30,35] and TSG101

[a key protein of the endosomal sorting complex required for transport (ESCRT) pathway that

drives Ebola virus egress] [24,35,51]. Interestingly, we found that NEDD4 could be acetylated

via immunoprecipitation, but TSG101 could not (Fig 1B). Furthermore, we also estimated

NEDD4 acetylation sites by performing liquid chromatography-mass spectrometry (LC-MS)

assays in HEK293T cells and identified three lysine acetylation sites: K147, K535 and K667

(Fig 1C). K147 is in the N-terminal C2-domain, while K667 is in the C-terminal HECT-
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Fig 1. Acetylation-mimicking mutation of NEDD4 promotes VP40 budding. (A) HEK293T cells were transfected with Myc-VP40 for 40 hours

and then treated with TSA, SAHA, and NAM for 8 hours and analyzed using the virus-like particle (VLP) assay. (B) HEK293T cells were

transfected with indicated plasmids, immunoprecipitated with an anti-HA antibody and analyzed via immunoblotting with an anti-Acetyl-K

antibody to detect the acetylation of NEDD4 and TSG101, where “�” indicated the specific NEDD4 and acetylation of NEDD4 and “■” indicated

the location of the acetylation of TSG101. (C) NEDD4 acetylation sites were identified using mass spectrometry. Schematic diagram of the

location of NEDD4 acetylation sites. (D) HEK293T cells were transfected with indicated plasmids, immunoprecipitated with an anti-Myc

antibody and analyzed via immunoblotting with an anti-Acetyl-K antibody to detect the acetylation of the NEDD4 wild-type (WT) and mutants.

(E)–(F) HEK293T cells were transfected with indicated plasmid combinations to detect the influence on the egress of VP40. Error bars,

mean ± SD of three experiments. Student’s t test; �p< 0.05; ��p< 0.01; ���p< 0.001.

https://doi.org/10.1371/journal.ppat.1009616.g001
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domain (Fig 1C). Both K147 and K667 are conserved across species (S1D Fig). Moreover, the

effects of the three acetylated sites on the acetylation of NEDD4 were confirmed via mutation

analysis (Fig 1D). When we mutated each of these K residues to R (NEDD4K147R, Fig 1D, lane

3; NEDD4K535R, Fig 1D, lane 4; and NEDD4K667R, Fig 1D, lane 5), the acetylation level of these

mutants was declined compared to WT NEDD4 (Fig 1D, lane 2). Besides, NEDD4 acetylation

was blocked when three K residues were mutated to R at the same time (NEDD43KR; Fig 1D,

lane 6) which further implied the specificity of NEDD4 acetylation sites.

Next, we sought to know whether these three acetylation sites of NEDD4 play a role in

VP40 budding. We transfected HEK293T cells with VP40 plus WT NEDD4 and its mutants

and found that NEDD4K667R (Fig 1E, lane 5) and NEDD43KR (Fig 1E, lane 6) dramatically

reduced VP40 VLP production, whereas NEDD4K147R (Fig 1E, lane 3) and NEDD4K535R (Fig

1E, lane 4) had no substantial effects on VP40 VLP production compared to WT NEDD4 (Fig

1E, lane 2) which indicated that acetylation of NEDD4 K667 may play a positive role in VP40

egress. In order to confirm this, we constructed a K-to-glutamine (Q) mutation of K667

(NEDD4K667Q), which mimics the acetylation state of NEDD4 and to test whether

NEDD4K667Q could enhance VP40 VLP production. E3 ubiquitin ligase activity of NEDD4 is

indispensable for VP40 VLP production and cysteine (C)-to-alanine (A) mutation of C867 in

NEDD4 (NEDD4C867A) results in abolishment of the E3 ubiquitin ligase activity of NEDD4,

subsequently, leading to a dramatic decrease in VP40 VLPs [30], so we used NEDD4C867A as a

negative control. We transfected HEK293T cells with VP40 plus WT NEDD4, NEDD4K667Q

and NEDD4C867A and found that NEDD4K667Q could significantly increase VP40 VLP produc-

tion (Fig 1F, compared lanes 2 and 3), where NEDD4C867A could not (Fig 1F, compared lanes

2 and 4); this experiment further suggested that the acetylation of NEDD4 K667 could posi-

tively regulate VP40 VLP production.

Taken together, these results demonstrated the enhancement of cellular acetylation levels

could facilitate the budding of EBOV VP40 VLPs, which required for NEDD4 K667 acetyla-

tion rather than VP40 acetylation.

NEDD4 can be acetylated by P300

To further reveal the molecular mechanism of NEDD4 acetylation in EBOV VP40 egress, first,

we aimed to identify the acetyltransferase responsible for NEDD4 acetylation. We ectopically

expressed some classical acetyltransferases and found that, of these, P300 (Fig 2A, lane 2)

could dramatically increase NEDD4 acetylation (Fig 2A). Besides, the specific P300 activator

N-(4-chloro-3-tri-flfluoromethyl-phenyl)-2- ethoxy-benzamide (CTB) resulted in a dramatic

increase in NEDD4 acetylation (Fig 2B, compared lanes 1 and 2) and conversely NEDD4 acet-

ylation was abolished by using P300 inhibitor C646 or Curcumin (Fig 2B, lanes 3 and 4).

These data indicated P300 may be an acetyltransferase of NEDD4. To further verify the speci-

ficity that P300 catalyzed NEDD4 acetylation, we transfected HEK293T cells with NEDD4 plus

WT P300 or an acetyltransferase-dead P300 (P300-WY) lacking acetyltransferase activity [52].

