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Identification of key proteins 
in the signaling crossroads 
between wound healing and cancer 
hallmark phenotypes
Andrés López‑Cortés1,2,3*, Estefanía Abarca4,11, Leonardo Silva4,11, Erick Velastegui4,11, 
Ariana León‑Sosa5, Germania Karolys4,6, Francisco Cabrera5,7 & Andrés Caicedo5,8,9,10*

Wound healing (WH) and cancer seem to share common cellular and molecular processes that could 
work in a tight balance to maintain tissue homeostasis or, when unregulated, drive tumor progression. 
The “Cancer Hallmarks” comprise crucial biological properties that mediate the advancement of the 
disease and affect patient prognosis. These hallmarks have been proposed to overlap with essential 
features of the WH process. However, common hallmarks and proteins actively participating in 
both processes have yet to be described. In this work we identify 21 WH proteins strongly linked 
with solid tumors by integrated TCGA Pan‑Cancer and multi‑omics analyses. These proteins were 
associated with eight of the ten described cancer hallmarks, especially avoiding immune destruction. 
These results show that WH and cancer’s common proteins are involved in the microenvironment 
modification of solid tissues and immune system regulation. This set of proteins, between WH and 
cancer, could represent key targets for developing therapies.

All eukaryotic cells share similar growth, proliferation, migration, and survival pathways. However, their mecha-
nisms of control and differentiation are diverse and could be deregulated giving rise to disease. Mutations can 
accumulate in normal cells throughout a person’s lifetime, some of which may be silent, while others can alter key 
cellular functions and lead to  cancer1. Cancer cells differ from normal cells as they reproduce without control, 
wanting to prevail and survive through specific cancer hallmarks, such as resisting cell death and sustaining 
proliferative signaling that provides them with a selective advantage over normal  cells2,3. Interestingly, cells in 
wounded areas proliferate for tissue repair and survival under the control of the organism in ways very similar 
to cancer  hallmarks4. Identifying the overlapping survival and proliferative mechanisms between normal cells 
in wounds and cancer could be crucial for the development of new therapies that may lead to the prevention 
and inhibition of cancer progression.

The idea of molecular similarities between tumors and wounds has been in the literature for more than 
150  years5. Back in the 1970s, Haddow raised the question of tumor production as a way of ‘overhealing’6. Simi-
larly, Harold Dvorak published a work in 1986 entitled ‘Tumors: Wounds that do not heal’7. These contributed 
to the current concept that wound repair and cancer share cellular and molecular processes that are controlled 
in normal wound healing (e.g. self-limited process) but dysregulated in cancer (e.g. continuous activation of the 
pathways involved)4,8. Key and overlapping proteins between wound healing (WH) and cancer could be identi-
fied in both of these processes leading to the recognition of essential master proteins to stop cancer progression.
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WH is a complex and evolved defense mechanism that integrates a cascade of cellular responses in the site of 
injury to restore tissue homeostasis, epidermal integrity, and the skin barrier  function9–11. This process consists 
of four highly programmed and discrete yet overlapping phases: hemostasis, inflammation, proliferation, and 
 remodeling12,13. These phases occur in a continuous and regulated manner. Hence, lack of control or lengthening 
of these processes driven by factors such as aberrancies in gene expression can lead to a delayed wound repair 
or non-healing  wounds14. Such delayed processes, especially in the inflammatory response of chronic wounds, 
have been widely compared to the inflammation in  cancer5,6.

Hanahan and Weinbergs’ hallmarks of cancer highlight the key biological processes underlying the develop-
ment, growth, and progression of tumors. Some of these cancer enabling characteristics coincide with similar 
mechanisms during the WH process, particularly the inflammatory and proliferative response. Furthermore, it 
has recently been proposed that the hallmarks of cancer are also the hallmarks of WH. However, not all cancer 
hallmarks have parallels in WH. Such is the case for enabling replicative immortality, genomic instability and 
mutation  occurrence4.

Nowadays, the scientific community still lacks information and has not reached a consensus on the set of 
specific genes and proteins that both activate the mechanisms of WH and are involved with cancer. The aim of 
the present work is to identify for the first time which WH proteins are enriched in the cancer hallmark pheno-
types by using an integrated TCGA Pan-Cancer and multi-omics analyses in order to reveal novel therapeutic 
targets for anti-cancer therapy.

Methods
Protein sets. In order to identify WH proteins significantly enrolled in cancer, we analyzed two protein 
sets. On one hand, we retrieved 347 human proteins related to the “wound healing” term from the Gene Ontol-
ogy (GO) database (GO:0042060) (http:// www. geneo ntolo gy. org)15,16, and the David Bioinformatics Resource 
(https:// david. ncifc rf. gov/)17. On the other hand, to identify which WH proteins were already catalogued as 
cancer drivers, we retrieved 874 cancer driver proteins from the intOGen framework (https:// www. intog en. 
org). This analysis helps to identify the mechanism of action of proteins across tumor  types18. Then, we used The 
Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) (https:// cancer. sanger. ac. uk/ 
census), that is an expert-curated description of the proteins driving cancer used in oncology  research19. Both 
protein sets, the WH and the cancer, are provided in detail in the Supplementary Tables 1 and 2, respectively.

OncoPrint of genomic, transcriptomic and proteomic alterations according to the TCGA 
Pan‑Cancer Atlas. After identifying the set of WH-related proteins, we retrieved their genomic, transcrip-
tomic and proteomic alterations in the Pan-Cancer Atlas (PCA) project which belongs to The Cancer Genome 
Atlas (TCGA)  consortium20,21. The TCGA Pan-Cancer types were adrenocortical carcinoma (ACC), bladder 
urothelial carcinoma (BLCA), brain lower grade glioma (LGG), breast invasive carcinoma (BRCA), cervical 
squamous cell carcinoma and endocervical carcinoma (CESC), cholangiocarcinoma (CHOL), colon adenocarci-
noma (COAD), esophageal carcinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell 
carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), kidney chromophobe (KICH), liver hepatocel-
lular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma 
(MESO), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), prostate adenocar-
cinoma (PRAD), sarcoma (SARC), skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), 
testicular germ cell tumors (TGCT), thymoma (THYM), thyroid carcinoma (THCA), uterine carcinosarcoma 
(UCS), uterine corpus endometrial carcinoma (UCEC), and uveal melanoma (UVM).