We observed that overexpression of P300-WY could not increase NEDD4 acetylation (Fig 2C,

compared lanes 2 and 3). Next, we used CRISPR/Cas9 to knockout (KO) endogenous P300 in

HEK293T cells (S2A Fig) and found that NEDD4 acetylation was inhibited in P300 KO cells

(Fig 2D). These results further suggested P300 was responsible for mediating NEDD4 acetyla-

tion in vivo.

To test whether P300 catalyzed for NEDD4 acetylation directly, we performed in vitro acet-

ylation assays. In vitro system, we incubated purified recombinant His-NEDD4 with the P300

HAT domain (catalytic domain) purified from Escherichia. coli or with P300-HA that was

immunoprecipitated from HEK293T cells. We found that His-NEDD4 could be acetylated by
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Fig 2. NEDD4 can be acetylated by P300. (A)-(C) NEDD4 acetylation in HEK293T cells was measured following overexpression of the indicated

acetyltransferases targeted by “�” (A), treatment with the P300 activator CTB and inhibitors C646 and Curcumin (B), or overexpressing P300-HA and

the acetyltransferase-inactive P300-WY-HA in P300 knockout (KO) cells (C). Cell lysates were immunoprecipitated with an anti-Myc antibody and

analyzed via immunoblotting with an anti-Acetyl-K antibody to detect the acetylation of NEDD4. (D) NEDD4 acetylation was measured in HEK293T

WT and P300 KO cells. (E) In vitro acetylation assays were measured by incubating purified His-NEDD4 with purified GST-P300-HAT followed by

immunoblotting with an anti-Acetyl-K antibody to detect the acetylation of NEDD4. (F) Interaction between endogenous P300 and NEDD4. (G)

Acetylation of Myc-NEDD4 and mutants was measured in HEK293T cells. (H) HEK293T cells were transfected with the indicated plasmid

PLOS PATHOGENS Acetylation facilitates EBOV VP40 egress
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both P300 HAT (Fig 2E, compared lanes 2 and 3) and P300-HA (S2B Fig, compared lanes 1

and 2), but not the acetyltransferase-dead P300 (S2B Fig, compared lanes 1 and 3) or another

purified recombinant acetyltransferase GST-PCAF (S2C Fig). These results demonstrated that

P300 specifically acetylates NEDD4 in vitro.

The interaction between P300 and NEDD4 was critical for P300 catalyzing NEDD4 acetyla-

tion, so next we asked whether P300 interacted with NEDD4. We used co-immunoprecipita-

tion assays to examine the NEDD4-P300 interaction, and found that ectopic NEDD4 could

interact with ectopic P300 (S2D and S2E Fig); we also confirmed interaction between endoge-

nous P300 and NEDD4 (Fig 2F). Next, to map the critical domain of NEDD4 that was neces-

sary for its interaction with P300, we constructed three NEDD4 mutants (S2F Fig) and found

that NEDD444WW failed to interact with P300 (S2G and S2I Fig). Then we asked whether

NEDD444WW could be acetylated when NEDD4-P300 interaction was abolished. To do so,

we transfected HEK293T cells with WT NEDD4 (Fig 2G, lane 1), NEDD44C2 (Fig 2G, lane

2), NEDD444WW (Fig 2G, lane 3) and NEDD44HECT (Fig 2G, lane 4) and found that only

NEDD444WW could not be acetylated (Fig 2G), suggesting that NEDD4-P300 interaction

was critical for P300-mediated NEDD4 acetylation. Next, we wanted to explore which acety-

lated site of NEDD4 was catalyzed by P300. In HEK293T cells, we co-expressed NEDD4 or its

mutants in combination with P300 and found that P300 increased the acetylation of WT

NEDD4, K147R and K535R, but not K667R and 3KR (Fig 2H). Together, these results pro-

vided evidence of P300 specifically catalyzing NEDD4 acetylation and responsible for the acet-

ylation of NEDD4 K667.

P300 regulates the release of VP40 VLPs

Since NEDD4 K667 was acetylated by P300 and the acetylation-mimicking mutant of

NEDD4K667Q promoted VP40 VLP production, we sought to explore whether enhancing

NEDD4 acetylation by P300 could upregulate EBOV VP40 budding. First, we transfected

VP40 plus some classical acetyltransferases in HEK293T cells to measure their influences on

VP40 egress. We found that only P300 could enhance VP40 egress (S3A Fig). Furthermore, to

determine whether the positive effects of P300 on VP40 VLP were dose-dependent, we trans-

fected HEK293T cells with a constant amount of VP40 plus the increasing amounts of P300

and observed VP40 VLP production was increased with increasing doses of P300 (Fig 3A).

Besides, the same and converse effects on VP40 egress was displayed by the P300 activator

CTB (S3B Fig, lane 3) and inhibitors C646 and Curcumin (S3B Fig, lanes 4 and 5), respectively

(S3B Fig). Next, we used transmission electron microscopy to visualize VP40 VLP egress

directly and utilized CRISPR/Cas9 to knockout endogenous NEDD4 in HEK293T cells as a

negative control (S3C Fig). The images showed that VP40 VLP egress was attenuated in P300

KO and NEDD4 KO cells in contrast to WT cells (Fig 3B). Additionally, the acetyltransferase-

dead mutant P300-WY failed to promote VP40 budding (Fig 3C). Furthermore, in P300 KO

HEK293T cells, VP40 VLP production was inhibited compared to WT HEK293T cells (Fig

3D, lanes 1 and 2) and exogenous expression of P300 (Fig 3D, lane 3), but not P300-WY (Fig

3D, lane 4), could rescue this inhibitory effect (Fig 3D). These data revealed that P300 could

positively regulate the release of EBOV VP40 VLPs via its acetyltransferase activity.

The result showed that P300 specifically catalyzed for the acetylation of NEDD4 K667 (Fig

2H), so we sought to examine whether the P300-mediated VP40 egress was dependent on

NEDD4 K667 acetylation. First, we observed that P300 lost the ability to promote VP40 VLP

combinations to detect the influence of P300 on the acetylation of NEDD4 mutants. Error bars, mean ± SD of three experiments. Student’s t test;
�p< 0.05; ��p< 0.01; ���p< 0.001.

https://doi.org/10.1371/journal.ppat.1009616.g002
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budding in the absence of NEDD4 (Fig 3E, compared lanes 3 and 4), indicating that NEDD4

was involved in the process of P300-mediated VP40 egress. Second, in NEDD4 KO cells, when

NEDD4 and P300 were co-expressed, P300 significantly increased the VP40 VLP production

(Fig 3F, compared lanes 1 and 2), but when co-expression of NEDD4K667R and P300, P300

failed to increase the VP40 budding (Fig 3F, compared lanes 3 and 4), suggesting that

P300-mediated regulation of the VP40 egress was dependent on NEDD4 K667 acetylation.

Taken together, these data proved a functional role for P300 as a positive regulator of VP40

VLP budding via catalyzing NEDD4 K667 acetylation.

Fig 3. P300 regulates the release of VP40 VLPs. (A) HEK293T cells were transfected with increasing doses of P300-HA (0 μg, 1 μg and 3 μg) to detect

its influence on VP40 egress. (B) The release of VP40 VLPs was measured using electron microscopy in HEK293T WT cells, P300 KO cells and

NEDD4 KO cells. Scale bar, 500nm. (C)–(F) The release of VP40 VLPs was measured by overexpressing P300 acetyltransferase-dead mutant P300

WY-HA in P300 KO cell lines (C); by refreshing P300 and P300-WY levels in P300 KO cells (D); by overexpressing P300-HA in HEK293T NEDD4 KO

cells (E); by overexpressing P300-HA, the NEDD4 WT and the NEDD4K667R mutant in HEK293T NEDD4 KO cells (F). Error bars, mean ± SD of three

experiments. Student’s t test; �p< 0.05; ��p< 0.01; ���p< 0.001.

https://doi.org/10.1371/journal.ppat.1009616.g003
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NEDD4 acetylation increases NEDD4-VP40 interaction

We next asked how P300-mediated NEDD4 acetylation promoted VP40 VLP budding. Acety-

lation is known to have a critical effect in regulating protein-protein interactions [53], while

NEDD4-VP40 interaction is indispensable for NEDD4-mediated VP40 VLP egress; thus, we

hypothesized that P300-mediated NEDD4 K667 acetylation could result in increased

NEDD4-VP40 interactions. Using an ecotopic expression system and co-immunoprecipitation

assays, we found that NEDD4-VP40 interactions were increased when P300 co-expressed with

NEDD4 and VP40 (Fig 4A, compared lanes 3 and 4). Besides, P300 had no effects on

TSG101-VP40 interactions or BAG3-VP40 interactions (S4A and S4B Fig) which reflected the

specificity in the enhancement of NEDD4-VP40 interactions by P300. Furthermore,

NEDD4-VP40 interactions were impaired in P300 KO cells (S4C Fig). Additionally, we found

that NEDD4K667R-VP40 interactions were weakened compared to the VP40-NEDD4 interac-

tions (S4D Fig, compared lanes 2 and 3), and the ectopic expression of P300 failed to increase

the VP40-NEDD4K667R interactions (Fig 4B, compared lanes 4 and 5), suggesting that the

enhancement of the NEDD4-VP40 interactions was mediated by P300-catalyzed NEDD4

K667 acetylation.

NEDD4 acetylation enhances VP40 ubiquitination

Given that NEDD4 acetylation enhanced NEDD4-VP40 interactions, and NEDD4 is an E3

ligase that ubiquitinates VP40 and assists VP40 VLP budding, we hypothesized that the

enhancement of NEDD4-VP40 interactions by acetylation could increase the ubiquitination of

VP40, and subsequently enhance VP40 VLP egress.

Indeed, we found that P300 dramatically increased VP40 ubiquitination levels which is con-

sistent with the release of VP40 VLPs (Fig 5A, compared lanes 2 and 3; S5A Fig), while VP40

ubiquitination level was impaired in P300 KO cells (Fig 5B and S5B Fig) when using

Fig 4. Acetylation enhances NEDD4-VP40 interactions. (A)-(B) Interactions were assayed by overexpressing the

indicated plasmid combinations to determine the influence of P300 on VP40 -NEDD4 interaction or VP40-

NEDD4K667R interaction. Error bars, mean ± SD of three experiments. Student’s t test; �p< 0.05; ��p< 0.01;
���p< 0.001.

https://doi.org/10.1371/journal.ppat.1009616.g004
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endogenously and exogenously expressed ubiquitin. Furthermore, the expression of acetyla-

tion-mimicking NEDD4K667Q led to more intense VP40 ubiquitination compared to the

expression of wild-type NEDD4 (Fig 5C, compared lanes 2 and 3; Fig 5D, compared lanes 1

and 3), while the expression of non-acetylatable NEDD4K667R led to lower levels of VP40 ubi-

quitination compared to the expression of wild-type NEDD4 (Fig 5D, compared lanes 1 and