According to the Genomics Data Commons of the National Cancer Institute (https:// portal. gdc. cancer. gov/), 
and the cBioPortal database (http:// www. cbiop ortal. org/)22,23, the copy number variant (CNV) amplifications 
and CNV deep deletions were identified using GISTIC2.0, a computational approach that facilitates sensitive and 
confident localization of CNV in human  cancers24; the inframe, truncating and missense driver mutations were 
identified through whole exome sequencing; the mRNA high and mRNA low alterations were analyzed through 
RNA sequencing V2 RSEM where the expression Z-scores of tumor samples were compared to the expression 
distribution of all log-transformed mRNA expression of adjacent normal samples in each  cohort25; and the high 
and low protein expressions were measured by reverse-phase protein array (RPPA)26. Subsequently, we analyzed 
these genomic, transcriptomic and proteomic alterations belonging to WH genes/proteins of 10,711 individuals 
with 28 different cancer types.

To generate the OncoPrint encompassing the most significantly altered WH genes/proteins we: (1) calculated 
the number of alterations per gene and per TCGA Pan-Cancer type; (2) normalized the frequency of alterations 
dividing the number of alterations per gene by the number of individuals per each cancer cohort; (3) calculated 
the mean frequency per gene and per alteration type considering all Pan-Cancer types; (4) identified the most 
altered WH genes/proteins taking into account as a cutoff the mean frequency of all genes/proteins; and (5) 
validated the most significantly altered WH genes/proteins comparing the alteration frequencies between the 
group of genes/proteins with the highest alteration frequencies (cutoff > mean frequency) versus the group of 
genes/proteins with the lowest alteration frequencies (cutoff < mean frequency) by using the Mann–Whitney U 
test (P < 0.001). Lastly, we applied the Bonferroni correction test (P < 0.001) to perform a multiple comparison 
between 6) the whole TCGA Pan-Cancer alterations, and 7) the TCGA Pan-Cancer types.

Patient‑derived xenografts. With the aim of generating a deeper understanding about the underexpres-
sion and overexpression of WH genes in a given tissue, we analyze their behavior in vivo by using bioinformatic 
resources. The Jackson Laboratory PDX resource (http:// tumor. infor matics. jax. org/% 20mtb wi/ pdxSe arch. do) 
comprises 455 PDX models originating from 34 different primary  sites27. The PDX models were genomically 
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characterized to identify copy number variants, somatic mutations, and transcriptional profiles. Here, we ana-
lyzed the expression levels of the 347 WH genes taking into account Z-scores ≥ 2 as overexpressed genes and 
Z-scores ≤ − 2 as underexpressed genes in the PDX lineages. The gene expression is displayed as a Z-score which 
measures each gene’s model-specific expression in comparison with that gene in all models assayed by the same 
platform. Additionally, we have calculated a two-tailed P-value per each gene Z-score and have visualized the 
Z-score distribution of the transcriptional profile in a plot. Lastly, all overexpressed (Z-score ≥ 2) and underex-
pressed genes (Z-score ≤  − 2) with significant P-values (P < 0.05) encompassed the WH genes from the patient-
derived xenograft approach.

Wound healing protein–protein interactome network. In order to identify the most essential protein 
interactions, a WH protein–protein interactome (WH-PPi) network was created by using the human proteome 
of the Cytoscape StringApp, taking into account zero node addition and the highest confidence interactions 
(cutoff = 0.9) related to experiments, databases, and co-expression28,29. The degree of centrality represents the 
number of edges the nodes have in a  network30–32, and this centrality index was calculated using the CytoNCA 
 app33. Nodes and edges were organized through the organic layout, and the WH-PPi network was visualized 
through the Cytoscape software v.3.7.134. Lastly, the interactome network analysis considered all WH proteins 
with at least one high-confidence interaction (cutoff = 0.9) in the human proteome.

Regarding the cancer driver proteins encompassing the WH-PPi network, we compared the degree centrality 
between the cancer driver nodes and the wound healing nodes by using the Mann–Whitney U test (P < 0.001) 
in order to determine a correlation between both groups of proteins.

Shortest paths from wound healing proteins to cancer hallmark phenotypes. CancerGenNet 
(https:// signor. uniro ma2. it/ Cance rGene Net/) is a resource that links proteins that are frequently altered in all 
cancer types to cancer hallmark  phenotypes35. This bioinformatic tool, curated by  SIGNOR36, is based on experi-
mental information that allows to infer likely paths of causal interactions linking proteins to cancer phenotypes. 
According to Iannuccelli et al.35, the shortest paths from proteins to cancer phenotypes were programmatically 
implemented using the shortest path function of igraph R package, obtaining a distance score. Hence, we ana-
lyzed the distance score of shortest paths from wound healing proteins to cancer hallmark phenotypes. Posi-
tive regulations were calculated for tumor-promoting inflammation, inducing angiogenesis, cell differentiation, 
reprogramming of energy metabolism, activating invasion and metastasis, and sustaining proliferative signaling 
to better understand the signaling crosstalk between wound healing proteins and cancer hallmarks, and nega-
tive regulations were calculated for resisting cell death. Additionally, we performed the multiple comparison test 
as Bonferroni correction (P < 0.001) to compare the mean of the distance score of shortest paths across seven 
cancer hallmark phenotypes.