2). Besides, we conducted in vitro ubiquitination assays to confirm whether NEDD4 K667

acetylation promoted VP40 ubiquitination directly. We incubated recombinant GST-VP40

purified from Escherichia. coli with Myc-NEDD4, Myc-NEDD4K535Q or Myc-NEDD4K667Q

which were immunoprecipitated from HEK293T cells. In Fig 5E, we observed that the VP40

ubiquitination levels were almost undetectable in the absence of Myc-NEDD4 (Fig 5E, lane 2);

however, intense ubiquitination of VP40 was observed in the presence of Myc-NEDD4 (Fig

5E, lane 3) and the presence of Myc-NEDD4K667Q (Fig 5E, lane 5) led to more intense ubiquiti-

nation of VP40 compared to Myc-NEDD4. Furthermore, the presence of another acetylation-

mimicking mutant of NEDD4, Myc-NEDD4K535Q, which had no substantial effects on VP40

VLP production, only led to a similar degree of VP40 ubiquitination as that of Myc-NEDD4

(Fig 5E, compared lanes 3 and 4), suggesting that it was the P300-mediated acetylation of

NEDD4 K667 that enhanced the levels of VP40 ubiquitination.

Previous study showed that the PPxY-type L domain of VP40 interacts with the WW

domain of NEDD4 [9,26,30,35]. Thus, we asked whether NEDD4 acetylation failed to increase

VP40 ubiquitination when NEDD4-VP40 interaction was abolished. To do so, in HEK293T

P300 KO cells, we transfected VP40, P300 with WT NEDD4 or NEDD444WW which lacks

interactions with VP40 and found that P300 could increase VP40 ubiquitination with WT

NEDD4 (Fig 5F, compared lanes 1 and 2), but failed to increase VP40 ubiquitination with

NEDD444WW (Fig 5F, compared lanes 3 and 4). The same effect could be observed when L

domain of VP40 was lacked (S5C Fig, compared lanes 3 and 4).

In summary, these findings demonstrated that ubiquitination of VP40 could be strength-

ened by P300-mediated NEDD4 K667 acetylation which was required for NEDD4-VP40

interaction.

NEDD4 acetylation alters VP40 subcellular localization

Efficient egress of VLPs requires the localization of VP40 at the plasma membrane (PM) [54]

and ubiquitination can be regarded as a signal to drive VP40 migration to the PM [33]. Since

NEDD4 acetylation enhanced VP40 ubiquitination, we speculated acetylation-mediated

enhancement of VP40 ubiquitination could change VP40 localization and drive a larger VP40

migration to the PM. In order to verify our guess, first, we used a biochemical approach to

determine the levels of VP40 in PM fractions. HEK293T cells were transfected with VP40 plus

WT NEDD4, NEDD4K535Q and NEDD4K667Q and both cytosol and PM fractions were sepa-

rated and subjected to western blot analysis. In Fig 6A, we found that the amount of VP40 in

the PM was increased in the presence of NEDD4K667Q (Fig 6A, lane 6) compared to WT

NEDD4 (Fig 6A, lane 4), but not in the presence of NEDD4K535Q (Fig 6A, compared lanes 4

Fig 5. NEDD4 acetylation enhances VP40 ubiquitination. (A)-(C) Cells were transfected with the indicated plasmid combinations to measure

endogenous ubiquitination of VP40 by overexpressing P300-HA in HEK293T cells (A), knocking out endogenous P300 (B), or overexpressing the

NEDD4 WT and NEDD4K667Q in P300 KO cells (C). (D) Cells were transfected with the indicated plasmid combinations to measure ubiquitination

of VP40 by overexpressing the NEDD4 WT and mutants in HEK293T cells. (E) In vitro ubiquitination assays were used to measure purified

GST-VP40 that was incubated with NEDD4 WT, NEDD4K535Q, and NEDD4K667Q, which were immunoprecipitated from HEK293T cells and then

analyzed via immunoblotting with an anti-GST antibody to detect VP40 ubiquitination. (F) HEK293T P300 KO cells were transfected with the

indicated plasmid combinations to detect the influence of P300 on the ubiquitination of VP40 when the interaction between NEDD4 and VP40 was

removed. Error bars, mean ± SD of three experiments. Student’s t test; �p< 0.05; ��p< 0.01; ���p< 0.001.

https://doi.org/10.1371/journal.ppat.1009616.g005
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and 5). NA/K ATPase was used as a PM control and β-actin was used as a cytosol control (Fig

6A). Besides, when we co-expressed P300 and NEDD4, we observed that the amount of VP40

in PM was increased compared to the single expression of NEDD4 (Fig 6B, compared lanes 5

and 6), which further suggested that an acetylation-mediated increase in VP40 ubiquitination

led to increased VP40 in the PM. Next, we utilized confocal microscopy to visualize VP40

localization in the presence of NEDD4, NEDD4K667R and NEDD4K667Q; the images showed

that more VP40 was distributed around the cell periphery and to the PM projections in the

presence of NEDD4K667Q compared to in the presence of NEDD4 or NEDD4K667R (Fig 6C).

These results suggested that the accumulation and localization of EBOV VP40 in the PM pro-

jections could be increased by NEDD4 acetylation and subsequently resulted in enhanced

egress of VP40 VLPs.