Functional enrichment analysis. The functional enrichment analysis gives curated signatures of protein 
sets generated from omics-scale  experiments37. Therefore, we performed the functional enrichment analysis 
of the most altered WH proteins identified through multi-omics approaches (PCA, PDXs, WH-PPi network, 
and shortest paths to cancer phenotypes). The enrichment was analyzed using g:Profiler version e101_eg48_
p14_baf17f0 (https:// biit. cs. ut. ee/ gprofi ler/ gost) to obtain significant annotations (Benjamini–Hochberg FDR 
q < 0.001) related GO biological processes, the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling 
pathways, and Reactome signaling  pathways38–40.

Statistical analyses. We performed a multiple comparison test using the Bonferroni correction (signifi-
cant level of P < 0.001 and a 95% confidence interval) to analyze: (1) significant differences of genomic, tran-
scriptomic and proteomic alteration frequencies across alteration types (mRNA high, mRNA low, CNV ampli-
fication, CNV deep deletion, protein high, protein low, driver mutation, and fusion gene), and (2) significant 
differences of genomic, transcriptomic and proteomic alteration frequencies across 28 TCGA Pan-Cancer types. 
We also validated the most significant WH genes/proteins that encompassed the OncoPrint comparing the alter-
ation frequencies above and below the cutoff by using the Mann–Whitney U test (P < 0.001). The significance 
of gene expression in patient-derived xenografts was considered by using Z-scores and P-values. Therefore, 
genes with Z-score ≥ 2 and two-tailed P < 0.05 mean significant overexpression, and genes with Z-score ≤ − 2 
and two-tailed P < 0.05 mean significant underexpression. The WH-PPi network takes into account the highest 
confidence interactions (cutoff = 0.9). We validated the nodes encompassing the WH-PPi network comparing 
the degree centrality of them with the cancer driver proteins by using the Mann–Whitney U test. Additionally, 
we calculated the mean of the distance score of the shortest paths across cancer hallmark phenotypes by using 
the Bonferroni correction as a multiple comparison test (P < 0.001). Lastly, the functional enrichment analysis of 
the key proteins in the signaling crossroad between cancer hallmarks and wound healing was performed using 
g:Profiler that determines the most significant GO: biological processes, KEGG signaling pathways, and Reac-
tome signaling pathways with Benjamini–Hochberg FDR q < 0.001.

Results
OncoPrint of genomic and proteomic alterations according to the TCGA Pan‑Cancer 
Atlas. We have identified 212,459 genomic, transcriptomic and proteomic alterations in the 347 WH genes/
proteins belonging to 10,711 individuals with 28 different TCGA Pan-Cancer types. Figure 1 and Supplementary 
Tables 3, 4, 5, 6, 7, 8, 9, 10 details the OncoPrint of alterations (CNV amplification, CNV deep deletion, mRNA 
high, mRNA low, protein high, protein low, driver mutation, and fusion gene) involving 1084 (10.1%) individu-
als with BRCA, 594 (5.5%) with COAD, 585 (5.5%) with GBM, 585 (5.5%) with OV, 566 (5.3%) with LUAD, 529 
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(4.9%) with UCS, 529 (4.9%) with UCEC, 523 (4.9%) with HNSC, 514 (4.8%) with LGG, 512 (4.8%) with KIRC, 
499 (4.7%) with THCA, 494 (4.6%) with PRAD, 487 (4.5%) with LUSC, 442 (4.1%) with SKCM, 440 (4.1%) with 
STAD, 411 (3.8%) with BLCA, 372 (3.5%) with LIHC, 297 (2.8%) with CESC, 255 (2.4%) with SARC, 184 (1.7%) 
with PAAD, 182 (1.7%) with ESCA, 149 (1.4%) with TGCT, 123 (1.1%) with THYM, 87 (0.8%) with ACC, 87 
(0.8%) with MESO, 80 (0.7%) with UVM, 65 (0.6%) with KICH, and 36 (0.3%) with CHOL. After normalizing 
the frequency of alterations which consisted of dividing the number of alterations per gene by the number of 
individuals per each cancer cohort, the overall analysis revealed 125 (36%) significantly altered WH genes/
proteins (Mann–Whitney U test P < 0.001) with alteration frequencies higher than the average (cutoff > 0.0075). 
Lastly, the top ten WH genes/proteins with the highest alteration frequencies were PTGER4, PRSS56, SCNN1G, 
SMAD3, PARD3, EGFR, EXT1, ERBB2, ARFGEF1, and F5.

Figure 1.  OncoPrint of genomic, transcriptomic and proteomic alterations across 28 TCGA Pan-Cancer types. 
Ranking of the most altered wound healing genes/proteins (n = 125) taking into account the mean frequency 
of alterations (cutoff = 0.0075). Lastly, the list includes 21 cancer driver proteins. Lastly, the OncoPrint was 
performed by using data from the cBioPortal platform (https:// www. cbiop ortal. org/)22,23.

https://www.cbioportal.org/
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The most common alteration type with a f mean of 0.0432 was mRNA high, followed by CNV amplification 
(0.0082), mRNA low (0.0028), CNV deep deletion (0.0027), protein high (0.0012), protein low (0.0007), driver 
mutations (0.0007), and fusion gene (0.0003). We performed the Bonferroni correction as a multiple comparison 
test to obtain significant alterations (P < 0.001) through the TCGA Pan-Cancer types. Therefore, we detected that 
mRNA high and CNV amplification were significantly altered (P < 0.001) across all genomic, transcriptomic, 
and proteomic alterations (Fig. 2A and Supplementary Table 11). Additionally, genes/proteins with the highest 
alteration frequencies were PTGER4, SCNN1G, and ARFGEF1 with mRNA high alterations; PTGER4, KNG1, 
and PRAD3 with CNV amplifications; SMAD3, PRSS56, and TOR1A with mRNA low alterations; BLK, GATA4, 
and DMTN with CNV deep deletions; EGFR, SERPIND1, and ERBB2 with protein high alterations; PRSS56, 
STXBP3, and MTOR with protein low alterations; PRSS56, NF1, and SMAD3 with truncating, inframe and 
missense driver mutations; and, NF1, ERBB2, and ARHGAP35 with fusion genes. The complete information of 
alteration frequencies per gene has been detailed in Fig. 2B and Supplementary Table 11.

Figure 2C shows the TCGA Pan-Cancer types with the highest means of alteration frequencies into WH 
genes/proteins. ESCA was the cancer type with the highest alteration frequency mean (f = 0.087), followed by 
CHOL (0.075), ACC (0.070), LUSC (0.069), BLCA (0.068), CESC (0.067), UVM (0.066), LIHC (0.066), STAD 
(0.065), SARC (0.065), HNSC (0.064), PAAD (0.061), UCEC (0.061), UCS (0.061), KICH (0.061), COAD (0.060), 
TGCT (0.059), OV (0.059), PRAD (0.057), MESO (0.057), LUAD (0.057), BRCA (0.057), SKCM (0.056), THYM 
(0.051), LGG (0.050), KIRC (0.046), THCA (0.041), and GBM (0.020). Additionally, we performed the Bonfer-
roni correction as a multiple comparison test to obtain the most significantly altered TCGA Pan-Cancer types 
(P < 0.001). For instance, ESCA was the most significantly altered (P < 0.001), and GBM was the less significantly 
altered (P < 0.001) TCGA Pan-Cancer type. Lastly, the complete information of Bonferroni correction results 
across TCGA Pan-Cancer types is detailed in Fig. 2C and Supplementary Table 12.

Patient‑derived xenografts. PDXs are in vivo models of human cancer types engrafted in mouse hosts 
for translational cancer research and therapy selection for individual  patients27. We analyzed the gene expression 
levels of 347 proteins related to the wound healing term (GO:0042060). Figure 3A shows a heatmap of transcrip-
tional expression where 119 WH genes were overexpressed (Z-score ≥ 2) and/or underexpressed (Z-score ≤ − 2) 
in 25 cancer types. Figure 3B shows a plot of distribution of the transcriptional profile of the 119 WH genes 
considering their Z-scores and two-tailed P-values. Of them, 33 were significantly overexpressed WH genes 
(P < 0.05), 47 were significantly underexpressed WH genes (P < 0.05), and 39 were both significantly overex-
pressed and underexpressed WH genes (P < 0.05). Regarding cancer drivers, we identified to CDKN1A, ERBB2, 
FLNA, MTOR, NF1, NFE2L2, SDC4, SMAD4, MYH9, NOTCH2, PTEN, GNA13, HIF1A, NACA , and GNAS as 
significantly expressed genes. Lastly, the overall analysis revealed 119 (34%) WH genes with significant expres-
sion in PDXs as detailed in the Supplementary Tables 13, 14, 15.

Wound healing protein–protein interactome network. Figure 4 shows the WH-PPi network with 
a degree centrality mean of 11.2. KNG1, VWF, FGG, FGA, FN1, FGB, F2, VEGFA, F5, and TGFB1 were the 
top ten WH proteins with the highest degree of centrality. Figure 4 also shows the cancer driver proteins with 
a degree of centrality mean of 11.3. FN1, PDGFB, HRAS, EGFR, PIK3CB, SYK, CXCR4, PRKCD, KDR, and 
PTPN6 were the top ten cancer driver proteins with the highest degree of centrality. The comparison of degree 
centralities between the cancer driver nodes and the wound healing nodes showed a correlation between both 
networks with a not significant Mann–Whitney U test (P > 0.05). Lastly, the overall analysis revealed 233 (67%) 
WH proteins with at least one high-confidence interaction (cutoff = 0.9) in the human proteome as detailed in 
the Supplementary Table 16.

Shortest paths from wound healing proteins to cancer hallmark phenotypes. We analyzed the 
347 WH proteins by using CancerGeneNet software to find the distance score of the shortest paths to cancer 
hallmark phenotypes according to Iannuccelli et al.35. On the one hand, Fig. 5A revealed that the WH proteins 
had the shortest paths to proliferation (2.42), followed by differentiation (3.25), deregulating cellular energetics 
(3.43), resisting cell death (3.50), metastasis (3.54), tumor-promoting inflammation (3.56), and angiogenesis 
(3.87). The Bonferroni correction test showed that the WH proteins had significantly shorter paths to prolifera-
tion phenotype (P < 0.001) in comparison to the other cancer hallmarks. On the other hand, Fig. 5B shows the 
top ten WH proteins with the shortest paths to cancer hallmarks. MTOR had the shortest path to sustaining pro-
liferative signaling (0.47), TLR4 to differentiation (0.78), HIF1A to deregulating cellular energetics (0.80), PAK1 
to resisting cell death (2.27), NFE2L2 to metastasis (0.86), CCL2 to tumor-promoting inflammation (0.73) , and 
FGF2 to angiogenesis (0.86). Lastly, the overall analysis revealed 121 (35%) WH proteins with shortest paths to 
cancer hallmark phenotypes as detailed in Supplementary Table 17.