Zaire ebolavirus production is lessened in P300 KO cells

Having found that P300-mediated NEDD4 acetylation enhanced the VP40 VLP production,

we next sought to determine whether NEDD4 acetylation was required for the productive rep-

lication of Zaire ebolavirus. EBOV is a biosafety level 4 (BSL4)virus and doing relevant experi-

ments needs to be in the BSL4 laboratory. To do so, HEK293T wild type cells and P300

knockout cells were infected by Zaire ebolavirus at an MOI of 1 in Wuhan National Laboratory

for Biosafety and then aliquots of supernatant fluids were taken at days 2, 4, 6, 8 and 10 after

infection for viral RNA qPCR determination. As a result, we found Zaire ebolavirus produc-

tion in WT cells was more than 8 folds as big as that in P300 KO cells at 8 and 10 days after

infection (Fig 7), suggesting that P300 was critical for the productive replication of Zaire ebola-

virus and may have a physiological impact on the EBOV life cycle.

Fig 6. NEDD4 acetylation alters VP40 subcellular localization. (A) Separation of the cytoplasm and the plasma membrane was conducted to detect the

influence of the acetylation-mimicking mutants of NEDD4 on the plasma membrane localization of VP40. (B) Separation of the cytoplasm and the plasma

membrane was conducted to detect the influence of P300 on the plasma membrane localization of VP40. (C) HeLa cells were transfected with the indicated

plasmid combinations to visualize VP40 localization. The white arrow represents the localization pattern of VP40 at the plasma membrane and in PM

projections. DAPI (blue) was used to stain nuclear DNA. Scale bar, 10 μm. Error bars, mean ± SD of three experiments. Student’s t test; �p< 0.05;
��p< 0.01; ���p< 0.001.

https://doi.org/10.1371/journal.ppat.1009616.g006
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Discussion

A substantial amount of literature has been generated that advances our understanding of the

relationship between acetylation and viral infection. Post-translational modifications have

been reported to regulate EBOV VP40 egress, especially ubiquitination, but acetylation has not

been investigated yet. In our study, we found that the enhanced cellular acetylation by HDAC

deacetylase inhibitors promoted EBOV VP40 egress (Fig 1A and S1A Fig) and we examined

the formation of acetylated VP40 via immunoprecipitation assays (S1B Fig); however, the

mutation results showed that the acetylation of VP40 did not influence the release of VP40

VLPs (S1C Fig). Therefore, we hypothesized that the acetylation of host cellular factors might

participate in the release of VP40 VLPs. We screened some cellular factors that interact with

VP40 and found that NEDD4 acetylation positively regulated VP40 egress. We identified three

sites of lysine acetylation on NEDD4 (Fig 1C) and found that an acetylation-mimicking muta-

tion of NEDD4 K667 facilitated EBOV VP40 budding (Fig 1E and 1F). Furthermore, we

revealed that acetyltransferase P300 was responsible for acetylating NEDD4 at K667 which

enhanced VP40 egress (Figs 2 and 3A). When NEDD4K667R was expressed in NEDD4 KO

cells, P300 failed to increase VP40 budding (Fig 3F). These results demonstrated that

P300-mediated regulation of EBOV egress was dependent on NEDD4 K667 acetylation. In the

context of the molecular mechanism by which NEDD4 acetylation promoted the release of

EBOV VLPs, we found that NEDD4 acetylation could strengthen NEDD4-VP40 interactions

(Fig 4) and the enhancement of NEDD4-VP40 interactions by acetylation could increase the

ubiquitination of VP40 (Fig 5), and subsequently enhance VP40 VLP egress. Finally, we found

that Zaire ebolavirus productive replication was dramatically reduced in P300 knockout cell

lines, suggesting that NEDD4 acetylation may have a physiological effect on Ebola virus life

cycle (Fig 7). The results of this study have significant implications regarding a general mecha-

nism by which P300-mediated NEDD4 acetylation is involved in the NEDD4-VP40 interac-

tion, VP40 ubiquitination and egress (Fig 8).

Fig 7. Zaire ebolavirus production is lessened in P300 KO cells. HEK293T WT cells and P300 KO cells were infected

with the Zaire ebolavirus at a multiplicity of infection (MOI) of 1. Aliquots of supernatant fluids were taken at days 2,

4, 6, 8 and 10 for the viral RNA qPCR determination.

https://doi.org/10.1371/journal.ppat.1009616.g007
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Multiple interactions between viruses and the acetylation machinery result in the direct tar-

geting of viral proteins for acetylation modifications, as observed in, e.g., human papillomavi-

rus (HPV), HIV-1 and IVA [55–57]. The acetylation of viral proteins assists viruses by

dampening antiviral responses and enhancing viral replications. In our study, we found that

EBOV VP40 was acetylated in cells at K221, K224, K225, K274 and K275 [49]. These sites are

located on a basic surface of the VP40 CTD, which is important for interacting with the nega-

tively charged cytoplasmic leaflet of the cell membrane [14]. We found that K- to -R mutants

of VP40 at different lysines budded at the same levels as wild-type (S1C Fig), which indicated

that the significance of VP40 acetylation was not in the budding process. Notably, this phe-

nomenon could be explained by recognizing that the K- to -R mutation of VP40 conserved its

positive charge so that the mutants could still trigger electrostatic interactions with the cellular

membrane. A previous study revealed that VLP budding was abolished in an Ebola VP40

K274E/K275E mutant in which the positively charged lysines had been replaced with

Fig 8. Model of the NEDD4 acetylation that promoted the release of VP40 VLPs.

https://doi.org/10.1371/journal.ppat.1009616.g008
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negatively charged residues, which further supports our results [58]. We believe that acetyla-

tion influenced EBOV VP40 VLPs in a manner that was dependent on the NEDD4-induced

signaling process rather than VP40 acetylation itself.