Functional enrichment analysis. Figure 6A shows a Venn diagram integrating the multi-omics approaches 
(PCA, PDXs, WH-PPi network, and the shortest paths to cancer hallmark phenotypes), and obtaining the 21 
most relevant WH proteins in our study (Supplementary Table 18). Subsequently, we performed a functional 
enrichment analysis of these 21 WH proteins, obtaining 328 GO: biological processes, 10 KEGG signaling path-
ways, and 5 Reactome signaling pathways as shown in the Manhattan plot of Fig. 6B. The most significant GO: 
biological processes with Benjamini–Hochberg FDR q < 0.001 were wound healing (GO:0042060, 3.1 ×  10–29), 
response to wound healing (GO:0009611, 1.2 ×  10–27), response to stress (GO:0006950, 7.5 ×  10–11), hemosta-
sis (GO:0007599, 6.5 ×  10–10), blood coagulation (GO:0007596, 6.5 ×  10–10), platelet activation (GO:0030168, 
1.5 ×  10–9), among others. The most significant KEGG signaling pathways were pathways in cancer (KEGG:05200, 
7.5 ×  10–8), proteoglycans in cancer (KEGG:05205, 1.2 ×  10–6), platelet activation (KEGG:04611, 2.1 ×  10–5), and 



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17245  | https://doi.org/10.1038/s41598-021-96750-5

www.nature.com/scientificreports/

Figure 2.  Frequency of genomic, transcriptomic and proteomic alterations per TCGA Pan-Cancer type. (A) 
Mean frequency per alteration type and significant Bonferroni correction (P < 0.001) of mRNA high, CNV 
amplification, mRNA low and CNV deep deletion in comparison with other alterations. (B) Ranking of the 
most altered genes/proteins per alteration type. (C) Ranking of the most altered TCGA Pan-Cancer types 
according to the mean frequency of alterations. Lastly, a pairwise map of significant Bonferroni correction 
(P < 0.001) across TCGA Pan-Cancer types.
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endocrine resistance (KEGG:01,522, 1.1 ×  10–4). Lastly, the most significant Reactome signaling pathways were 
platelet activation (REAC:R-HSA-76002, 1.8 ×  10–6), hemostasis (REAC:R-HSA-109582, 1.2 ×  10–5), and intrinsic 
pathway of fibrin clot formation (REAC:R-HSA-140837, 6.8 ×  10–4) (Fig. 6B and Supplementary Table 19).

Hallmarks of cancer and wound healing. The hallmarks of cancer constitute an organizing principle 
for rationalizing the complexities of neoplastic disease. Nowadays, there are ten biological capabilities acquired 
during the multistep development of human tumors: (1) sustaining proliferative signaling, (2) evading growth 
suppressors, (3) resisting cell death, (4) enabling replicative immortality, (5) inducing angiogenesis, (6) activat-
ing invasion and metastasis, (7) genome instability, (8) inflammation, (9) reprogramming of energy metabolism, 
and (10) evading immune  destruction2. On the one hand, six WH proteins of our study were already catalogued 
as key proteins in six hallmarks of cancer features according to the COSMIC and CGC  databases19. NFE2L2, 
MTOR, and ERBB2 promotes change of cellular energetics; NOTCH2, MTOR, GNAS, and ERBB2 promotes 
proliferative signaling; MTOR promotes angiogenesis and NF1 suppresses angiogenesis; NOTCH2, NF1, and 
GNAS promotes suppression of growth; MTOR promotes invasion and metastasis and NF1 suppresses inva-
sion and metastasis; and, NOTCH2, NFE2L2, and MTOR promotes escaping programmed cell death and NF1 
suppresses escaping programmed cell death (Fig. 7 and Supplementary Table 20). On the other hand, 21 of our 
most relevant WH proteins (ACTG1, ANXA1, CDKN1A, CRK, ERBB2, F2, FLNA, FZD6, GNA13, GNAS, GP5, 
HMGB1, KNG1, MTOR, NF1, NFE2L2, NOTCH2, P2RY12, SDC4, VEGFA, and YAP1) had shortest paths of 
positive regulation to the cancer hallmark phenotypes whose path scores are detailed in Fig. 7 and Supplemen-
tary Table 17.

Figure 3.  Patient-derived xenografts. (A) Heatmap of significantly overexpressed (Z-score ≥ 2) and 
underexpressed (Z-score ≤ 2) genes across 25 primary sites of tumor. (B) Plot of distribution of the 
transcriptional profile of WH genes considering their Z-scores and P-values per each cancer type. Lastly, the 
heatmap includes 15 cancer driver genes.
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Additionally, MacCarthy-Morrogh & Martin highlighted how tissue repair and cancer share cellular and 
molecular processes that are regulated in a wound but misregulated in  cancer4. They proposed eight prospective 
hallmarks that might apply to both cancer and wound healing: (1) avoiding immune destruction, (2) wound-pro-
moting inflammation, (3) activating invasion and migration, (4) inducing angiogenesis, (5) resisting cell death, 
(6) sustaining proliferative signaling, (7) evading growth suppressors, and 8) deregulating cellular energetics.

Subsequently, the functional enrichment analysis performed on our 21 most relevant WH proteins addressed 
significant annotations (Benjamini–Hochberg FDR q < 0.001) between 20 WH proteins and hallmarks shared 
by cancer and wound healing. ANXA1, CDKN1A, FLNA, GNA13, HMGB1, KNG1, MTOR, NF1, NFE2L2, 
NOTCH2, YAP1, and VEGFA were involved in 8 significant annotations related to cell death (GO:0043067, 
1.2 ×  10–6; GO:0010941, 2.4 ×  10–6; GO:0010942, 1.4 ×  10–5; GO:0012501, 1.9 ×  10–5; GO:0008219, 3.2 ×  10–5; 
GO:0043068, 7.2 ×  10–5; GO:0043069 9.2 ×  10–5; and GO:0060548, 1.6 ×  10–4); ANXA1, CDKN1A, ERBB2, F2, 
FLNA, FZD6, GNA13, HMGB1, MTOR, NF1, NOTCH2, SDC4, YAP1, and VEGFA were involved in 6 sig-
nificant annotations related to cell proliferation (GO:0008283, 2.2 ×  10–7; GO:0050673, 1.4 ×  10–5; GO:0032943, 
2.3 ×  10–4; GO:0061351, 2.8 ×  10–4; GO:0001935, 7.2 ×  10–4; and GO:0042098, 7.5 ×  10–4); ANXA1, CDKN1A, 
CRK, ERBB2, F2, GNAS, MTOR, NOTCH2, YAP1, and VEGFA were involved in 2 significant annotations 

Figure 4.  Wound healing protein–protein interactome network. Network of 233 wound healing proteins with 
at least one high confidence interaction (cutoff = 0.9). Darkest nodes represent proteins with the highest degrees 
of centrality (mean = 11.2). The WH-PPi network includes 35 cancer driver proteins with a degree centrality 
mean of 11.3. The Mann–Whitney U test showed a correlation of degrees of centrality between WH nodes and 
cancer driver nodes (P > 0.05). Lastly, the WH-PPi network was visualized through the Cytoscape software 
v.3.7.134.
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related to growth (GO:0040008, 1.2 ×  10–6; and GO:0040007, 1.5 ×  10–6); ACTG1, ANXA1, CDKN1A, CRK, 
ERBB2, F2, GNAS, HMGB1, MTOR, NFE2L2, NOTCH2, P2RY12, SDC4, YAP1, and VEGFA were involved 
in 5 significant annotations related to the immune system (GO:0002682, 3.5 ×  10–7; GO:0002376, 9.9 ×  10–7; 
GO:0002520, 2.2 ×  10–5; GO:0002684, 2.8 ×  10–5; and GO:0002683, 5.2 ×  10–4); ANXA1, F2, GNAS, HMGB1, 
KNG1, NFE2L2, and NOTCH2 were involved in 1 significant annotation related to the inflammatory response 
(GO:0006954, 6.5 ×  10–4); ACTG1, ANXA1, CRK, F2, FLNA, GNA13, HMGB1, MTOR, NF1, NF2L2, P2RY12, 
SDC4, and VEGFA were involved in 10 significant annotations related to cell migration (GO:0030334, 1.9 ×  10–8; 
GO:0016477, 2.2 ×  10–7; GO:0030335, 3.5 ×  10–7; GO:0001667, 1.7 ×  10–6; GO:0010632, 2.2 ×  10–5; GO:0043534, 
2.2 ×  10–5; GO:0010631, 5.2 ×  10–5; GO:0043542, 2.1 ×  10–4; and GO:0097529, 9.3 ×  10–4); and ACTG1, ANXA1, 
ERBB2, FLNA, GNA13, HMGB1, MTOR, NF1, NF32L2, P2RY12, SDC4, and VEGFA were involved in 1 sig-
nificant annotation related to angiogenesis (GO:0001525, 6.5 ×  10–7) (Figs. 6C and Supplementary Tables 19 and 
21). Lastly, Fig. 7 details the key proteins in the signaling crossroad between cancer hallmark phenotypes and 
wound healing.

Figure 5.  Shortest paths to cancer hallmark phenotypes. (A) Mean of the distance scores of shortest paths 
from wound healing proteins to cancer hallmark phenotypes and Bonferroni correction as multiple comparison 
test (P < 0.001). (B) Top ten wound healing proteins with the shortest distance scores of positive regulation 
to proliferation, differentiation, cellular energetics, metastasis, inflammation and angiogenesis, and negative 
regulation to resisting cell death. Lastly, the shortest paths to cancer hallmark phenotypes were analyzed by 
using data from CancerGenNet (https:// signor. uniro ma2. it/ Cance rGene Net/)35.

https://signor.uniroma2.it/CancerGeneNet/
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Figure 6.  Integration of multi-omics approaches and functional enrichment analysis. (A) Venn diagram 
shows 21 wound healing proteins significantly expressed in the Pan-Cancer Atlas, the patient-derived 
xenografts, the wound healing protein–protein interactome network, and the shortest paths to cancer hallmark 
phenotype approaches. (B) Functional enrichment analysis showing a Manhattan plot of the most significant 
GO: biological processes, KEGG signaling  pathways107, and Reactome signaling  pathways39. (C) Functional 
enrichment analysis showing the most significant GO: biological processes related to hallmarks of cancer 
(programmed cell-death, cell proliferation, cell growth, immune system, inflammation, cell migration, and 
angiogenesis). Significant annotations were calculated through the Benjamini–Hochberg FDR q < 0.001. Lastly, 
the functional enrichment analysis was visualized by using the g:Profiler software version e101_eg48_p14_
baf17f0 (https:// biit. cs. ut. ee/ gprofi ler/ gost)37,38.

https://biit.cs.ut.ee/gprofiler/gost
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Discussion
Proteins involved in cancer hallmarks may play a crucial role in WH processes and vice versa, mediating tumor 
progression or tissue reconstitution. The identification of these proteins and understanding how they work in 
cancer or WH, could lead to new therapeutic approaches. We identify a set of 21 proteins that control processes 
related to the cancer hallmarks and WH. Interestingly, TCGA Pan-Cancer types with the highest means of 
alteration in WH proteins are carcinomas, solid tumors of epithelial origin. Non-solid tumors, such as leukemia, 
do not show a high alteration mean for WH proteins. Evidence shows that leukaemias and solid tumors could 

Figure 7.  Key proteins involved in both hallmarks of cancer and hallmarks of wound healing. Additionally, 
each protein set was ranked according to the shortest paths from wound healing proteins to cancer hallmark 
phenotypes. Path scores of positive regulation were considered for evading growth suppressors, sustaining 
proliferative signaling, deregulating cellular energetics, inducing angiogenesis, activating invasion and 
migration, and wound-promoting inflammation; path scores of negative regulation were considered for resisting 
cell death; and avoiding immune destruction does not show path score information.
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have a common hierarchical organization in terms of carcinogenesis, being originated from a cancer stem cell 
with sustained self-renewing capacities, which gives rise to other cells with a distinct phenotype, generating cell 
 diversity41. Even if a cancer stem cell or a cell-of origin of cancer could exist among solid and non solid-tumors, 
cells could diverge from these progenitors and develop characteristics associated with their tissue of  origin42–46. 
In this sense, the identified non-solid tumors could maintain or develop the use of WH proteins as support for 
their progression, modifying the tumor microenvironment, perturbing normal WH  processes47–49. Leukemic cells 
have completely different ways of interacting with their environment thus, not using the WH-healing proteins 
found in solid-tumors50.