P300 has emerged as a potential therapeutic target for viral infection and cancer [59]. Nev-

ertheless, it is a challenging drug target since substrate-binding site of P300 and most inhibi-

tory compounds characterized to date have been found to target the acetyl-CoA binding site in

the enzyme [60]. The P300 phytochemical inhibitor curcumin, which has multiple functions

such as antioxidant and anti-inflammatory functions [61], has also been found to have antivi-

ral effects. For example, curcumin inhibits Zika and chikungunya virus infection by inhibiting

cell binding [62]. Furthermore, curcumin can inhibit IAV in vitro and alleviate the severity of

disease in mice after IAV infection [63,64]. Importantly, curcumin has been thought to cure

patients infected with EBOV through its suppression of cytokine release and the cytokine

storm [65]. In our study, we found that curcumin could negatively regulate NEDD4 acetyla-

tion and EBOV VP40 VLPs (Fig 2B and S3B Fig). These results revealed inhibitory effect of

curcumin on EBOV productive replication, which further implied that curcumin could be

regarded as an attractive candidate drug for the treatment of Ebola virus disease.

NEDD4 K667 acetylation could enhance interactions with VP40, which could only be

explained by acetylation-induced conformational changes in NEDD4 that allowed better accessi-

bility for interacting with VP40. Currently, only the structure of NEDD4 HECT domain is

resolved, thus, we were unable to directly show the concrete mechanism by analyzing the struc-

ture of NEDD4. In attempt to answer the question, we used more complete structural data of

NEDD4-like E3 ligase WWP2 to explain how NEDD4 K667 acetylations affected interactions

with VP40. By analyzing the structure of WWP2 -WW2-2,3-linker-HECT (PDB ID: 5TJ7) [66],

we found that the HECT domain of WWP2 is mainly composed of α-helixes and WWP2 WW2

domain is closed to the HECT domain. WWP2 K637 is conserved with NEDD4 K667 and locates

in the centre of HECT domain. In addition, WWP2 K637 is a basic amino acid and can provide

positive charge to promote the formation of a salt bridge and stabilize the whole conformation of

HECT. When WWP2 K637 was mutated to electrically neutral Q, the salt bridge was broken.

Therefore, the conformation of WWP2 HECT was more flexible, which made the following

WW2 domain patulous and swaying. Conformation changes would present different solvent

accessible area and different topological contacts with substrate proteins. According to the pro-

posed model of WWP2, we speculated that the enhanced VP40 interactions with NEDD4 could

be ascribed to the fact that NEDD4 K667 acetylation changed the conformation of its HECT

domain, leading to the NEDD4 4WW domains more flexible to associate with VP40.

Accumulating evidence has demonstrated that protein acetylation and ubiquitination can

modulate each other through different mechanisms, such as through direct competition for

lysine binding or via protein interactions [67–69]. In our study, we discover that a functionally

characterized acetylation site of NEDD4 is responsible for enhancing VP40 ubiquitination and

contributing to VP40 egress. This observation is the first demonstration that PTM crosstalk

can integrate diverse signals and vastly increase their regulatory potential in the EBOV life

cycle. Furthermore, our findings provide insights into understanding the epigenetic molecular

mechanisms that regulate viral egress through post-translational modifications.

Materials and methods

Cell lines

HEK293T, HEK293T P300 KO cells, HEK293T NEDD4 KO cells and HeLa cells were cultured

in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) with 10% fetal bovine serum (FBS,

Gibco). All cells were cultured at 37˚C in a humidified incubator with 5% CO2.
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Antibodies and reagents

Rabbit monoclonal anti-NEDD4 (cat.no.5344), rabbit monoclonal anti-P300 (cat.no.86377),

rabbit polyclonal anti-Acetylated-Lysine (cat.no.9441), mouse monoclonal anti-GST (cat.

no.2624) and mouse monoclonal anti-His (cat.no.12698) were purchased from Cell Signalling

Technology. Rabbit polyclonal anti-Ubiquitin (cat.no.110433), rabbit polyclonal anti-NA/K

ATPase (cat.no.A12405), and mouse monoclonal anti-β-Actin (cat.no.AC004) were purchased

from ABclonal. Mouse monoclonal anti-HA (cat.no.M180) and mouse monoclonal anti-Myc

(cat.no.M192) were purchased from MBL. Mouse monoclonal anti-Flag (cat.no.F1804) and

mouse monoclonal anti-Tubulin (cat.no.T6199) were purchased from SIGMA. Goat anti-rab-

bit IgG HRP conjugated (cat.no.31460), goat anti-mouse IgG HRP conjugated (cat.no.31430),

goat anti-rabbit IgG Rhodamine (cat.no.31670) and goat anti-mouse IgG Fluorescein (cat.

no.31569) were purchased from Invitrogen.

After transfected with indicated plasmids, HEK293T cells were treated by TSA (1 μM),

SAHA (3 μM) and NAM (10 mM) for 8–10 hours before collecting supernatants for ultracen-

trifugation of the VLP assay. Cells were pretreated by CTB (50 μM), C646 (10 μM), and Curcu-

min (10 μM) for 6 hours and then transfected with indicated plasmids to conduct VLP assay

or to detect NEDD4 acetylation. The nucleic acid stains (Super GelRed, NO.:S-2001) were pur-

chased from US Everbright Inc (Suzhou, China). The Cell Counting Kit (cat.no.ZP328) was

purchased from ZOMANBIO (Beijing, China).