Among the alterations with the highest frequency mean, we found that mRNA high and CNV amplification 
were the most represented in the 347 WH genes/proteins analysed through the TCGA Pan-Cancer Atlas. Can-
cer is characterized by many genomic variations where a close correlation between CNVs and differential gene 
expression have a qualitative relationship with its downstream effect, especially for oncogenes and tumor suppres-
sor  genes51. The trend observed by Shao et al., through the analysis of the copy number and mRNA expression 
data of Broad-Novartis Cancer Cell Line Encyclopedia (CCLE), NCI-60 and TCGA, showed similarities with 
our study regarding the mRNA high and CNV amplification frequency in solid tumors. Similarly, CNVs change 
the expression levels of genes located in the concerned genomic  region52. However, a different set of genes were 
identified among studies due to the focus of our work in WH genes associated in cancer. Understanding the 
relationship between WH genes in cancer, their CNV (in germ cells), CNA (in somatic cells) and gene expression 
characteristics could help in the development of better diagnostic tools and  therapeutics52,53.

Recently, processes involved in cell survival and proliferation that might apply to both cancer and WH have 
been proposed as converging hallmarks, grouping common pathways of regulation and activation. In particu-
lar, eight of the ten recognized cancer hallmarks proposed by Hanahan and Weinberg have been related with 
WH  processes4. We used these eight recently proposed wound healing hallmarks to classify groups of genes/
proteins that participate in WH (Fig. 7). “Avoiding immune destruction” (15 proteins), “resisting cell death” (14 
proteins), and “activating invasion and migration” (14 proteins) were the hallmarks with the most identified 
proteins. In wound healing, avoiding immune destruction and resisting cell death, could be linked to a stress 
resilient mechanism, helping cancer cells to be detected and killed by immune detection and the collateral dam-
age of reactive oxygen species released by immune  cells4,54. The large number of proteins grouped on avoiding 
immune cells could be associated with a reduction in the pro-inflammatory activity in the tumor. This could be 
related to the regulation of the inflammatory phase in wound healing, whereas in cancer it is more involved in the 
down-regulation of immune recognition and increased immune  escape2. On the other hand, only one protein, 
ERBB2, was associated with the proposed WH hallmark of “deregulating cellular energetics,” interestingly com-
mon to all hallmarks of wound healing except “wound promoting inflammation”. However, it is well known that 
normal proliferating cells such as the ones involved in wound healing exhibit a metabolic switch from oxidative 
phosphorylation to an aerobic glycolytic pathway as seen in the ‘Warburg effect’ in cancer  cells55–57. Previous 
transcriptomic analysis revealed metabolic heterogeneity in wounded mouse skin with an increased expression 
of proteins associated with glycolysis and a reduction of transcripts linked to oxidative  phosphorylation58. In 
addition, some of the identified genes in this work code for proteins such as mTOR which has an important 
role in mediating changes in cellular metabolism and promoting  glycolysis57,59. Even though WH is a natural 
physiological process for tissue repair, and cancer involves an abnormal state, the common mTOR expression 
is proposed to facilitate the uptake of nutrients demanded for cell growth and proliferation in both  processes55.

We identified 21 WH proteins in the majority of cancer/WH hallmarks, we found among the most repre-
sented: ANXA1 and NOTCH2 (found in 7 of 8 hallmarks, excluding “deregulating cellular energetics”), ERBB2 
(found in 7 of 8 hallmarks, excluding “wound promoting inflammation”), mTOR and VEGFA (found in 6 of 8 
hallmarks, excluding “deregulating cellular energetics” and “wound promoting inflammation”), HMGB1 (found 
in 6 of 8 hallmark, excluding “evading growth suppressors” and “deregulating cellular energetics”), FLNA (found 
in 4 of 8 hallmarks, excluding “inflammation”, “evading growth suppressor”, “avoiding immune destruction” 
and “deregulating cellular energetics”), and YAP1 (found in 4 of 8 hallmarks, excluding “deregulating cellular 
energetics, “inflammation”, “angiogenesis” and “activating invasion and migration”. The identification of these 
WH proteins involved in most of the cancer/WH hallmarks represent a major opportunity to understand how 
the regulation of the WH would be applied to stop cancer growth.

These proteins common to most of the cancer/WH hallmarks are associated with proliferation and migra-
tion processes both key for WH and cancer progression. The Notch signaling pathway is evolutionarily con-
served among multicellular organisms regulating stem cell maintenance, cell proliferation, differentiation, and 
 apoptosis59–61. These key effects are important for the control of cancer and proper stimulation of the WH 
 process62. In mammals, one of the four types of Notch proteins, NOTCH2 promotes angiogenesis with an impor-
tant role in the carcinogenesis process. Interestingly, it has been observed that NOTCH1 controls NOTCH2, 
thus acting as a tumor suppressor. NOTCH2 promotes immune activation and inflammations modulating mac-
rophages  phenotype63,64. The proinflammatory role of NOTCH2 is detrimental for the healing of diabetic wounds, 
being an interesting target of molecules with regenerative  properties65,66.

ERBB2 plays a crucial role in cell proliferation, epithelial differentiation and  WH67. It has been reported that 
ERBB2 promotes tumor progression especially in skin and breast  cancers68,69. In wound healing, the ERBB2 acti-
vation during the proliferative phase of tissue repair promotes the WH of human airway epithelial cell wounds. 
The blockage of ERBB2 leads to the failure of the regenerative process. However, blocking ERBB2 could be an 
important therapeutic target in  cancer67,70,71.

The activity of mTOR, as mentioned before, is considered a central regulator of cell growth, proliferation, 
cellular metabolism, survival and  homeostasis72,73. mTOR plays an important role in the PI3K-AKT signaling 
pathway involved in WH mechanisms such as growth and proliferation. However, evidence shows that mTOR 
deregulation is implicated in tumorigenesis and tumor progression. In WH, mTOR improves the wound closure 
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rate, being especially active in epithelial cells. The pharmacological activation of PI3K-AKT-mTOR improves 
WH, influencing its upstream regulators PTEN and  TSC174. The deregulation of mTOR is implicated in progres-
sion of cancer and the aging  process75. This research provides more evidence of the important role of mTOR in 
WH and cancer being a key target for therapy, whether promoting tissue regeneration or by preventing cancer 
growth when blocked.

In the tumor microenvironment and during WH, the physical interaction of fibroblasts with collagen regulate 
many cellular processes through the activity of FLNA. FLNA is an actin filament cross-linking protein that acts 
in the regulation of cell  adhesion76. Several actin-binding proteins, including vinculin, α-actinin, paxillin, talin, 
cortactin, gelsolin, and filamins provide instructive signals that regulate the maintenance of tension in collagen 
during remodeling. This is linked to the FLNA function which focuses on mediating cell-induced contraction 
and wound  closure77,78. On the other hand, FLNA can induce two opposite outcomes in cancer depending on 
its subcellular localization: (1) promoting cell growth and metastasis when it is present in the cytoplasm and 
interacting with cell signalling molecules, or (2) inhibiting cell growth and preventing metastasis when it is 
acting in the nucleus and interacting with transcription  factors79. In cancer, the inhibition of NF1 contributes 
to the generation of melanomagenesis by enhancing the activation of PI3K signaling, this inhibition favours 
angiogenesis, escaping apoptosis, migration, and cancer cell  invasion80–83.

The YAP1 protein, a precursor of the activity of the YAP/TAZ signaling pathway, is essential for skin homeo-
stasis and  WH84,85. YAP1 has been associated with processes such as proliferation and the recruitment of M2 
macrophages, myeloid-derived suppressor cells (MDSC), and regulatory T cells to suppress host effector T cells 
in the tumor  microenvironment86. YAP1 activity in tumors results in cancer progression and drug  resistance86. 
YAP1 contributes to cancer invasion and migration by promoting SNAI2 transcription through the transcrip-
tion cofactor TEAD, in vivo and in vitro assays. YAP1 expression promotes cell proliferation, migration, and 
invasion, while silencing YAP1 significantly inhibits cell migration, invasion, and  growth84. Given that YAP1 is 
hyperactive in many human cancers, it suggests that therapeutic targeting of YAP1 could regulate key processes 
in the tumor, thereby disrupting its survival  mechanisms87.

During the WH process, the inhibition of thrombospondin 1 (TSP-1) and 2 (TSP-2) by HRG promotes 
angiogenesis facilitaning wound  closure88. Similarly, ANXA1 promotes the development of blood vessels and 
metastasis with a deleterious effect in cancer, however positive effects during the WH  process89,90.

Among the least represented proteins, we found NFE2L2 and CDKN1A. NFE2L2 is activated after tis-
sue damage and promotes wound repair protecting cells for the damaging effects of ROS production during 
 inflammation91. Insufficient NFE2L2 expression impairs WH in a process associated with severe tissue damage 
and uncontrolled  inflammation92. Inhibition of NFE2L2 in keratinocytes favors tumor development. In contrast, 
when NFE2L2 is functional, it plays an important role in reducing cellular stress, preventing DNA damage and 
cancerous  mutations93. NFE2L2 expresses a bZIP protein with cytoprotective  effects94,95, regulating genes involved 
in redox  homeostasis56,96,97, this functioning in the stress defense in mammalian  cells98. However, when NFE2L2 
is overexpressed in cancer cells, it promotes their drug and radiotherapy  resistance99. The CDKN1A gene was 
initially considered as a potential tumor suppressor. However, studies have reported that this gene could act as an 
oncogene due to its anti-apoptotic  activities100,101. It is involved in p53-mediated inhibition of cell proliferation in 
response to DNA damage leading to cell cycle arrest at the G1/S  checkpoint102,103. By overexpressing CDKN1A, 
wound fibroblasts enhance age-related healing, creating potential clinical avenues to promote wound healing 
in the elderly  population104. Inhibition of this protein can act to enhance the regenerative response in several 
ways, altering DNA damage and checkpoint responses, leading to increased proliferation. It can reduce TGF-β 
signaling, which decreases scar formation and would alter differentiation  patterns105.

This work identified 21 proteins in which eight have shown to be highly associated between WH and the 
cancer hallmarks. These proteins could represent critical nodes in the network of a controlled WH process or a 
deregulated interaction leading to tumor progression. Interestingly, the identified proteins were highly expressed 
only in solid tumors, as cancer cells must use them to modify the tissue microenvironment and induce immune 
cell regulation. This protein set could be specially needed to reorganize the wounded tissue and lead to regenera-
tion. However, in the case of cancer, these proteins induce immune escape and survival. Putting in evidence these 
common proteins between WH and cancer brought light to those principally involved in sustained proliferation, 
invasion, angiogenesis, and others connected and overlapped between health and disease. Further interdisci-
plinary studies in vivo or in patients will support the in silico role of the identified and overlapped proteins. 
Interdisciplinarity is important as it brings together specialists in bioinformatics, health care professionals and 
technical experts leading to the development of better screening methods for early diagnosis and  therapies106. 
These studies would allow therapeutic targeting and the development of specific pharmacological compounds 
that would stop cancer progression without affecting the healing process.

Data availability
The datasets generated for this study are included in this published article (and its Supplementary Information 
files).
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