Knockout cell lines construction

HEK293T P300 KO cells or NEDD4 KO cells were constructed by transient transfection of

PX459-P300-KO or PX459-NEDD4-KO plasmid followed by selection with 1 μg/ml puromy-

cin. The surviving cells were sorted out as the monoclone after 5 days later. Human P300-tar-

geted sgRNA: TAGTTCCCCTAACCTCAATA; Human NEDD4-targeted sgRNA: TACTGG

GGCCTCCGACTCGT.

Immunoblotting and immunoprecipitation

Cell lysates were collected in lysis buffer (150 nM NaCl, 50 nM Tris-HCl pH 7.4, 1% Triton X-

100, 1mM EDTA pH 8.0, 0.1% SDS) supplemented with protease inhibitor cocktail. Proteins

in cell lysates were separated by SDS-PAGE and analyzed by immunoblotting.

For immunoprecipitation, cells were lysed by lysis buffer containing protease inhibitor cocktail

for 30 min on ice and then centrifuged at 13,000 rpm for 30 minutes at 4˚C. The supernatants

were immunoprecipitated by the indicated antibody for 12 h at 4˚C. The immunoprecipitants

were washed by lysis buffer four times and then boiled in 1x SDS-loading buffer for immunoblot-

ting. To detect VP40 and NEDD4 acetylation, lysis buffer was added 1 μM TSA and 10 mM NAM.

Virus-like particle assay

HEK293T cells were transfected with indicated plasmids and then culture mediums were col-

lected and centrifuged at 13,000 rpm for 5 minutes to remove cell debris. The centrifuged

supernatants were layered onto 20% (w/v) sucrose and ultracentrifuged at 35,000 rpm for 2 h

at 4˚C. The VLP pellets were resuspended in PBS overnight at 4˚C and were analyzed by

immunoblotting.

Recombinant protein purification

Escherichia coli strain, BL21, was transformed with the indicated plasmid encoding

GST-VP40. And then the monoclonal cell was first grown overnight in LB medium
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supplemented with 50 μg/mL ampicillin at 37˚C. 5 mL overnight cultured bacteria were then

inoculated into 100 mL LB medium for further culture. When the OD600 reached 0.6, protein

expression was induced at 16–18˚C overnight by adding 0.5 mM IPTG. Cells were harvested

after induction, and were sonicated in PBS buffer. The lysates were centrifuged at 8000 rpm

for 15 minutes at 4˚C. After centrifugation, GST-VP40 proteins were purified with glutathione

resins (GenScript, L00206) according to the manufacture’s protocols.

In vitro acetylation and ubiquitination assay

For vitro acetylation assay, purified His-NEDD4 (5 μg) was incubated with purified GST-

P300-HAT (1 μg), purified GST-PCAF (1 μg) or P300-HA and P300-WY-HA immunoprecipi-

tated from cell lysates with adding acetyl-coenzyme A (20 μM) and 5 x HAT assay buffer [250

mM Tris–HCl pH 8.0, 50% (v/v) glycerol, 0.5 mM EDTA, 5 mM dithiothreitol] in a total vol-

ume of 50 μL. The mixture was mixed mildly and placed for 2 h at 30˚C. Then the contents

were boiled in 1x SDS-loading buffer for immunoblotting with anti-acetyl-lysine antibody to

detect NEDD4 acetylation.

For vitro ubiquitination assay, purified GST-VP40 was incubated with Myc-NEDD4, Myc-

NEDD4K535Q and Myc-NEDD4K667Q immunoprecipitated from cell lysates in the presence of

purified ubiquitin, E1, E2, Mg2+-ATP and DTT (50 mM) in a total reaction volume of 50 μL.

The contents were mixed gently and incubated at 37˚C for 1 h. Quench assays by addition of

50μL 2x SDS loading buffer followed by heating to 95˚C for 5 minutes or 70˚C for 10 minutes.

The ubiquitination of VP40 was analyzed by immunoblotting with anti-GST antibody.

Immunofluorescence

Cells were fixed with 4% (w/v) paraformaldehyde for 20 minutes at room temperature and

were washed by PBS for three times. Then cells were permeated by 0.1% (v/v) Triton X-100 for

20 minutes at room temperature and were washed by PBS for three times. Then cells were

blocked by 3% (v/v) BSA for 30 minutes. After blocking, cells were incubated with indicated

primary antibodies for 1 h and then washed by 1% (v/v) BSA for three times. The second fluo-

rescent antibodies were added for another 1 h. DAPI was used to stain nucleus for 5 minutes.

Transmission electron microscopy

HEK293T wild type and knockout cells were transfected with VP40 for 48 hours and then

were fixed by fixative liquid [3% (v/v) paraformaldehyde, 1.5% (v/v) glutaraldehyde, 2.5%

(w/v) sucrose in 0.1M sodium phosphate buffer, pH 7.4] for 1 h at room temperature. Then

the cells were collected and subjected to gradient centrifugation (1000 g, 5 min; 3000 g, 5 min;

6000 g, 5 min; 12000 g, 5 min) at 4˚C. Post-fixed with 1% osmium tetroxide for 1 h on ice

under dark conditions, cells were incubated with 2% uranyl acetate overnight, dehydrated in

increasing concentrations of ethanol (50%, 75%, 95%, and 100%) and processed for embed-

ding in epoxy resin. Ultrathin (70 nm) sections were collected on uncoated 200-mesh copper

grids and stained with uranyl acetate and lead citrate, and were observed by transmission elec-

tron microscopy (JEOL, JEM-1400 plus) operating at 100kV.

Infectivity assay and analysis by quantitative polymerase chain reaction

HEK293T wild type cells and P300 knockout cells were infected by Zaire ebolavirus for 2

hours at an MOI of 1 and then the medium was replaced with fresh DMEM. Aliquots of super-

natant fluids were taken at days 2, 4, 6, 8 and 10 after infection for viral RNA qPCR

determination.
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For qPCR assay, the viral RNAs in supernatants were extracted by viral RNA mini kit

(QIAamp, cat.no.52906). Then 0.5 μg of viral RNA was used for reverse transcription (thermo-

scientific, cat. no. K1682) and analyzed by qPCR (ABclonal, cat. no. RK21203) to measure

Zaire Ebola virus RNA abundance. The following primers were used: Zaire Ebola virus VP40

forward: 5’-ACCAGGCAGTGTGTCATCAG-3’; Zaire Ebola virus VP40 reverse: 5’-TTGG

TTGCCTTGCCGAAATG-3’.

Subcellular fractionation

After transfected indicated plasmids, cell culture medium was discarded and cells were washed

by PBS containing CaCl2 and MgCl2 pH 8.0 for three times. Cells were then placed for 30 min-

utes at 4˚C with adding 0.25 mg/mL biotin solution. After incubation, cells were washed by

PBS containing 1 M glycine for quenching uncombined biotin. Then, cells were collected and

lysed by lysis buffer for 30 minutes at 4˚C and subsequent centrifuged at 13,000 rpm for 30

minutes at 4˚C. The supernatants were incubated with chained penicillin agarose beads for

rotating overnight at 4˚C for immunoprecipitated biotin-combined proteins. The beads were

then washed by PBS for five times and were boiled by addition of 30 μL 2x SDS loading buffer

for 10 minutes. The results were analyzed by immunoblotting.

Mass spectrum

NEDD4 acetylation sites were detected by transient expression of NEDD4 in HEK293T cells.

HEK293T cells were transfected with Myc-NEDD4 treating 1 μM TSA. 36 h post transfection,

cells were washed and lysed by lysis buffer including 1 μM TSA and 10 mM NAM. Following

sonication and centrifugation, the supernatants were immunoprecipitated by Myc antibody

for 12 h at 4˚C. The immunoprecipitants were washed by lysis buffer four times and then sub-

jected to SDS–PAGE. Corresponding gel bands of acetylated NEDD4 were excised and

digested with trypsin. The digested peptides were analyzed by mass spectrometry.

Statistical analysis

Statistical parameters including the definition and exact values of n, distribution and deviation

are reported in the Figure legends. Data are expressed as mean ± standard deviation (SD). The

significance of the variability between different groups was determined by two-tailed unpaired

Student’s t test of two groups using GraphPad Prism software (version 5.0). A p value

of< 0.05 was considered statistically significant and a p value of> 0.05 was considered statisti-

cally non-significant.

Supporting information

S1 Fig. (A) The release of VP40 VLPs was measured after adding TSA. (B) HEK293T cells

were transfected with vectors or Myc-VP40 immunoprecipitated with an anti-Acetyl-K anti-

body and analyzed via immunoblotting with an anti-Myc antibody to detect the acetylation of

VP40. (C) Measurement of the release of VP40 and mutant VLPs. (D) The conserved sites are

K535 and K667. Error bars, mean ± SD of three experiments. Student’s t test; �p< 0.05;
��p< 0.01; ���p< 0.001.

(TIF)

S2 Fig. (A) HEK293T P300 knockout cells were analyzed using immunoblotting. (B) In vitro

acetylation assays were used to measure purified His-NEDD4 that was incubated with

P300-HA and P300-WY-HA, which were immunoprecipitated from HEK293T cells and then

analyzed using immunoblotting with an anti-Acetyl-K antibody for detecting the acetylation
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of NEDD4. (C) An in vitro acetylation assay was used to measure purified His-NEDD4 that

was incubated with purified GST-PCAF followed by detection of NEDD4 acetylation. (D) and

(E) Interactions between P300-HA and Myc-NED4. The specific band of P300 is indicated by

a “�”. (F) Schematic drawing of the NEDD4 WT and mutants. (G)-(I) Interactions between the

P300-HA and Myc-NED4 mutants. The specific band of P300 is indicated by a “�”.

(TIF)

S3 Fig. (A) The release of VP40 VLPs was measured when overexpressing acetyltransferases.

The target bands of acetyltransferases are indicated by a “�”. (B) The release of VP40 VLPs was

measured in response to treatment with P300 activators and inhibitors in the HEK293T WT

cell lines. (C) HEK293T NEDD4 knockout cells were analyzed using immunoblotting. Error

bars, mean ± SD of three experiments. Student’s t test; �p< 0.05; ��p< 0.01; ���p< 0.001.

(TIF)

S4 Fig. (A)-(B) Interactions were measured by overexpressing the indicated plasmid combina-

tions to detect the influence of P300 on the interactions between VP40 and TSG101(A) or

BAG3(B). (C) Interaction between VP40 and NEDD4 in HEK293T P300 KO cell lines.(D)

Interaction between VP40 and NEDD4 or NEDD4K667R in HEK293T WT cell lines.

(TIF)

S5 Fig. (A)-(C) Cells were transfected with the indicated plasmid combinations to measure

the exogenous ubiquitination of VP40 by overexpressing P300-HA and HA-ubiquitin in

HEK293T cells (A), Myc-NEDD4 and HA-ubiquitin in P300 KO cells (B), or overexpressing

P300-HA when the interaction between VP40 and NEDD4 was impaired in P300 KO cells (C).

Error bars, mean ± SD of three experiments. Student’s t test; �p< 0.05; ��p< 0.01;
���p< 0.001.

(TIF)
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